library(foreign)
library(dplyr) # data manipulation
library(forcats) # to work with categorical variables
library(ggplot2) # data visualization
library(janitor) # data exploration and cleaning
# install.packages("psych")
library(corrplot) # correlation plots
library(lmtest) # diagnostic checks - linear regression analysis
library(car) # diagnostic checks - linear regression analysis
library(dplyr)
library(janitor)
rh2 <- rh1
rh2 <- cbind(rh2,Empleado=c("Empleado"))
#summary(rh2)
?table
## Help on topic 'table' was found in the following packages:
##
## Package Library
## vctrs /Library/Frameworks/R.framework/Versions/4.2/Resources/library
## base /Library/Frameworks/R.framework/Resources/library
##
##
## Using the first match ...
genero<-table(rh2$GENERO)
#genero
knitr::kable(genero)
| Var1 | Freq |
|---|---|
| FEMENINO | 59 |
| MASCULINO | 45 |
puesto<-table(rh2$PUESTO)
#puesto
knitr::kable(puesto)
| Var1 | Freq |
|---|---|
| AY. GENERAL | 7 |
| AYUDANTE DE MANTENIMIENTO | 1 |
| Ayudante general | 1 |
| AYUDANTE GENERAL | 54 |
| CHOFER | 3 |
| CHOFER GESTOR | 1 |
| COSTURERA | 10 |
| CUSTOMER SERVICE INF | 1 |
| ENFERMERA | 1 |
| GESTOR | 1 |
| GUARDIA DE SEGURIDAD | 1 |
| INSPECTOR DE CALIDAD | 1 |
| INSPECTORA DE CALIDAD | 1 |
| LIDER | 1 |
| LIMPIEZA | 1 |
| MANTENIMIENTO | 1 |
| MONTACARGUISTA | 1 |
| MOZO | 1 |
| OP. FLEXO-RANURADORA-REFILADORA | 1 |
| OPERADOR SIERRA | 1 |
| PINTOR | 1 |
| RECIBO | 1 |
| RESIDENTE | 4 |
| SOLDADOR | 5 |
| Supervisor de M√°quin | 1 |
| Supervisor de pegado | 1 |
| SUPERVISORA | 1 |
departamento<-table(rh2$DEPARTAMENTO)
#departamento
knitr::kable(departamento)
| Var1 | Freq |
|---|---|
| 37 | |
| Ay.flexo | 1 |
| Calidad | 2 |
| Cedis | 6 |
| CEDIS | 2 |
| Celdas | 3 |
| CORTADORAS | 1 |
| Costura | 6 |
| COSTURA | 1 |
| Costura T2 | 1 |
| EHS | 3 |
| Embarques | 4 |
| Limpieza | 1 |
| Materiales | 1 |
| Paileria | 4 |
| Producción Retorn | 8 |
| Produccion Cartón MC | 5 |
| Produccion Cartón MDL | 7 |
| Rotativa | 1 |
| Stabilus | 6 |
| Troquel | 4 |
lugar<-table(rh2$LUGAR.DE.NACIMIENTO)
#lugar
knitr::kable(lugar)
| Var1 | Freq |
|---|---|
| 36 | |
| ACAYUCAN VERACRUZ | 1 |
| ACAYUCAN, VERACRUZ | 1 |
| CANATLAN, DURANGO | 1 |
| CANCUN, QUINTANA ROO | 1 |
| COMALCALCO, TABASCO | 1 |
| CUAHUTEMOC, DISTRITO FEDERAL | 1 |
| EBANO, SAN LUIS POTOSI | 1 |
| GOMEZ PALACIO, DURANGO | 1 |
| GUADALUPE, NUEVO LEON | 3 |
| HIDALGO, TAMAULIPAS | 2 |
| HONDURAS, SANTA BARBARA | 1 |
| IXHUATAN, CHIAPAS | 1 |
| JESUS CARRANZA, VERACRUZ | 1 |
| LAS CHOAPAS, VERACRUZ | 1 |
| LLERA, TAMAULIPAS | 1 |
