Problem #13

This question should be answered using the Weekly data set, which is part of the ISLR2 package. This data is similar in nature to the Smarket data from this chapter’s lab, except that it contains 1, 089 weekly returns for 21 years, from the beginning of 1990 to the end of 2010.

  1. Produce some numerical and graphical summaries of the Weekly data.
    Do there appear to be any patterns?
## Warning: package 'ISLR2' was built under R version 4.1.3
##       Year           Lag1               Lag2               Lag3         
##  Min.   :1990   Min.   :-18.1950   Min.   :-18.1950   Min.   :-18.1950  
##  1st Qu.:1995   1st Qu.: -1.1540   1st Qu.: -1.1540   1st Qu.: -1.1580  
##  Median :2000   Median :  0.2410   Median :  0.2410   Median :  0.2410  
##  Mean   :2000   Mean   :  0.1506   Mean   :  0.1511   Mean   :  0.1472  
##  3rd Qu.:2005   3rd Qu.:  1.4050   3rd Qu.:  1.4090   3rd Qu.:  1.4090  
##  Max.   :2010   Max.   : 12.0260   Max.   : 12.0260   Max.   : 12.0260  
##       Lag4               Lag5              Volume            Today         
##  Min.   :-18.1950   Min.   :-18.1950   Min.   :0.08747   Min.   :-18.1950  
##  1st Qu.: -1.1580   1st Qu.: -1.1660   1st Qu.:0.33202   1st Qu.: -1.1540  
##  Median :  0.2380   Median :  0.2340   Median :1.00268   Median :  0.2410  
##  Mean   :  0.1458   Mean   :  0.1399   Mean   :1.57462   Mean   :  0.1499  
##  3rd Qu.:  1.4090   3rd Qu.:  1.4050   3rd Qu.:2.05373   3rd Qu.:  1.4050  
##  Max.   : 12.0260   Max.   : 12.0260   Max.   :9.32821   Max.   : 12.0260  
##  Direction 
##  Down:484  
##  Up  :605  
##            
##            
##            
## 
##               Year         Lag1        Lag2        Lag3         Lag4
## Year    1.00000000 -0.032289274 -0.03339001 -0.03000649 -0.031127923
## Lag1   -0.03228927  1.000000000 -0.07485305  0.05863568 -0.071273876
## Lag2   -0.03339001 -0.074853051  1.00000000 -0.07572091  0.058381535
## Lag3   -0.03000649  0.058635682 -0.07572091  1.00000000 -0.075395865
## Lag4   -0.03112792 -0.071273876  0.05838153 -0.07539587  1.000000000
## Lag5   -0.03051910 -0.008183096 -0.07249948  0.06065717 -0.075675027
## Volume  0.84194162 -0.064951313 -0.08551314 -0.06928771 -0.061074617
## Today  -0.03245989 -0.075031842  0.05916672 -0.07124364 -0.007825873
##                Lag5      Volume        Today
## Year   -0.030519101  0.84194162 -0.032459894
## Lag1   -0.008183096 -0.06495131 -0.075031842
## Lag2   -0.072499482 -0.08551314  0.059166717
## Lag3    0.060657175 -0.06928771 -0.071243639
## Lag4   -0.075675027 -0.06107462 -0.007825873
## Lag5    1.000000000 -0.05851741  0.011012698
## Volume -0.058517414  1.00000000 -0.033077783
## Today   0.011012698 -0.03307778  1.000000000

There seems to be little to no correlation between today’s returns and previous day returns. However, there seems to be a substantial correlation between Year and Volume, meaning that the number of shares traded daily increased (see plot).

  1. Use the full data set to perform a logistic regression with Direction as the response and the five lag variables plus Volume as predictors. Use the summary function to print the results. Do any of the predictors appear to be statistically significant? If so, which ones?
glm.fits <- glm(
  Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume ,
  data = Weekly, family = binomial
)
summary(glm.fits)
## 
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + 
##     Volume, family = binomial, data = Weekly)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6949  -1.2565   0.9913   1.0849   1.4579  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.26686    0.08593   3.106   0.0019 **
## Lag1        -0.04127    0.02641  -1.563   0.1181   
## Lag2         0.05844    0.02686   2.175   0.0296 * 
## Lag3        -0.01606    0.02666  -0.602   0.5469   
## Lag4        -0.02779    0.02646  -1.050   0.2937   
## Lag5        -0.01447    0.02638  -0.549   0.5833   
## Volume      -0.02274    0.03690  -0.616   0.5377   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1496.2  on 1088  degrees of freedom
## Residual deviance: 1486.4  on 1082  degrees of freedom
## AIC: 1500.4
## 
## Number of Fisher Scoring iterations: 4

The smallest p-value is associated with Lag2 with a p-value of 0.0296. This value is statistically significant as it’s less than 0.05.

