Problem 13

This question should be answered using the Weekly data set, which is part of the ISLR2 package. This data is similar in nature to the Smarket data from this chapter’s lab, except that it contains 1, 089 weekly returns for 21 years, from the beginning of 1990 to the end of 2010.

(a) Produce some numerical and graphical summaries of the Weekly data. Do there appear to be any patterns?

summary(Weekly)
##       Year           Lag1               Lag2               Lag3         
##  Min.   :1990   Min.   :-18.1950   Min.   :-18.1950   Min.   :-18.1950  
##  1st Qu.:1995   1st Qu.: -1.1540   1st Qu.: -1.1540   1st Qu.: -1.1580  
##  Median :2000   Median :  0.2410   Median :  0.2410   Median :  0.2410  
##  Mean   :2000   Mean   :  0.1506   Mean   :  0.1511   Mean   :  0.1472  
##  3rd Qu.:2005   3rd Qu.:  1.4050   3rd Qu.:  1.4090   3rd Qu.:  1.4090  
##  Max.   :2010   Max.   : 12.0260   Max.   : 12.0260   Max.   : 12.0260  
##       Lag4               Lag5              Volume            Today         
##  Min.   :-18.1950   Min.   :-18.1950   Min.   :0.08747   Min.   :-18.1950  
##  1st Qu.: -1.1580   1st Qu.: -1.1660   1st Qu.:0.33202   1st Qu.: -1.1540  
##  Median :  0.2380   Median :  0.2340   Median :1.00268   Median :  0.2410  
##  Mean   :  0.1458   Mean   :  0.1399   Mean   :1.57462   Mean   :  0.1499  
##  3rd Qu.:  1.4090   3rd Qu.:  1.4050   3rd Qu.:2.05373   3rd Qu.:  1.4050  
##  Max.   : 12.0260   Max.   : 12.0260   Max.   :9.32821   Max.   : 12.0260  
##  Direction 
##  Down:484  
##  Up  :605  
##            
##            
##            
## 
pairs(Weekly)

Here, the only plots that look important are the two year and volume ones. These two variables seem to have a relationship whereas the other variables don’t.

cor(Weekly[,-9])
##               Year         Lag1        Lag2        Lag3         Lag4
## Year    1.00000000 -0.032289274 -0.03339001 -0.03000649 -0.031127923
## Lag1   -0.03228927  1.000000000 -0.07485305  0.05863568 -0.071273876
## Lag2   -0.03339001 -0.074853051  1.00000000 -0.07572091  0.058381535
## Lag3   -0.03000649  0.058635682 -0.07572091  1.00000000 -0.075395865
## Lag4   -0.03112792 -0.071273876  0.05838153 -0.07539587  1.000000000
## Lag5   -0.03051910 -0.008183096 -0.07249948  0.06065717 -0.075675027
## Volume  0.84194162 -0.064951313 -0.08551314 -0.06928771 -0.061074617
## Today  -0.03245989 -0.075031842  0.05916672 -0.07124364 -0.007825873
##                Lag5      Volume        Today
## Year   -0.030519101  0.84194162 -0.032459894
## Lag1   -0.008183096 -0.06495131 -0.075031842
## Lag2   -0.072499482 -0.08551314  0.059166717
## Lag3    0.060657175 -0.06928771 -0.071243639
## Lag4   -0.075675027 -0.06107462 -0.007825873
## Lag5    1.000000000 -0.05851741  0.011012698
## Volume -0.058517414  1.00000000 -0.033077783
## Today   0.011012698 -0.03307778  1.000000000

This correlation matrix confirms what I said about the pairs. The volume and year variables have a positive correlation but the other variables don’t seem to have any meaningful correlation.