| MIGUEL HIDALGO CIUDAD DE MEXICO | 1 |
| MONTEMORELOS, NUEVO LEON | 1 |
| MONTERREY NL | 1 |
| MONTERREY NUEVO LEON | 1 |
| MONTERREY, NUEVO LEON | 14 |
| NUEVO LEON | 1 |
| OLUTA, VERACRUZ | 1 |
| PARRAS COAHUILA DE ZARAGOZA | 1 |
| RAMOS ARIZPE, COAHUILA | 1 |
| RAYON, SAN LUIS POTOSI | 1 |
| SALAMANCA, GUANAJUATO | 1 |
| SALTILLO, COAHUILA | 2 |
| SAN JUAN EVANGELISYA. VERACRUZ | 1 |
| SAN LUIS POTOSI | 1 |
| SAN NICOLAS DE LOS GARZA | 1 |
| SAN NICOLAS DE LOS GARZA NUEVO LEON. | 1 |
| SAN NICOLAS DE LOS GARZA, NUEVO LEON | 11 |
| SAN PEDRO GARZA GARCIA, NUEVO LEON | 1 |
| TAMAPACHE, VERACRUZ | 1 |
| TANTOYUCA, VERACRUZ | 1 |
| TERMINAL DE PROVIDENCIA - ZACATECAS | 1 |
| VERACRUZ | 1 |
| VERACRUZ, TANTOYUCA | 1 |
| VILLA CORZO, CHIAPAS | 1 |
| ZAMORA, VERACRUZ | 1 |
| ZONGOLICA, VERACRUZ | 1 |
municipio<-table(rh2$MUNICIPIO)
#municipio
knitr::kable(municipio)
| Var1 | Freq |
|---|---|
| APODACA | 67 |
| CANADA BLANCA | 1 |
| GUADALUPE | 5 |
| JUAREZ | 9 |
| MONTERREY | 3 |
| PESQUERIA | 9 |
| RAMOS ARIZPE | 3 |
| SALTILLO | 5 |
| SAN NICOLAS DE LOS G | 2 |
estado<-table(rh2$ESTADO)
#estado
knitr::kable(estado)
| Var1 | Freq |
|---|---|
| Coahuila | 9 |
| Nuevo Leon | 95 |
civil<-table(rh2$ESTADO.CIVIL)
#civil
knitr::kable(civil)
| Var1 | Freq |
|---|---|
| Casado | 39 |
| Divorciado | 3 |
| Soltero | 42 |
| Union libre | 20 |
cruzada1<-table(rh2$GENERO,rh$AÑO.DE.NACIMIENTO)
knitr::kable(cruzada1)
| 1955 | 1962 | 1963 | 1964 | 1966 | 1967 | 1968 | 1969 | 1972 | 1973 | 1974 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1987 | 1988 | 1989 | 1990 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| FEMENINO | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 3 | 2 | 1 | 0 | 2 | 2 | 1 | 2 | 1 | 1 | 3 | 1 | 4 | 1 | 2 | 2 | 0 | 4 | 2 | 4 | 3 | 2 | 2 | 2 | 0 | 2 | 0 | 2 | 2 | 0 |
| MASCULINO | 1 | 0 | 0 | 1 | 0 | 2 | 1 | 2 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 0 | 2 | 2 | 1 | 2 | 2 | 3 | 4 | 4 |
cruzada2<-table(rh2$ESTADO,rh2$GENERO)
knitr::kable(cruzada2)
| FEMENINO | MASCULINO | |
|---|---|---|
| Coahuila | 1 | 8 |
| Nuevo Leon | 58 | 37 |
Se obtiene primeramente una gráfica de barras que compara los diferentes estados civiles (actuales) de los colaboradores. Observamos que la gran mayoría son solteros o casados, y muy pocos divorciados.
barplot(prop.table(table(rh2$ESTADO.CIVIL)),col=c("orange","blue","red","green"),main="Estado Civil", ylab ="Frecuencias",las=1)
La siguiente pie chart nos da a conocer como existen más mujeres que hombres laborando actualmente en Form.