  1. Compute the confusion matrix and overall fraction of correct predictions. Explain what the confusion matrix is telling you about the types of mistakes made by logistic regression.
glm.probs <- predict(glm.fits, type = "response")
glm.probs [1:10]
##         1         2         3         4         5         6         7         8 
## 0.6086249 0.6010314 0.5875699 0.4816416 0.6169013 0.5684190 0.5786097 0.5151972 
##         9        10 
## 0.5715200 0.5554287
contrasts(Weekly$Direction)
##      Up
## Down  0
## Up    1
glm.pred <- rep("Down", 1089)
glm.pred[glm.probs > .5] = "Up"
table(glm.pred, Weekly$Direction)
##         
## glm.pred Down  Up
##     Down   54  48
##     Up    430 557
mean(glm.pred == Weekly$Direction)
## [1] 0.5610652

The logistic regression correctly predicted the movement of the market 56.10% of the time. However, since this is the training set. The training error rate (100% - 56.10% = 43.90%) is often too optimistic and tends to underestimate the test error rate.

  1. Now fit the logistic regression model using a training data period from 1990 to 2008, with Lag2 as the only predictor. Compute the confusion matrix and the overall fraction of correct predictions for the held out data (that is, the data from 2009 and 2010)
train = (Weekly$Year <2009)
Weekly.2009 <- Weekly[!train, ]
dim(Weekly.2009)
## [1] 104   9
Direction.2009 <- Weekly$Direction[!train]
glm.fits <- glm(
  Direction ~ Lag2, data = Weekly , family = binomial , subset = train
)
glm.probs <- predict (glm.fits, Weekly.2009, type = "response")
glm.pred <- rep("Down", 104)
glm.pred[glm.probs > .5] <- "Up"
table (glm.pred, Direction.2009)
##         Direction.2009
## glm.pred Down Up
##     Down    9  5
##     Up     34 56
mean (glm.pred == Direction.2009)
## [1] 0.625
mean (glm.pred != Direction.2009)
## [1] 0.375
  1. Repeat (d) using LDA.
library(MASS)
## 
## Attaching package: 'MASS'
## The following object is masked from 'package:ISLR2':
## 
##     Boston
lda.fit <- lda(Direction ~ Lag1 + Lag2, data = Weekly, subset = train)
lda.fit
## Call:
## lda(Direction ~ Lag1 + Lag2, data = Weekly, subset = train)
## 
## Prior probabilities of groups:
##      Down        Up 
## 0.4477157 0.5522843 
## 
## Group means:
##              Lag1        Lag2
## Down  0.289444444 -0.03568254
## Up   -0.009213235  0.26036581
## 
## Coefficients of linear discriminants:
##             LD1
## Lag1 -0.3013148
## Lag2  0.2982579
plot(lda.fit)