(b) Use the full data set to perform a logistic regression with Direction as the response and the five lag variables plus Volume as predictors. Use the summary function to print the results. Do any of the predictors appear to be statistically significant? If so, which ones?

glm.fit=glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume,data=Weekly,family=binomial)
summary(glm.fit)
## 
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + 
##     Volume, family = binomial, data = Weekly)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6949  -1.2565   0.9913   1.0849   1.4579  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.26686    0.08593   3.106   0.0019 **
## Lag1        -0.04127    0.02641  -1.563   0.1181   
## Lag2         0.05844    0.02686   2.175   0.0296 * 
## Lag3        -0.01606    0.02666  -0.602   0.5469   
## Lag4        -0.02779    0.02646  -1.050   0.2937   
## Lag5        -0.01447    0.02638  -0.549   0.5833   
## Volume      -0.02274    0.03690  -0.616   0.5377   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1496.2  on 1088  degrees of freedom
## Residual deviance: 1486.4  on 1082  degrees of freedom
## AIC: 1500.4
## 
## Number of Fisher Scoring iterations: 4

Yes, the only one that appears to be statistically significant is Lag2. Ideally we would want the p-value to be lower though.

(c) Compute the confusion matrix and overall fraction of correct predictions. Explain what the confusion matrix is telling you about the types of mistakes made by logistic regression.

glm.probs=predict(glm.fit,type='response')
glm.pred=rep("Down",length(glm.probs))
glm.pred[glm.probs>.5]="Up"
table(glm.pred, Direction)  
##         Direction
## glm.pred Down  Up
##     Down   54  48
##     Up    430 557
(54+557)/1089
## [1] 0.5610652

The logistic regression model we used was correct about 56% of the time on whether or not the market would go up or down. We guessed incorrectly 48 times that the market would go down when it actually went up, and incorrectly 430 times that it would go up when it actually went down. It seems that our model guesses much more accurately when the market will go up versus when it will go down.

(d) Now fit the logistic regression model using a training data period from 1990 to 2008, with Lag2 as the only predictor. Compute the confusion matrix and the overall fraction of correct predictions for the held out data (that is, the data from 2009 and 2010).

train=(Year<2009)
Weekly.09and10=Weekly[!train,]
Direction.09and10=Direction[!train]
glm.fits=glm(Direction~Lag2, data=Weekly,subset=train,family=binomial)
glm.probss=predict(glm.fits,Weekly.09and10,type='response')
glm.preds=rep('Down',length(glm.probss))
glm.preds[glm.probss>.5]='Up'
table(glm.preds,Direction.09and10)
##          Direction.09and10
## glm.preds Down Up
##      Down    9  5
##      Up     34 56
(56+9)/104
## [1] 0.625

For the held out years of 2009 and 2010, the model was correct 62.5% of the time which is a big step up than it was for all of the data set.
(e) Repeat (d) using LDA.

library(MASS)
lda.fit=lda(Direction~Lag2,data=Weekly,subset=train)
lda.pred=predict(lda.fit, Weekly.09and10)
table(lda.pred$class,Direction.09and10)
##       Direction.09and10
##        Down Up
##   Down    9  5
##   Up     34 56
(56+9)/104
## [1] 0.625

The results here are the same as they were with logistic regression.

(f) Repeat (d) using QDA.

qda.fit=qda(Direction~Lag2,data=Weekly,subset=train)
qda.pred=predict(qda.fit,Weekly.09and10)$class
table(qda.pred,Direction.09and10)
##         Direction.09and10
## qda.pred Down Up
##     Down    0  0
##     Up     43 61
61/104
## [1] 0.5865385

QDA was less accurate than logistic regression and LDA, only being correct 58.7% of the time. QDA only predicted Up on every single observation though.

