title: “Assignment_3” author: “Monique Villarreal” date: “2022-09-24” output: html_document =========================================================================
library(ISLR2)
dim(Weekly)
## [1] 1089 9
summary(Weekly)
## Year Lag1 Lag2 Lag3
## Min. :1990 Min. :-18.1950 Min. :-18.1950 Min. :-18.1950
## 1st Qu.:1995 1st Qu.: -1.1540 1st Qu.: -1.1540 1st Qu.: -1.1580
## Median :2000 Median : 0.2410 Median : 0.2410 Median : 0.2410
## Mean :2000 Mean : 0.1506 Mean : 0.1511 Mean : 0.1472
## 3rd Qu.:2005 3rd Qu.: 1.4050 3rd Qu.: 1.4090 3rd Qu.: 1.4090
## Max. :2010 Max. : 12.0260 Max. : 12.0260 Max. : 12.0260
## Lag4 Lag5 Volume Today
## Min. :-18.1950 Min. :-18.1950 Min. :0.08747 Min. :-18.1950
## 1st Qu.: -1.1580 1st Qu.: -1.1660 1st Qu.:0.33202 1st Qu.: -1.1540
## Median : 0.2380 Median : 0.2340 Median :1.00268 Median : 0.2410
## Mean : 0.1458 Mean : 0.1399 Mean :1.57462 Mean : 0.1499
## 3rd Qu.: 1.4090 3rd Qu.: 1.4050 3rd Qu.:2.05373 3rd Qu.: 1.4050
## Max. : 12.0260 Max. : 12.0260 Max. :9.32821 Max. : 12.0260
## Direction
## Down:484
## Up :605
##
##
##
##
pairs(Weekly)
cor(Weekly[,-9])
## Year Lag1 Lag2 Lag3 Lag4
## Year 1.00000000 -0.032289274 -0.03339001 -0.03000649 -0.031127923
## Lag1 -0.03228927 1.000000000 -0.07485305 0.05863568 -0.071273876
## Lag2 -0.03339001 -0.074853051 1.00000000 -0.07572091 0.058381535
## Lag3 -0.03000649 0.058635682 -0.07572091 1.00000000 -0.075395865
## Lag4 -0.03112792 -0.071273876 0.05838153 -0.07539587 1.000000000
## Lag5 -0.03051910 -0.008183096 -0.07249948 0.06065717 -0.075675027
## Volume 0.84194162 -0.064951313 -0.08551314 -0.06928771 -0.061074617
## Today -0.03245989 -0.075031842 0.05916672 -0.07124364 -0.007825873
## Lag5 Volume Today
## Year -0.030519101 0.84194162 -0.032459894
## Lag1 -0.008183096 -0.06495131 -0.075031842
## Lag2 -0.072499482 -0.08551314 0.059166717
## Lag3 0.060657175 -0.06928771 -0.071243639
## Lag4 -0.075675027 -0.06107462 -0.007825873
## Lag5 1.000000000 -0.05851741 0.011012698
## Volume -0.058517414 1.00000000 -0.033077783
## Today 0.011012698 -0.03307778 1.000000000
attach(Weekly)
plot(Weekly)
glm.wfit=glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume, data=Weekly, family=binomial)
summary(glm.wfit)
##
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 +
## Volume, family = binomial, data = Weekly)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.6949 -1.2565 0.9913 1.0849 1.4579
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.26686 0.08593 3.106 0.0019 **
## Lag1 -0.04127 0.02641 -1.563 0.1181
## Lag2 0.05844 0.02686 2.175 0.0296 *
## Lag3 -0.01606 0.02666 -0.602 0.5469
## Lag4 -0.02779 0.02646 -1.050 0.2937
## Lag5 -0.01447 0.02638 -0.549 0.5833
## Volume -0.02274 0.03690 -0.616 0.5377
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1496.2 on 1088 degrees of freedom
## Residual deviance: 1486.4 on 1082 degrees of freedom
## AIC: 1500.4
##
## Number of Fisher Scoring iterations: 4
summary(glm.wfit)$coef[,4]
## (Intercept) Lag1 Lag2 Lag3 Lag4 Lag5
## 0.001898848 0.118144368 0.029601361 0.546923890 0.293653342 0.583348244
## Volume
## 0.537674762
## Direction
## glm.pred Down Up
## Down 54 48
## Up 430 557
mean(glm.pred==Direction)
## [1] 0.5610652
train=(Year<2009)
Weekly2.0.2009=Weekly[!train, ]
Direction2.0.2009=Direction[!train]
Weekly.fit=glm(Direction~Lag2,data=Weekly,family=binomial,subset=train)
Weekly.prob=predict(Weekly.fit,Weekly2.0.2009,type="response")
Weekly.pred=rep("Down",length(Weekly.prob))
Weekly.pred[Weekly.prob>0.5]="Up"
table(Weekly.pred,Direction2.0.2009)
## Direction2.0.2009
## Weekly.pred Down Up
## Down 9 5
## Up 34 56
mean(Weekly.pred==Direction2.0.2009)
## [1] 0.625
library(MASS)
##
## Attaching package: 'MASS'
## The following object is masked from 'package:ISLR2':
##
## Boston
lda.fit = lda(Direction~Lag2, data = Weekly, subset = train)
lda.fit
## Call:
## lda(Direction ~ Lag2, data = Weekly, subset = train)
##
## Prior probabilities of groups:
## Down Up
## 0.4477157 0.5522843
##
## Group means:
## Lag2
## Down -0.03568254
## Up 0.26036581
##
## Coefficients of linear discriminants:
## LD1
## Lag2 0.4414162
lda.pred = predict(lda.fit, Weekly2.0.2009)