pie(prop.table(table(rh2$GENERO)),col=c("pink","blue"),main="Género", ylab ="Frecuencias",las=1)
str(rh2)
## 'data.frame': 104 obs. of 13 variables:
## $ AÑO.DE.NACIMIENTO : int 1990 1984 1984 1985 1984 1962 1966 1976 1963 1979 ...
## $ GENERO : chr "FEMENINO" "MASCULINO" "FEMENINO" "MASCULINO" ...
## $ FECHA.DE.ALTA : int 2013 2018 2015 2016 2020 2020 2022 2022 2022 2022 ...
## $ Primer.mes : int 2013 2018 2015 2016 2020 2020 2022 2022 2022 2022 ...
## $ X4to.mes : int 2013 2019 2015 2016 2020 2020 2022 2022 2022 2022 ...
## $ PUESTO : chr "SUPERVISORA" "MANTENIMIENTO" "COSTURERA" "AYUDANTE GENERAL" ...
## $ DEPARTAMENTO : chr "Produccion Cartón MC" "EHS" "Costura" "Producción Retorn" ...
## $ SALARIO.DIARIO.IMSS: num 337 280 260 241 241 ...
## $ LUGAR.DE.NACIMIENTO: chr "" "" "" "" ...
## $ MUNICIPIO : chr "APODACA" "APODACA" "APODACA" "APODACA" ...
## $ ESTADO : chr "Nuevo Leon" "Nuevo Leon" "Nuevo Leon" "Nuevo Leon" ...
## $ ESTADO.CIVIL : chr "Casado" "Soltero" "Casado" "Casado" ...
## $ Empleado : chr "Empleado" "Empleado" "Empleado" "Empleado" ...
# ·limina linea 4, donde hay un dato incorrecto en el salario
rh3 <- rh2[-4,]
summary(rh3)
## AÑO.DE.NACIMIENTO GENERO FECHA.DE.ALTA Primer.mes
## Min. :1955 Length:103 Min. :2010 Min. :2010
## 1st Qu.:1978 Class :character 1st Qu.:2021 1st Qu.:2020
## Median :1989 Mode :character Median :2022 Median :2022
## Mean :1987 Mean :2021 Mean :2021
## 3rd Qu.:1996 3rd Qu.:2022 3rd Qu.:2022
## Max. :2003 Max. :2022 Max. :2022
## X4to.mes PUESTO DEPARTAMENTO SALARIO.DIARIO.IMSS
## Min. :2010 Length:103 Length:103 Min. :144.4
## 1st Qu.:2021 Class :character Class :character 1st Qu.:176.7
## Median :2022 Mode :character Mode :character Median :180.7
## Mean :2021 Mean :178.8
## 3rd Qu.:2022 3rd Qu.:180.7
## Max. :2022 Max. :337.1
## LUGAR.DE.NACIMIENTO MUNICIPIO ESTADO ESTADO.CIVIL
## Length:103 Length:103 Length:103 Length:103
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
## Empleado
## Length:103
## Class :character
## Mode :character
##
##
##
El presente histograma ve el salario, y como la mayoría se concentra en entre los 150 y 200 pesos diarios. Con muy pocas excepciones que superan esto.
hist((rh3$SALARIO.DIARIO.IMSS),col=c("red"),main="Salario Diario",xlab="Salario en pesos mx")
Mediante el siguiente histograma notamos que la mayoría de los ingresos en Form son recientes, de entre el 202 y 2022; indicando que hay poca antigüedad en los colaboradores.
hist((rh3$Primer.mes),col=c("lightblue"),main="Año del Primer Mes en FORM",xlab="Año")
El presente scatterplot compara la fecha de ingreso con el salario diario, en donde vemos que los que tienen mayor antigüedad (desde el 2010), ganan lo mismo que algunos de los recién ingresados. El más alto ingresando en el 2014 (aproximadamente)
plot(rh2$FECHA.DE.ALTA, rh2$SALARIO.DIARIO.IMSS, main = "Fecha de ingreso con salario diario",
xlab = "Fecha de ingreso", ylab = "Salario",
pch = 19, frame = FALSE)
Ahora, comparando el año de nacimiento con el salario, observamos que la persona con un mayor ingreso es alguien nacido en 1990. Fuera de algunos casos específicos, los salarios no ven diferencia a las edades.
plot(rh2$AÑO.DE.NACIMIENTO, rh2$SALARIO.DIARIO.IMSS, main = "Año de nacimiento",
xlab = "Año de nacimiento", ylab = "Salario",
pch = 19, frame = FALSE)
Analizando otra vez, la fecha de nacimiento, observamos que la gran parte de los empleados nacieron en la decada de los ochentas y de los noventas.