(g) Repeat (d) using KNN with K = 1.

library(class)
train.Weekly=as.matrix(Lag2[train])
test.Weekly=as.matrix(Lag2[!train])
train.Direction=Direction[train]
set.seed(5)
knn.Weekly=knn(train.Weekly,test.Weekly,train.Direction,k=1)
table(knn.Weekly,Direction.09and10)
##           Direction.09and10
## knn.Weekly Down Up
##       Down   21 30
##       Up     22 31
(31+21)/104
## [1] 0.5

KNN predicted which way the market would go correctly 50% of the time. This is the least accurate model so far, and we might as well do a coin flip.
(h) Repeat (d) using naive Bayes.

library(e1071)
bayes.weekly=naiveBayes(Direction~Lag2,data=Weekly,subset=train)
bayes.pred=predict(bayes.weekly,Weekly.09and10)
table(bayes.pred, Direction.09and10)
##           Direction.09and10
## bayes.pred Down Up
##       Down    0  0
##       Up     43 61
61/104
## [1] 0.5865385

The naive Bayes classifier results turned out to be the same as the results for QDA, it was accurate 58.7% of the time, but only predicted up each time.

(i) Which of these methods appears to provide the best results on this data?
LDA and logistic regression both appear to provide the best results on this data. Both predict which way the market will go correctly 62.5% of the time.

(j) Experiment with different combinations of predictors, including possible transformations and interactions, for each of the methods. Report the variables, method, and associated confusion matrix that appears to provide the best results on the held out data. Note that you should also experiment with values for K in the KNN classifier.

#Logistic Regression with interaction Lag2:Volume
train=(Year<2009)
Weekly.09and10=Weekly[!train,]
Direction.09and10=Direction[!train]
glm.fits2=glm(Direction~Lag2:Volume+Lag2, data=Weekly,subset=train,family=binomial)
glm.probs2=predict(glm.fits2,Weekly.09and10,type='response')
glm.preds2=rep('Down',length(glm.probs2))
glm.preds2[glm.probs2>.5]='Up'
table(glm.preds2,Direction.09and10)
##           Direction.09and10
## glm.preds2 Down Up
##       Down    9  5
##       Up     34 56
(56+9)/104
## [1] 0.625

This model is essentially the same as it was without the volume. The confusion matrix is the same as it was in (d). Next I will try the interaction between Lag2 and Lag1 in addition to Lag2.

#Logistic Regression with interaction Lag2:Lag1
train=(Year<2009)
Weekly.09and10=Weekly[!train,]
Direction.09and10=Direction[!train]
glm.fits3=glm(Direction~Lag2:Lag1+Lag2, data=Weekly,subset=train,family=binomial)
glm.probs3=predict(glm.fits3,Weekly.09and10,type='response')
glm.preds3=rep('Down',length(glm.probs3))
glm.preds3[glm.probs3>.5]='Up'
table(glm.preds3,Direction.09and10)
##           Direction.09and10
## glm.preds3 Down Up
##       Down    3  3
##       Up     40 58
(58+3)/104
## [1] 0.5865385

This time, the model slightly less accurate, only predicting the direction correctly about 58.7% of the time.

#LDA with interaction Lag2:Lag1
lda.fit2=lda(Direction~Lag2:Lag1+Lag2,data=Weekly,subset=train)
lda.pred2=predict(lda.fit2, Weekly.09and10)
table(lda.pred2$class,Direction.09and10)
##       Direction.09and10
##        Down Up
##   Down    3  3
##   Up     40 58
(58+3)/104
## [1] 0.5865385

As before, the LDA results with are the same as the logistic regression results.

#QDA with interaction Lag2:Lag1
qda.fit2=qda(Direction~Lag2:Lag1+Lag2,data=Weekly,subset=train)
qda.pred2=predict(qda.fit2,Weekly.09and10)$class
table(qda.pred2,Direction.09and10)
##          Direction.09and10
## qda.pred2 Down Up
##      Down   24 37
##      Up     19 24
(24+24)/104
## [1] 0.4615385

This QDA model is now worse than a coin flip, predicting Direction correctly on 46.2% of the time.