lda.pred <- predict(lda.fit, Weekly.2009)
names(lda.pred)
## [1] "class"     "posterior" "x"
lda.class <- lda.pred$class
table(lda.class, Direction.2009)
##          Direction.2009
## lda.class Down Up
##      Down    7  8
##      Up     36 53
mean(lda.class == Direction.2009)
## [1] 0.5769231
sum(lda.class == Direction.2009)
## [1] 60
  1. Repeat (d) using QDA.
qda.fit <- qda(Weekly$Direction ~ Lag1 + Lag2, data = Weekly, subset = train)
qda.fit
## Call:
## qda(Weekly$Direction ~ Lag1 + Lag2, data = Weekly, subset = train)
## 
## Prior probabilities of groups:
##      Down        Up 
## 0.4477157 0.5522843 
## 
## Group means:
##              Lag1        Lag2
## Down  0.289444444 -0.03568254
## Up   -0.009213235  0.26036581
qda.class <- predict (qda.fit, Weekly.2009)$class
table(qda.class, Direction.2009)
##          Direction.2009
## qda.class Down Up
##      Down    7 10
##      Up     36 51
mean(qda.class == Direction.2009)
## [1] 0.5576923
  1. Repeat (d) using KNN with K = 1.
library(class)
train.X <- cbind (Weekly$Lag1 , Weekly$Lag2)[train , ]
test.X <- cbind (Weekly$Lag1 , Weekly$Lag2)[!train , ]
train.Direction <- Weekly$Direction[train]
set.seed(1)
knn.pred <- knn(train.X, test.X, train.Direction, k = 1)
table(knn.pred, Direction.2009)
##         Direction.2009
## knn.pred Down Up
##     Down   18 29
##     Up     25 32
knn.pred <- knn(train.X, test.X, train.Direction, k = 3)
table(knn.pred, Direction.2009)
##         Direction.2009
## knn.pred Down Up
##     Down   22 29
##     Up     21 32
mean(knn.pred == Direction.2009)
## [1] 0.5192308
  1. Repeat (d) using naive Bayes.
library(e1071)
## Warning: package 'e1071' was built under R version 4.1.3
nb.fit <- naiveBayes(Direction ~ Lag1 + Lag2, data = Weekly, subset = train)
nb.fit
## 
## Naive Bayes Classifier for Discrete Predictors
## 
## Call:
## naiveBayes.default(x = X, y = Y, laplace = laplace)
## 
## A-priori probabilities:
## Y
##      Down        Up 
## 0.4477157 0.5522843 
## 
## Conditional probabilities:
##       Lag1
## Y              [,1]     [,2]
##   Down  0.289444444 2.211721
##   Up   -0.009213235 2.308387
## 
##       Lag2
## Y             [,1]     [,2]
##   Down -0.03568254 2.199504
##   Up    0.26036581 2.317485
nb.class <- predict(nb.fit, Weekly.2009)
table(nb.class, Direction.2009)
##         Direction.2009
## nb.class Down Up
##     Down    3  8
##     Up     40 53
mean(nb.class == Direction.2009)
## [1] 0.5384615
  1. Which of these methods appears to provide the best results on this data? It appears that, out of these methods, the Logistic Regression and the LDA provide the best results.
  1. Experiment with different combinations of predictors, including possible transformations and interactions, for each of the methods. Report the variables, method, and associated confusion matrix that appears to provide the best results on the held out data. Note that you should also experiment with values for K in the KNN classifier.

Problem #14

In this problem, you will develop a model to predict whether a given car gets high or low gas mileage based on the Auto data set.

  1. Create a binary variable, mpg01, that contains a 1 if mpg contains a value above its median, and a 0 if mpg contains a value below its median. You can compute the median using the median() function. Note you may find it helpful to use the data.frame() function to create a single data set containing both mpg01 and the other Auto variables.
attach(Auto)
head(Auto)
##   mpg cylinders displacement horsepower weight acceleration year origin
## 1  18         8          307        130   3504         12.0   70      1
## 2  15         8          350        165   3693         11.5   70      1
## 3  18         8          318        150   3436         11.0   70      1
## 4  16         8          304        150   3433         12.0   70      1
## 5  17         8          302        140   3449         10.5   70      1
## 6  15         8          429        198   4341         10.0   70      1
##                        name
## 1 chevrolet chevelle malibu
## 2         buick skylark 320
## 3        plymouth satellite
## 4             amc rebel sst
## 5               ford torino
## 6          ford galaxie 500
mpg01 <- rep(0, length(mpg))
mpg01[mpg > median(mpg)] <- 1
Auto = data.frame(Auto, mpg01)
median(mpg01)
## [1] 0.5
  1. Explore the data graphically in order to investigate the association between mpg01 and the other features. Which of the other features seem most likely to be useful in predicting mpg01? Scatterplots and boxplots may be useful tools to answer this question. Describe your findings.
par(mfrow = c(2, 2))
plot(factor(Auto$mpg01), Auto$year, ylab = "Manufacture year", xlab = "Cars")
plot(factor(Auto$mpg01), Auto$weight, ylab = "Weight (lbs)", xlab = "Cars")
plot(factor(Auto$mpg01), Auto$horsepower, ylab = "Horsepower", xlab = "Cars")
plot(factor(Auto$mpg01), Auto$acceleration, ylab = "Time to reach 60mpg in seconds", xlab = "Cars")

The boxplots suggest that there is some overlap between manufacture year and time to reach 60mpg in seconds. It appears that there is a greater difference in the weight and the horsepower between the cars.