names(lda.pred)
## [1] "class" "posterior" "x"
lda.class = lda.pred$class
table(lda.class, Direction2.0.2009)
## Direction2.0.2009
## lda.class Down Up
## Down 9 5
## Up 34 56
mean(lda.class==Direction2.0.2009)
## [1] 0.625
qda.fit = qda(Direction~Lag2, data = Weekly, subset = train)
qda.fit
## Call:
## qda(Direction ~ Lag2, data = Weekly, subset = train)
##
## Prior probabilities of groups:
## Down Up
## 0.4477157 0.5522843
##
## Group means:
## Lag2
## Down -0.03568254
## Up 0.26036581
qda.class = predict(qda.fit, Weekly2.0.2009)$class
table(qda.class, Direction2.0.2009)
## Direction2.0.2009
## qda.class Down Up
## Down 0 0
## Up 43 61
mean(qda.class==Direction2.0.2009)
## [1] 0.5865385
library(class)
train.X = as.matrix(Lag2[train])
test.X = as.matrix(Lag2[!train])
train.direction = Direction[train]
set.seed(1)
KNN.pred = knn(train.X, test.X, train.direction, k = 1)
table(KNN.pred, Direction2.0.2009)
## Direction2.0.2009
## KNN.pred Down Up
## Down 21 30
## Up 22 31
(21+31)/104
## [1] 0.5
library(e1071)
NB.fit = naiveBayes(Direction~Lag2, data = Weekly, subset = train)
NB.fit
##
## Naive Bayes Classifier for Discrete Predictors
##
## Call:
## naiveBayes.default(x = X, y = Y, laplace = laplace)
##
## A-priori probabilities:
## Y
## Down Up
## 0.4477157 0.5522843
##
## Conditional probabilities:
## Lag2
## Y [,1] [,2]
## Down -0.03568254 2.199504
## Up 0.26036581 2.317485
NB.class = predict(NB.fit, Weekly2.0.2009)
table(NB.class, Direction2.0.2009)
## Direction2.0.2009
## NB.class Down Up
## Down 0 0
## Up 43 61
mean(NB.class==Direction2.0.2009)
## [1] 0.5865385
Weekly.fit = glm(Direction~Lag2:Lag3 + Lag2, family = binomial, data = Weekly, subset = train)
Weekly.prob = predict(Weekly.fit, Weekly2.0.2009, type = "response")
Weekly.pred = rep("Down", length(Weekly.prob))
Weekly.pred[Weekly.prob > 0.5] = "Up"
Direction2.0.2009 = Direction[!train]
table(Weekly.pred, Direction2.0.2009)
## Direction2.0.2009
## Weekly.pred Down Up
## Down 9 5
## Up 34 56
mean(Weekly.pred==Direction2.0.2009)
## [1] 0.625
lda.fit = lda(Direction~Lag2:Lag3 + Lag2, data = Weekly, subset = train)
lda.pred = predict(lda.fit, Weekly2.0.2009)
lda.class = lda.pred$class
table(lda.class, Direction2.0.2009)
## Direction2.0.2009
## lda.class Down Up
## Down 9 5
## Up 34 56
mean(lda.class == Direction2.0.2009)
## [1] 0.625
train.X = as.matrix(Lag2[train])
test.X = as.matrix(Lag2[!train])
train.direction = Direction[train]
set.seed(1)
KNN.pred = knn(train.X, test.X, train.direction, k = 7)
table(KNN.pred, Direction2.0.2009)
## Direction2.0.2009
## KNN.pred Down Up
## Down 15 20
## Up 28 41
mean(KNN.pred == Direction2.0.2009)
## [1] 0.5384615
library(ISLR2)
attach(Auto)
mpg01 = rep(0, length(mpg))
mpg01[mpg>median(mpg)] = 1
Auto = data.frame(Auto, mpg01)
plot(Auto[,-9])
Auto = data.frame(mpg01, apply(cbind(cylinders, weight, displacement, horsepower, acceleration), 2, scale), year)
train.A = (year %% 2 ==0)
test.A = !train.A
Auto.train = Auto[train.A,]
Auto.test = Auto[test.A,]
mpg01.test = mpg01[test.A]
lda.Afit = lda(mpg01~cylinders + displacement + weight + horsepower, data = Auto, subset = train.A )
autolda.pred = predict(lda.Afit, Auto.test)
table(autolda.pred$class, mpg01.test)
## mpg01.test
## 0 1
## 0 86 9
## 1 14 73
mean(autolda.pred$class != mpg01.test)
## [1] 0.1263736
qda.Afit = qda(mpg01~cylinders + displacement + weight + horsepower, data = Auto, subset = train.A)
qda.Aclass = predict(qda.Afit, Auto.test)$class
table(qda.Aclass, mpg01.test)
## mpg01.test
## qda.Aclass 0 1
## 0 89 13
## 1 11 69
mean(qda.Aclass!=mpg01.test)
## [1] 0.1318681
glm.Afit = glm(mpg01~cylinders + displacement + weight + horsepower, data = Auto, subset = train.A)
glm.autoprob = predict(glm.Afit, Auto.test, type = "response")
glm.autopred = rep(0, length(glm.autoprob))
glm.autopred[glm.autoprob>0.5] = 1
table(glm.autopred, mpg01.test)
## mpg01.test
## glm.autopred 0 1
## 0 86 9
## 1 14 73
mean(glm.autopred!=mpg01.test)