#Same KNN as in (g) but with k=10
train.Weekly=as.matrix(Lag2[train])
test.Weekly=as.matrix(Lag2[!train])
train.Direction=Direction[train]
set.seed(5)
knn.Weekly2=knn(train.Weekly,test.Weekly,train.Direction,k=10)
table(knn.Weekly2,Direction.09and10)
##            Direction.09and10
## knn.Weekly2 Down Up
##        Down   17 20
##        Up     26 41
(41+17)/104
## [1] 0.5576923

It seems that with k=10, this KNN classifier model improved, going from correctly predicting prediction 50% of the time to 55.8% of the time.

#Same KNN as in (g) but with k=20
train.Weekly=as.matrix(Lag2[train])
test.Weekly=as.matrix(Lag2[!train])
train.Direction=Direction[train]
set.seed(5)
knn.Weekly3=knn(train.Weekly,test.Weekly,train.Direction,k=20)
table(knn.Weekly3,Direction.09and10)
##            Direction.09and10
## knn.Weekly3 Down Up
##        Down   20 22
##        Up     23 39
(39+20)/104
## [1] 0.5673077

With K=20, the model improved again to being correct 56.7% of the time.

#Same KNN as in (g) but with k=25
train.Weekly=as.matrix(Lag2[train])
test.Weekly=as.matrix(Lag2[!train])
train.Direction=Direction[train]
set.seed(5)
knn.Weekly4=knn(train.Weekly,test.Weekly,train.Direction,k=25)
table(knn.Weekly4,Direction.09and10)
##            Direction.09and10
## knn.Weekly4 Down Up
##        Down   20 24
##        Up     23 37
(37+20)/104
## [1] 0.5480769

With K=20, the KNN classifier worsened, going down to being correct 54.8% of the time.

It seems that the logistic regression and LDA models we had originally used were the most accurate.

Problem 14

In this problem, you will develop a model to predict whether a given car gets high or low gas mileage based on the Auto data set.

(a) Create a binary variable, mpg01, that contains a 1 if mpg contains a value above its median, and a 0 if mpg contains a value below its median. You can compute the median using the median() function. Note you may find it helpful to use the data.frame() function to create a single data set containing both mpg01 and the other Auto variables.

detach(Weekly)
attach(Auto)
median(mpg)
## [1] 22.75
mpg01=rep(0,length(mpg))
mpg01[mpg>22.75]=1
Auto=data.frame(Auto,mpg01)

(b) Explore the data graphically in order to investigate the association between mpg01 and the other features. Which of the other features seem most likely to be useful in predicting mpg01? Scatterplots and boxplots may be useful tools to answer this question. Describe your findings.

pairs(Auto[,-9])

It is difficult to tell anything here with the plots function, mpg01 can only be 0 or 1. It does seem like weight, acceleration, and horsepower seem to have some sort of relationship with mpg01.

plot(mpg01,weight)

With this plot, vehicles with higher weights tend to have mpg’s that are under 22.75, and vehicles with lower weights typically have mpg’s that are above 22.75.

(c) Split the data into a training set and a test set.

idx=sample(1:nrow(Auto),0.75*nrow(Auto))
train.Auto=Auto[idx,]
dim(train.Auto)
## [1] 294  10
test.Auto=Auto[-idx,]
dim(test.Auto)
## [1] 98 10

(d) Perform LDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

lda.Auto=lda(mpg01~weight+acceleration+horsepower,data=train.Auto)
pred.Auto=predict(lda.Auto,test.Auto)
table(pred.Auto$class,test.Auto$mpg01)
##    
##      0  1
##   0 39  3
##   1  5 51
(3+5)/98
## [1] 0.08163265

The test error of this LDA model is 8.16%.

(e) Perform QDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

qda.Auto=qda(mpg01~weight+acceleration+horsepower,data=train.Auto)
pred2.Auto=predict(qda.Auto,test.Auto)
table(pred2.Auto$class,test.Auto$mpg01)
##    
##      0  1
##   0 40  5
##   1  4 49
(4+5)/98
## [1] 0.09183673

The test error of this QDA model is 9.18%.