  1. Split the data into a training set and a test set.
train <- (year %% 2 == 0)
train_auto <- Auto[train,]
test_auto <- Auto[!train,]
  1. Perform LDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?
autolda_fit <- lda(mpg01~displacement+horsepower+weight+year+cylinders+origin, data=train_auto, subset = train)
autolda_pred <- predict(autolda_fit, Auto[-train, ])
table(autolda_pred$class, Auto[-train, "mpg01"])
##    
##       0   1
##   0 171  14
##   1  24 182
1 - mean(autolda_pred$class == Auto[-train, "mpg01"])
## [1] 0.0971867

The test error of the model obtained is 9.71%

  1. Perform QDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?
autoqda_fit = qda(mpg01 ~ cylinders + displacement + horsepower + weight + year + origin, data = train_auto, subset = train)
autoqda_pred = predict(autoqda_fit, Auto[-train, ])
table(autoqda_pred$class, Auto[-train, "mpg01"])
##    
##       0   1
##   0 175  21
##   1  20 175
1 - mean(autoqda_pred$class == Auto[-train, "mpg01"])
## [1] 0.1048593

The test error of the model obtained is 10.49%

  1. Perform logistic regression on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?
autoglm_fit = glm(mpg01 ~cylinders + displacement + horsepower + weight + year + origin, data = Auto, family = "binomial")
summary(autoglm_fit)
## 
## Call:
## glm(formula = mpg01 ~ cylinders + displacement + horsepower + 
##     weight + year + origin, family = "binomial", data = Auto)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4289  -0.1044   0.0081   0.2125   3.1750  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -1.680e+01  4.831e+00  -3.477 0.000506 ***
## cylinders    -1.636e-01  4.235e-01  -0.386 0.699274    
## displacement  1.963e-03  1.199e-02   0.164 0.869905    
## horsepower   -4.297e-02  1.664e-02  -2.581 0.009839 ** 
## weight       -4.251e-03  9.889e-04  -4.299 1.72e-05 ***
## year          4.286e-01  7.485e-02   5.726 1.03e-08 ***
## origin        4.755e-01  3.615e-01   1.315 0.188440    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 543.43  on 391  degrees of freedom
## Residual deviance: 157.55  on 385  degrees of freedom
## AIC: 171.55
## 
## Number of Fisher Scoring iterations: 8
autoglm_probs = predict(autoglm_fit, Auto[-train, ], type = "response")
autoglm_pred = rep(0, dim(Auto[-train, ])[1])
autoglm_pred[autoglm_probs > 0.5] = 1
table(autoglm_pred, Auto[-train, "mpg01"], dnn = c("Predicted", "Actual"))
##          Actual
## Predicted   0   1
##         0 172  13
##         1  23 183
1- mean(autoglm_pred == Auto[-train, "mpg01"])
## [1] 0.09207161

The test error rate is 8.43%

  1. Perform naive Bayes on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?
autonb_fit <- naiveBayes(mpg01 ~cylinders + displacement + horsepower + weight + year + origin, data = Auto, subset = train)
nb.fit
## 
## Naive Bayes Classifier for Discrete Predictors
## 
## Call:
## naiveBayes.default(x = X, y = Y, laplace = laplace)
## 
## A-priori probabilities:
## Y
##      Down        Up 
## 0.4477157 0.5522843 
## 
## Conditional probabilities:
##       Lag1
## Y              [,1]     [,2]
##   Down  0.289444444 2.211721
##   Up   -0.009213235 2.308387
## 
##       Lag2
## Y             [,1]     [,2]
##   Down -0.03568254 2.199504
##   Up    0.26036581 2.317485
autonb_pred <- predict(autonb_fit, Auto)
  1. Perform KNN on the training data, with several values of K, in order to predict mpg01. Use only the variables that seemed most associated with mpg01 in (b). What test errors do you obtain? Which value of K seems to perform the best on this data set?
autoknn_train <- cbind( cylinders, displacement, horsepower, weight
)[train,]

autoknn_test <- cbind( cylinders, displacement, horsepower, weight
)[!train,]

set.seed(1)
autoknn_1 <- knn(autoknn_train, autoknn_test, train_auto$mpg01, k = 1)
table(autoknn_1, test_auto$mpg01)
##          
## autoknn_1  0  1
##         0 83 11
##         1 17 71
1 - mean(autoknn_1 == test_auto$mpg01)
## [1] 0.1538462

The test error rate is 15.38% with K=1.

autoknn_10 <- knn(autoknn_train, autoknn_test, train_auto$mpg01, k = 10)
table(autoknn_10, test_auto$mpg01)
##           
## autoknn_10  0  1
##          0 77  7
##          1 23 75
1 - mean(autoknn_10 == test_auto$mpg01)
## [1] 0.1648352