## [1] 0.1263736
## g) Perform naive Bayes on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?
```r
nb.Afit = naiveBayes(mpg01~cylinders + displacement + weight + horsepower, data = Auto, subset = train)
nb.Aclass = predict(nb.Afit, Auto.test)
mean(nb.Aclass!= mpg01.test)
## [1] 0.1263736
train.auto = cbind(cylinders, displacement, weight, horsepower)[train.A,]
test.auto = cbind(cylinders, displacement, weight, horsepower)[!train.A,]
train.mpg01 = mpg01[train.A]
set.seed(1)
knn.autopred = knn(train.auto, test.auto, train.mpg01, k = 1)
mean(knn.autopred != mpg01.test)
## [1] 0.1538462
knn.autopred = knn(train.auto, test.auto, train.mpg01, k = 25)
mean(knn.autopred != mpg01.test)
## [1] 0.1428571
knn.autopred = knn(train.auto, test.auto, train.mpg01, k = 50)
mean(knn.autopred != mpg01.test)
## [1] 0.1428571
knn.autopred = knn(train.auto, test.auto, train.mpg01, k = 100)
mean(knn.autopred != mpg01.test)
## [1] 0.1428571
attach(Boston)
crime1 = rep(0, length(crim))
crime1[crim>median(crim)] = 1
Boston = data.frame(Boston, crime1)
train = 1:(dim(Boston)[1]/2)
test = (dim(Boston)[1]/2+1):dim(Boston)[1]
Boston.train = Boston[train,]
Boston.test = Boston[test,]
crime1.test = crime1[test]
plot(Boston)
### Can see a correlation between nox, tax, dis, medv, and lstat.
set.seed(1)
Boston.fit = glm(crime1~nox + tax + dis + medv + lstat, data = Boston, family = binomial)
Boston.probs = predict(Boston.fit, Boston.test, type ="response")
Boston.pred = rep(0, length(Boston.probs))
Boston.pred[Boston.probs > 0.5] = 1
table(Boston.pred, crime1.test)
## crime1.test
## Boston.pred 0 1
## 0 75 15
## 1 15 148
mean(Boston.pred == crime1.test)
## [1] 0.8814229
ldaBoston.fit = lda(crime1~nox+tax+dis+medv+lstat, data = Boston.train)
ldaBoston.pred = predict(ldaBoston.fit, Boston.test)
table(ldaBoston.pred$class, crime1.test)
## crime1.test
## 0 1
## 0 80 16
## 1 10 147
mean(ldaBoston.pred$class == crime1.test)
## [1] 0.8972332
nbBoston.fit = naiveBayes(crime1~nox+tax+dis+lstat, data = Boston, subset = train)
nbBoston.class = predict(nbBoston.fit, Boston.test)
table(nbBoston.class, crime1.test)
## crime1.test
## nbBoston.class 0 1
## 0 75 18
## 1 15 145
mean(nbBoston.class == crime1.test)
## [1] 0.8695652
train.B = cbind(nox,tax,dis,lstat)[train,]
test.B = cbind(nox,tax,dis,lstat)[test,]
train.crime = crime1.test
set.seed(1)
Bostonknn.pred = knn(train.B, test.B, train.crime, k=1)
table(Bostonknn.pred, crime1.test)
## crime1.test
## Bostonknn.pred 0 1
## 0 33 143
## 1 57 20
mean(Bostonknn.pred == crime1.test)
## [1] 0.2094862
Bostonknn.pred = knn(train.B, test.B, train.crime, k=10)
table(Bostonknn.pred, crime1.test)
## crime1.test
## Bostonknn.pred 0 1
## 0 43 20
## 1 47 143
mean(Bostonknn.pred==crime1.test)
## [1] 0.7351779
Bostonknn.pred = knn(train.B, test.B, train.crime, k=25)
table(Bostonknn.pred, crime1.test)
## crime1.test
## Bostonknn.pred 0 1
## 0 38 14
## 1 52 149
mean(Bostonknn.pred==crime1.test)
## [1] 0.7391304