(f) Perform logistic regression on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

glm.Auto=glm(mpg01~weight+acceleration+horsepower,data=train.Auto,family=binomial)
probs3.Auto=predict(glm.Auto,test.Auto,type="response")
pred3.Auto=rep(0,length(probs3.Auto))
pred3.Auto[probs3.Auto>.5]=1
table(pred3.Auto,test.Auto$mpg01)
##           
## pred3.Auto  0  1
##          0 41  5
##          1  3 49
(3+5)/98
## [1] 0.08163265

The test error for this logistic regression model is 8.16%.

(g) Perform naive Bayes on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01in (b). What is the test error of the model obtained?

bayes.Auto=naiveBayes(mpg01~weight+acceleration+horsepower,data=train.Auto)
pred4.bayes=predict(bayes.Auto,test.Auto)
table(pred4.bayes,test.Auto$mpg01)
##            
## pred4.bayes  0  1
##           0 39  3
##           1  5 51
(5+3)/98
## [1] 0.08163265

The naive Bayes test error is 8.16%.

Problem 16

Using the Boston data set, fit classification models in order to predict whether a given census tract has a crime rate above or below the median. Explore logistic regression, LDA, naive Bayes, and KNN models using various subsets of the predictors. Describe your findings.
Hint: You will have to create the response variable yourself, using the variables that are contained in the Boston data set.

