# Load packages
library(tidyverse)
library(tidyquant)
Ra <- c("GD", "RTX", "LMT") %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Ra")
Ra
## # A tibble: 27 × 3
## # Groups: symbol [3]
## symbol date Ra
## <chr> <date> <dbl>
## 1 GD 2022-01-31 0.0281
## 2 GD 2022-02-28 0.105
## 3 GD 2022-03-31 0.0287
## 4 GD 2022-04-29 -0.0141
## 5 GD 2022-05-31 -0.0491
## 6 GD 2022-06-30 -0.0106
## 7 GD 2022-07-29 0.0245
## 8 GD 2022-08-31 0.00997
## 9 GD 2022-09-23 -0.0307
## 10 RTX 2022-01-31 0.0370
## # … with 17 more rows
Rb <- "^IXIC" %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Rb")
Rb
## # A tibble: 9 × 2
## date Rb
## <date> <dbl>
## 1 2022-01-31 -0.101
## 2 2022-02-28 -0.0343
## 3 2022-03-31 0.0341
## 4 2022-04-29 -0.133
## 5 2022-05-31 -0.0205
## 6 2022-06-30 -0.0871
## 7 2022-07-29 0.123
## 8 2022-08-31 -0.0464
## 9 2022-09-23 -0.0803
RaRb <- left_join(Ra, Rb, by = c("date" = "date"))
RaRb
## # A tibble: 27 × 4
## # Groups: symbol [3]
## symbol date Ra Rb
## <chr> <date> <dbl> <dbl>
## 1 GD 2022-01-31 0.0281 -0.101
## 2 GD 2022-02-28 0.105 -0.0343
## 3 GD 2022-03-31 0.0287 0.0341
## 4 GD 2022-04-29 -0.0141 -0.133
## 5 GD 2022-05-31 -0.0491 -0.0205
## 6 GD 2022-06-30 -0.0106 -0.0871
## 7 GD 2022-07-29 0.0245 0.123
## 8 GD 2022-08-31 0.00997 -0.0464
## 9 GD 2022-09-23 -0.0307 -0.0803
## 10 RTX 2022-01-31 0.0370 -0.101
## # … with 17 more rows
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = table.CAPM)
RaRb_capm
## # A tibble: 3 × 13
## # Groups: symbol [3]
## symbol Active…¹ Alpha Annua…² Beta `Beta-` `Beta+` Corre…³ Corre…⁴ Infor…⁵
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 GD 0.513 0.0156 0.205 0.141 0.226 -0.0471 0.246 0.524 1.85
## 2 RTX 0.341 -0.004 -0.0475 -0.035 0.747 0.0579 -0.0414 0.916 0.944
## 3 LMT 0.654 0.0157 0.206 -0.131 0.562 -0.616 -0.183 0.638 1.82
## # … with 3 more variables: `R-squared` <dbl>, TrackingError <dbl>,
## # TreynorRatio <dbl>, and abbreviated variable names ¹ActivePremium,
## # ²AnnualizedAlpha, ³Correlation, ⁴`Correlationp-value`, ⁵InformationRatio
RaRb_capm %>% select(symbol, Alpha, Beta)
## # A tibble: 3 × 3
## # Groups: symbol [3]
## symbol Alpha Beta
## <chr> <dbl> <dbl>
## 1 GD 0.0156 0.141
## 2 RTX -0.004 -0.035
## 3 LMT 0.0157 -0.131
RaRb_skew <- RaRb %>% tq_performance(Ra = Ra, Rb = Rb, performance_fun = skewness)