The test error rate is 16.48% with K=10.

autoknn_5 <- knn(autoknn_train, autoknn_test, train_auto$mpg01, k = 5)
table(autoknn_5, test_auto$mpg01)
##          
## autoknn_5  0  1
##         0 82  9
##         1 18 73
1 - mean(autoknn_5 == test_auto$mpg01)
## [1] 0.1483516

The test error rate is 14.83% with K=5.

autoknn_100 <- knn(autoknn_train, autoknn_test, train_auto$mpg01, k = 100)
table(autoknn_100, test_auto$mpg01)
##            
## autoknn_100  0  1
##           0 81  7
##           1 19 75
1 - mean(autoknn_100 == test_auto$mpg01)
## [1] 0.1428571

The test error rate is 14.29% with K=100.

Problem #16

Using the Boston data set, fit classification models in order to predict whether a given census tract has a crime rate above or below the median. Explore logistic regression, LDA, naive Bayes, and KNN models using various subsets of the predictors. Describe your findings.

Hint: You will have to create the response variable yourself, using the variables that are contained in the Boston data set.

summary(Boston)
##       crim                zn             indus            chas        
##  Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46   Min.   :0.00000  
##  1st Qu.: 0.08205   1st Qu.:  0.00   1st Qu.: 5.19   1st Qu.:0.00000  
##  Median : 0.25651   Median :  0.00   Median : 9.69   Median :0.00000  
##  Mean   : 3.61352   Mean   : 11.36   Mean   :11.14   Mean   :0.06917  
##  3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10   3rd Qu.:0.00000  
##  Max.   :88.97620   Max.   :100.00   Max.   :27.74   Max.   :1.00000  
##       nox               rm             age              dis        
##  Min.   :0.3850   Min.   :3.561   Min.   :  2.90   Min.   : 1.130  
##  1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02   1st Qu.: 2.100  
##  Median :0.5380   Median :6.208   Median : 77.50   Median : 3.207  
##  Mean   :0.5547   Mean   :6.285   Mean   : 68.57   Mean   : 3.795  
##  3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08   3rd Qu.: 5.188  
##  Max.   :0.8710   Max.   :8.780   Max.   :100.00   Max.   :12.127  
##       rad              tax           ptratio          black       
##  Min.   : 1.000   Min.   :187.0   Min.   :12.60   Min.   :  0.32  
##  1st Qu.: 4.000   1st Qu.:279.0   1st Qu.:17.40   1st Qu.:375.38  
##  Median : 5.000   Median :330.0   Median :19.05   Median :391.44  
##  Mean   : 9.549   Mean   :408.2   Mean   :18.46   Mean   :356.67  
##  3rd Qu.:24.000   3rd Qu.:666.0   3rd Qu.:20.20   3rd Qu.:396.23  
##  Max.   :24.000   Max.   :711.0   Max.   :22.00   Max.   :396.90  
##      lstat            medv      
##  Min.   : 1.73   Min.   : 5.00  
##  1st Qu.: 6.95   1st Qu.:17.02  
##  Median :11.36   Median :21.20  
##  Mean   :12.65   Mean   :22.53  
##  3rd Qu.:16.95   3rd Qu.:25.00  
##  Max.   :37.97   Max.   :50.00
#crime is "crim" in the data set
attach(Boston)
Boston_crime <- rep(0, length(crim))
Boston_crime[crim > median(crim)] <- 1
Boston = data.frame(Boston, Boston_crime)
train = 1:(dim(Boston)[1]/2)
test = (dim(Boston)[1]/2 + 1):dim(Boston)[1]
Boston_train = Boston[train, ]
Boston_test = Boston[test, ]
Boston_crime_test = Boston_crime[test]
pairs(Boston)

The paired correlation plots indicate that the variables “indus” (proportion of non-retail business acres per town.), “nox” (nitrogen oxides concentration (parts per 10 million), “age” (proportion of owner-occupied units built prior to 1940.), “dis” (weighted mean of distances to five Boston employment centres), “rad” (index of accessibility to radial highways.), and “tax” full-value property-tax rate per $10,000.) could be correlated with the crime rate.