#Summary of the Boston Data Set
summary(Boston)
##       crim                zn             indus            chas        
##  Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46   Min.   :0.00000  
##  1st Qu.: 0.08205   1st Qu.:  0.00   1st Qu.: 5.19   1st Qu.:0.00000  
##  Median : 0.25651   Median :  0.00   Median : 9.69   Median :0.00000  
##  Mean   : 3.61352   Mean   : 11.36   Mean   :11.14   Mean   :0.06917  
##  3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10   3rd Qu.:0.00000  
##  Max.   :88.97620   Max.   :100.00   Max.   :27.74   Max.   :1.00000  
##       nox               rm             age              dis        
##  Min.   :0.3850   Min.   :3.561   Min.   :  2.90   Min.   : 1.130  
##  1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02   1st Qu.: 2.100  
##  Median :0.5380   Median :6.208   Median : 77.50   Median : 3.207  
##  Mean   :0.5547   Mean   :6.285   Mean   : 68.57   Mean   : 3.795  
##  3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08   3rd Qu.: 5.188  
##  Max.   :0.8710   Max.   :8.780   Max.   :100.00   Max.   :12.127  
##       rad              tax           ptratio          black       
##  Min.   : 1.000   Min.   :187.0   Min.   :12.60   Min.   :  0.32  
##  1st Qu.: 4.000   1st Qu.:279.0   1st Qu.:17.40   1st Qu.:375.38  
##  Median : 5.000   Median :330.0   Median :19.05   Median :391.44  
##  Mean   : 9.549   Mean   :408.2   Mean   :18.46   Mean   :356.67  
##  3rd Qu.:24.000   3rd Qu.:666.0   3rd Qu.:20.20   3rd Qu.:396.23  
##  Max.   :24.000   Max.   :711.0   Max.   :22.00   Max.   :396.90  
##      lstat            medv      
##  Min.   : 1.73   Min.   : 5.00  
##  1st Qu.: 6.95   1st Qu.:17.02  
##  Median :11.36   Median :21.20  
##  Mean   :12.65   Mean   :22.53  
##  3rd Qu.:16.95   3rd Qu.:25.00  
##  Max.   :37.97   Max.   :50.00
#Creating the binary crim variable
crime01=rep(0,length(crim))
crime01[crim>median(crim)]=1
Boston=data.frame(Boston,crime01)
#Splitting the dataset
train=1:(dim(Boston)[1]/2)
test=(dim(Boston)[1]/2 + 1):dim(Boston)[1]
Boston.train=Boston[train, ]
Boston.test=Boston[test, ]
crime01.test=crime01[test]
#Seeing what variables may be associated with crime01
cor(Boston)
##                crim          zn       indus         chas         nox
## crim     1.00000000 -0.20046922  0.40658341 -0.055891582  0.42097171
## zn      -0.20046922  1.00000000 -0.53382819 -0.042696719 -0.51660371
## indus    0.40658341 -0.53382819  1.00000000  0.062938027  0.76365145
## chas    -0.05589158 -0.04269672  0.06293803  1.000000000  0.09120281
## nox      0.42097171 -0.51660371  0.76365145  0.091202807  1.00000000
## rm      -0.21924670  0.31199059 -0.39167585  0.091251225 -0.30218819
## age      0.35273425 -0.56953734  0.64477851  0.086517774  0.73147010
## dis     -0.37967009  0.66440822 -0.70802699 -0.099175780 -0.76923011
## rad      0.62550515 -0.31194783  0.59512927 -0.007368241  0.61144056
## tax      0.58276431 -0.31456332  0.72076018 -0.035586518  0.66802320
## ptratio  0.28994558 -0.39167855  0.38324756 -0.121515174  0.18893268
## black   -0.38506394  0.17552032 -0.35697654  0.048788485 -0.38005064
## lstat    0.45562148 -0.41299457  0.60379972 -0.053929298  0.59087892
## medv    -0.38830461  0.36044534 -0.48372516  0.175260177 -0.42732077
## crime01  0.40939545 -0.43615103  0.60326017  0.070096774  0.72323480
##                  rm         age         dis          rad         tax    ptratio
## crim    -0.21924670  0.35273425 -0.37967009  0.625505145  0.58276431  0.2899456
## zn       0.31199059 -0.56953734  0.66440822 -0.311947826 -0.31456332 -0.3916785
## indus   -0.39167585  0.64477851 -0.70802699  0.595129275  0.72076018  0.3832476
## chas     0.09125123  0.08651777 -0.09917578 -0.007368241 -0.03558652 -0.1215152
## nox     -0.30218819  0.73147010 -0.76923011  0.611440563  0.66802320  0.1889327
## rm       1.00000000 -0.24026493  0.20524621 -0.209846668 -0.29204783 -0.3555015
## age     -0.24026493  1.00000000 -0.74788054  0.456022452  0.50645559  0.2615150
## dis      0.20524621 -0.74788054  1.00000000 -0.494587930 -0.53443158 -0.2324705
## rad     -0.20984667  0.45602245 -0.49458793  1.000000000  0.91022819  0.4647412
## tax     -0.29204783  0.50645559 -0.53443158  0.910228189  1.00000000  0.4608530
## ptratio -0.35550149  0.26151501 -0.23247054  0.464741179  0.46085304  1.0000000
## black    0.12806864 -0.27353398  0.29151167 -0.444412816 -0.44180801 -0.1773833
## lstat   -0.61380827  0.60233853 -0.49699583  0.488676335  0.54399341  0.3740443
## medv     0.69535995 -0.37695457  0.24992873 -0.381626231 -0.46853593 -0.5077867
## crime01 -0.15637178  0.61393992 -0.61634164  0.619786249  0.60874128  0.2535684
##               black      lstat       medv     crime01
## crim    -0.38506394  0.4556215 -0.3883046  0.40939545
## zn       0.17552032 -0.4129946  0.3604453 -0.43615103
## indus   -0.35697654  0.6037997 -0.4837252  0.60326017
## chas     0.04878848 -0.0539293  0.1752602  0.07009677
## nox     -0.38005064  0.5908789 -0.4273208  0.72323480
## rm       0.12806864 -0.6138083  0.6953599 -0.15637178
## age     -0.27353398  0.6023385 -0.3769546  0.61393992
## dis      0.29151167 -0.4969958  0.2499287 -0.61634164
## rad     -0.44441282  0.4886763 -0.3816262  0.61978625
## tax     -0.44180801  0.5439934 -0.4685359  0.60874128
## ptratio -0.17738330  0.3740443 -0.5077867  0.25356836
## black    1.00000000 -0.3660869  0.3334608 -0.35121093
## lstat   -0.36608690  1.0000000 -0.7376627  0.45326273
## medv     0.33346082 -0.7376627  1.0000000 -0.26301673
## crime01 -0.35121093  0.4532627 -0.2630167  1.00000000

