LGM: Path Diagram I

The latent growth model (LGM) is used in longitudinal studies and extends CFA to the analysis of items across time. This dataset measures student gender and GPA across five semesters. The goal of this LGM is to assess the linear trajectory of GPA, with the question being, “Does the average student GPA in a particular school go up or down over time?”

Interpretation I

Parameter interpretation: intercept

The predicted GPA (i) in the first semester is 2.602.

Interpretation of the mean slope (s) parameter

For every semester (i.e., one-unit increase) in time, i.e. for every sequential semester, average GPA is expected to go up by 0.104 points.

lavaan 0.6-12 ended normally after 62 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        10

  Number of observations                           200

Model Test User Model:
                                                      
  Test statistic                                12.202
  Degrees of freedom                                10
  P-value (Chi-square)                           0.272

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model          Structured

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)
  i =~                                                
    gpa0              1.000                           
    gpa1              1.000                           
    gpa2              1.000                           
    gpa3              1.000                           
    gpa4              1.000                           
  s =~                                                
    gpa0              0.000                           
    gpa1              1.000                           
    gpa2              2.000                           
    gpa3              3.000                           
    gpa4              4.000                           

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)
  i ~~                                                
    s                -0.000    0.002   -0.073    0.942

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)
   .gpa0              0.000                           
   .gpa1              0.000                           
   .gpa2              0.000                           
   .gpa3              0.000                           
   .gpa4              0.000                           
    i                 2.602    0.018  140.832    0.000
    s                 0.104    0.006   16.444    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .gpa0              0.069    0.009    7.263    0.000
   .gpa1              0.068    0.008    8.628    0.000
   .gpa2              0.056    0.006    9.195    0.000
   .gpa3              0.036    0.005    7.997    0.000
   .gpa4             -0.001    0.005   -0.121    0.903
    i                 0.034    0.007    4.577    0.000
    s                 0.006    0.001    5.880    0.000

LGM vs. HLM I

Equivalence of the LGM to the hierarchical linear model (HLM)

The latent growth model in its basic form (i.e., intercept and linear slope) is equivalent to the hierarchical linear model (HLM) with random intercept and slope on the condition that the residual variances or terms in the latent growth model are constrained to be equivalent across time. If you do not have to use the intercept and slope to predict another latent variable, then you should prefer HLM to LGM.

Linear mixed model fit by REML ['lmerMod']
Formula: gpa ~ time + (time | student)
   Data: longdat

REML criterion at convergence: 327.1

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.0392 -0.5145 -0.0096  0.5421  2.9373 

Random effects:
 Groups   Name        Variance Std.Dev. Corr 
 student  (Intercept) 0.043903 0.2095        
          time        0.006083 0.0780   -0.15
 Residual             0.047025 0.2169        
Number of obs: 1000, groups:  student, 200

Fixed effects:
            Estimate Std. Error t value
(Intercept) 2.600500   0.018989  136.95
time        0.105350   0.007344   14.35

Correlation of Fixed Effects:
     (Intr)
time -0.423

Path Diagram II

Adding a predictor (student gender) to the latent growth model (LGM)

Interpretation II

Parameter interpretation: intercept (i)

Gender does not significantly predict the intercept, but it predicts the linear slope. This implies that female and male students do not differ in their starting GPA’s in the first semester of school (females have an estimated 0.068 higher GPA compared to males but the standard error does not warrant statistical significance).

Interpretation of the mean slope (s) parameter

However, gender predicts the slope so that female students have a linear growth trajectory that is 0.035 GPA units higher than male students across these five semesters.

lavaan 0.6-12 ended normally after 55 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        12
  Number of equality constraints                     4

  Number of observations                           200

Model Test User Model:
                                                      
  Test statistic                               107.504
  Degrees of freedom                                17
  P-value (Chi-square)                           0.000

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model          Structured

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)
  i =~                                                
    gpa0              1.000                           
    gpa1              1.000                           
    gpa2              1.000                           
    gpa3              1.000                           
    gpa4              1.000                           
  s =~                                                
    gpa0              0.000                           
    gpa1              1.000                           
    gpa2              2.000                           
    gpa3              3.000                           
    gpa4              4.000                           

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)
  i ~                                                 
    sex               0.068    0.038    1.805    0.071
  s ~                                                 
    sex               0.035    0.014    2.396    0.017

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)
 .i ~~                                                
   .s                -0.003    0.002   -1.343    0.179

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)
   .gpa0              0.000                           
   .gpa1              0.000                           
   .gpa2              0.000                           
   .gpa3              0.000                           
   .gpa4              0.000                           
   .i                 2.565    0.027   94.080    0.000
   .s                 0.087    0.010    8.317    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .gpa0       (a)    0.047    0.003   17.321    0.000
   .gpa1       (a)    0.047    0.003   17.321    0.000
   .gpa2       (a)    0.047    0.003   17.321    0.000
   .gpa3       (a)    0.047    0.003   17.321    0.000
   .gpa4       (a)    0.047    0.003   17.321    0.000
   .i                 0.042    0.007    5.850    0.000
   .s                 0.006    0.001    5.315    0.000

LGM vs. HLM II

Equivalence of the LGM to the hierarchical linear model (HLM) with a time predictor

Linear mixed model fit by REML ['lmerMod']
Formula: gpa ~ time + sex + time:sex + (time | student)
   Data: longdat

REML criterion at convergence: 323.1

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-3.02747 -0.52063 -0.00502  0.54474  2.97804 

Random effects:
 Groups   Name        Variance Std.Dev. Corr 
 student  (Intercept) 0.043105 0.20762       
          time        0.005835 0.07639  -0.19
 Residual             0.047025 0.21685       
Number of obs: 1000, groups:  student, 200

Fixed effects:
            Estimate Std. Error t value
(Intercept)  2.56484    0.02740  93.609
time         0.08716    0.01053   8.276
sex          0.06792    0.03782   1.796
time:sex     0.03465    0.01454   2.384

Correlation of Fixed Effects:
         (Intr) time   sex   
time     -0.454              
sex      -0.725  0.329       
time:sex  0.329 -0.725 -0.454