To test significance, we calculate a logistic regression model:

set.seed(1)
Boston_fit <-glm(Boston_crime~ indus+nox+age+dis+rad+tax, data=Boston_train,family=binomial)
Boston_probs = predict(Boston_fit, Boston_test, type = "response")
Boston_pred = rep(0, length(Boston_probs))
Boston_pred[Boston_probs > 0.5] = 1
table(Boston_pred, Boston_crime_test)
##            Boston_crime_test
## Boston_pred   0   1
##           0  75   8
##           1  15 155
mean(Boston_pred != Boston_crime_test)
## [1] 0.09090909
summary(Boston_fit)
## 
## Call:
## glm(formula = Boston_crime ~ indus + nox + age + dis + rad + 
##     tax, family = binomial, data = Boston_train)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.97810  -0.21406  -0.03454   0.47107   3.04502  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -42.214032   7.617440  -5.542 2.99e-08 ***
## indus        -0.213126   0.073236  -2.910  0.00361 ** 
## nox          80.868029  16.066473   5.033 4.82e-07 ***
## age           0.003397   0.012032   0.282  0.77772    
## dis           0.307145   0.190502   1.612  0.10690    
## rad           0.847236   0.183767   4.610 4.02e-06 ***
## tax          -0.013760   0.004956  -2.777  0.00549 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 329.37  on 252  degrees of freedom
## Residual deviance: 144.44  on 246  degrees of freedom
## AIC: 158.44
## 
## Number of Fisher Scoring iterations: 8

Next we calculate the LDA:

Bostonlda_fit <-lda(Boston_crime~ indus+nox+age+dis+rad+tax, data=Boston_train,family=binomial)
Bostonlda_pred = predict(Bostonlda_fit, Boston_test)
table(Bostonlda_pred$class, Boston_crime_test)
##    Boston_crime_test
##       0   1
##   0  81  18
##   1   9 145
mean(Bostonlda_pred$class != Boston_crime_test)
## [1] 0.1067194

Next, we calculate Naive Bayes:

Boston_nb_fit <-  naiveBayes(Boston_crime ~ indus+nox+age+dis+rad+tax, data=Boston)
Boston_nb_fit
## 
## Naive Bayes Classifier for Discrete Predictors
## 
## Call:
## naiveBayes.default(x = X, y = Y, laplace = laplace)
## 
## A-priori probabilities:
## Y
##   0   1 
## 0.5 0.5 
## 
## Conditional probabilities:
##    indus
## Y        [,1]     [,2]
##   0  7.002292 5.514454
##   1 15.271265 5.439010
## 
##    nox
## Y        [,1]       [,2]
##   0 0.4709711 0.05559789
##   1 0.6384190 0.09870365
## 
##    age
## Y       [,1]     [,2]
##   0 51.31028 25.88190
##   1 85.83953 17.87423
## 
##    dis
## Y       [,1]     [,2]
##   0 5.091596 2.081304
##   1 2.498489 1.085521
## 
##    rad
## Y        [,1]     [,2]
##   0  4.158103 1.659121
##   1 14.940711 9.529843
## 
##    tax
## Y       [,1]     [,2]
##   0 305.7431  87.4837
##   1 510.7312 167.8553

Next, we calculate the KNN. First, K=1

Bostonknn_train=cbind(indus,nox,age,dis,rad,tax)[train,]
Bostonknn_test=cbind(indus,nox,age,dis,rad,tax)[test,]
Bostonknn_pred=knn(Bostonknn_train, Bostonknn_test, Boston_crime_test, k=1)
table(Bostonknn_pred,Boston_crime_test)
##               Boston_crime_test
## Bostonknn_pred   0   1
##              0  31 155
##              1  59   8
mean(Bostonknn_pred != Boston_crime_test)
## [1] 0.8458498

Next, K=5

Bostonknn_pred5=knn(Bostonknn_train, Bostonknn_test, Boston_crime_test, k=5)
table(Bostonknn_pred5,Boston_crime_test)
##                Boston_crime_test
## Bostonknn_pred5   0   1
##               0  42  20
##               1  48 143
mean(Bostonknn_pred5 != Boston_crime_test)
## [1] 0.2687747

Next, K=100

Bostonknn_pred100=knn(Bostonknn_train, Bostonknn_test, Boston_crime_test, k=100)
table(Bostonknn_pred100,Boston_crime_test)
##                  Boston_crime_test
## Bostonknn_pred100   0   1
##                 0  21   7
##                 1  69 156
mean(Bostonknn_pred100 != Boston_crime_test)
## [1] 0.3003953

In summary, we can see that the logistic regression model had the lowest test error rate of 9.09%, followed by the LDA with 10.67%. The statistically significant variables turned out to be indus, nox, rad, and tax.