It seems that the variables indus, nox, age, dis, rad, and tax have a decent amount of correlation with crime01. Their correlation values are all at least .60. The highest of all of them is nox with .72.

#Logistic regression with indus, nox, age, dis, rad, and tax as predictors.
set.seed(5)
glm.Boston=glm(crime01~indus+nox+age+dis+rad+tax,data=Boston.train,family=binomial)
probs.Boston=predict(glm.Boston,Boston.test,type="response")
pred.Boston=rep(0,length(probs.Boston))
pred.Boston[probs.Boston>0.5]=1
table(pred.Boston,crime01.test)
##            crime01.test
## pred.Boston   0   1
##           0  75   8
##           1  15 155
(15+8)/253
## [1] 0.09090909

Here we can see that the error rate of this model is 9.09%.

summary(glm.Boston)
## 
## Call:
## glm(formula = crime01 ~ indus + nox + age + dis + rad + tax, 
##     family = binomial, data = Boston.train)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.97810  -0.21406  -0.03454   0.47107   3.04502  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -42.214032   7.617440  -5.542 2.99e-08 ***
## indus        -0.213126   0.073236  -2.910  0.00361 ** 
## nox          80.868029  16.066473   5.033 4.82e-07 ***
## age           0.003397   0.012032   0.282  0.77772    
## dis           0.307145   0.190502   1.612  0.10690    
## rad           0.847236   0.183767   4.610 4.02e-06 ***
## tax          -0.013760   0.004956  -2.777  0.00549 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 329.37  on 252  degrees of freedom
## Residual deviance: 144.44  on 246  degrees of freedom
## AIC: 158.44
## 
## Number of Fisher Scoring iterations: 8

It appears that the variables age and dis are not statistically significant predictors of crime01. I will perform another logistic regression without these two variables.

#Logistic regression with indus, nox, rad, and tax as predictors.
glm.Boston=glm(crime01~indus+nox+rad+tax,data=Boston.train,family=binomial)
probs.Boston=predict(glm.Boston,Boston.test,type="response")
pred.Boston=rep(0,length(probs.Boston))
pred.Boston[probs.Boston>0.5]=1
table(pred.Boston,crime01.test)
##            crime01.test
## pred.Boston   0   1
##           0  71   6
##           1  19 157
(6+19)/253
## [1] 0.09881423

With age and dis taken out, the error rate is 9.88%. This is slightly higher than the last model, even with the statistically insignificant predictors removed.

#LDA with indus, nox, age, dis, rad, and tax as predictors.
lda.Boston=lda(crime01~indus+nox+age+dis+rad+tax,data=Boston.train,family=binomial)
pred.Boston=predict(lda.Boston,Boston.test)
table(pred.Boston$class,crime01.test)
##    crime01.test
##       0   1
##   0  81  18
##   1   9 145
(9+18)/253
## [1] 0.1067194

The error rate for this LDA model is 10.67%. I am going to attempt a similar model but with age and dis taken out.

#LDA with indus, nox, rad, and tax as predictors.
lda.Boston=lda(crime01~indus+nox+rad+tax,data=Boston.train,family=binomial)
pred.Boston=predict(lda.Boston,Boston.test)
table(pred.Boston$class,crime01.test)
##    crime01.test
##       0   1
##   0  80  18
##   1  10 145
(10+18)/253
## [1] 0.1106719

The error rate for the LDA model without age and dis is 11.07%. It is slightly worse than the previous model.

#Naive Bayes with indus, nox, age, dis, rad, and tax as predictors.
bayes.Boston=naiveBayes(crime01~indus+nox+age+dis+rad+tax,data=Boston.train)
pred.bayes=predict(bayes.Boston,Boston.test)
table(pred.bayes,Boston.test$crime01)
##           
## pred.bayes   0   1
##          0  77  13
##          1  13 150
(13+13)/253
## [1] 0.1027668

With this Naive Bayes model, our error rate is 10.28%. I am once again going to attempt a similar model but with age and dis taken out.

#Naive Bayes with indus, nox, rad, and tax as predictors.
bayes.Boston=naiveBayes(crime01~indus+nox+rad+tax,data=Boston.train)
pred.bayes=predict(bayes.Boston,Boston.test)
table(pred.bayes,Boston.test$crime01)
##           
## pred.bayes   0   1
##          0  80  18
##          1  10 145
(10+18)/253
## [1] 0.1106719

The error rate for this model is 11.07%. Once again, the model without age and dis performs worse than the original.

#KNN with indus, nox, age, dis, rad, and tax as predictors at k=1.
train.K=cbind(indus,nox,age,dis,rad,tax)[train,]
test.K=cbind(indus,nox,age,dis,rad,tax)[test,]
pred.Boston=knn(train.K,test.K,crime01.test,k=1)
table(pred.Boston,crime01.test)
##            crime01.test
## pred.Boston   0   1
##           0  31 155
##           1  59   8
(59+155)/253
## [1] 0.8458498

The error rate of this model is terrible at a whopping 84.58%. I am going to increase k to k=50.

#KNN with indus, nox, age, dis, rad, and tax as predictors at k=50.
train.K=cbind(indus,nox,age,dis,rad,tax)[train,]
test.K=cbind(indus,nox,age,dis,rad,tax)[test,]
pred.Boston=knn(train.K,test.K,crime01.test,k=50)
table(pred.Boston,crime01.test)
##            crime01.test
## pred.Boston   0   1
##           0  38  14
##           1  52 149
(54+13)/253
## [1] 0.2648221

The error rate of the model improved a lot at k=50 to 26.48%, but I will still increase it a lot to see that effect.

#KNN with indus, nox, age, dis, rad, and tax as predictors at k=80.
train.K=cbind(indus,nox,age,dis,rad,tax)[train,]
test.K=cbind(indus,nox,age,dis,rad,tax)[test,]
pred.Boston=knn(train.K,test.K,crime01.test,k=80)
table(pred.Boston,crime01.test)
##            crime01.test
## pred.Boston   0   1
##           0  33  12
##           1  57 151
(56+13)/253
## [1] 0.2727273

The error rate at k=80 increased to 27.27%, so I will drop it to try and reverse that.

#KNN with indus, nox, age, dis, rad, and tax as predictors at k=65.
train.K=cbind(indus,nox,age,dis,rad,tax)[train,]
test.K=cbind(indus,nox,age,dis,rad,tax)[test,]
pred.Boston=knn(train.K,test.K,crime01.test,k=65)
table(pred.Boston,crime01.test)
##            crime01.test
## pred.Boston   0   1
##           0  33  12
##           1  57 151
(57+12)/253
## [1] 0.2727273

The error rate remained at 27.27%, I’m not sure if KNN is the best model here.

After testing out these models, the one that was the best was the first one attempted, the logistic regression with indus, nox, age, dis, rad, and tax as the predictors with an error rate of only 9.09%. Each type of model seemed to perform progressively worse, with KNN being the worst for this data set. Additionally, removing the variables age and dis made the model perform worse, so in general those six predictors together seem to perform the best.