boxplot(rh2$AÑO.DE.NACIMIENTO , vertical = TRUE)
#file.choose()
bd <- read.csv("/Users/georginamartinez/Documents/Tec/Séptimo Semestre/Analítica para negocios, de los datos a decisiones/Base de datos FORM/Delivery Plan/FORM - Delivery Plan.xlsx - DELIVERY PLAN(2) (1)C.csv")
bd3<- read.csv("/Users/georginamartinez/Documents/Tec/Séptimo Semestre/Analítica para negocios, de los datos a decisiones/Base de datos FORM/Delivery Plan/2022.csv")
bd4<- read.csv("/Users/georginamartinez/Documents/Tec/Séptimo Semestre/Analítica para negocios, de los datos a decisiones/Base de datos FORM/Delivery Plan/año.csv")
## Warning in read.table(file = file, header = header, sep = sep, quote = quote, :
## incomplete final line found by readTableHeader on '/Users/georginamartinez/
## Documents/Tec/Séptimo Semestre/Analítica para negocios, de los datos a
## decisiones/Base de datos FORM/Delivery Plan/año.csv'
summary(bd)
## CLIENTE.PLANTA PROYECTO ID.ODOO ITEM
## Length:231 Length:231 Length:231 Length:231
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
## JUNIO JULIO AGOSTO SEPTIEMBRE
## Min. : 0.00 Min. : 0.0 Min. : 0.00 Min. : 0
## 1st Qu.: 0.00 1st Qu.: 0.0 1st Qu.: 0.00 1st Qu.: 0
## Median : 0.00 Median : 0.0 Median : 0.00 Median : 0
## Mean : 29.06 Mean : 135.9 Mean : 77.45 Mean : 81
## 3rd Qu.: 0.00 3rd Qu.: 0.0 3rd Qu.: 0.00 3rd Qu.: 0
## Max. :1280.00 Max. :13120.0 Max. :3200.00 Max. :3200
## OCTUBRE NOVIEMBRE DICIEMBRE ENE.22
## Min. : 0.0 Min. : 0.00 Min. : 0.0 Min. : 0.00
## 1st Qu.: 0.0 1st Qu.: 0.00 1st Qu.: 0.0 1st Qu.: 0.00
## Median : 0.0 Median : 0.00 Median : 0.0 Median : 0.00
## Mean : 62.0 Mean : 89.69 Mean : 100.4 Mean : 82.37
## 3rd Qu.: 11.5 3rd Qu.: 4.00 3rd Qu.: 1.5 3rd Qu.: 26.50
## Max. :3200.0 Max. :6400.00 Max. :6400.0 Max. :3200.00
## FEBRERO.22 MARZO.22 ABRIL.22 MAYO.22
## Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0
## 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 0.0
## Median : 0.0 Median : 0.0 Median : 0.0 Median : 0.0
## Mean : 103.5 Mean : 153.9 Mean : 186.5 Mean : 187.6
## 3rd Qu.: 0.0 3rd Qu.: 20.0 3rd Qu.: 24.0 3rd Qu.: 22.0
## Max. :9600.0 Max. :9600.0 Max. :16354.0 Max. :17665.0
## JUNIO.22 JULIO.22 AGOSTO.22 SEPTIEMBRE.22
## Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0
## 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 0.0
## Median : 0.0 Median : 0.0 Median : 0.0 Median : 0.0
## Mean : 171.2 Mean : 316.9 Mean : 131.5 Mean : 272.3
## 3rd Qu.: 1.0 3rd Qu.: 15.5 3rd Qu.: 0.0 3rd Qu.: 0.0
## Max. :11050.0 Max. :25900.0 Max. :13200.0 Max. :29379.0
## NOVIEMBRE.22 NOVIEMBRE.22.1 DICIEMBRE.22 ENERO.23
## Min. : 0.0 Min. : 0.000 Min. : 0.000 Min. : 0.0000
## 1st Qu.: 0.0 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.0000
## Median : 0.0 Median : 0.000 Median : 0.000 Median : 0.0000
## Mean : 120.9 Mean : 2.113 Mean : 1.225 Mean : 0.5974
## 3rd Qu.: 0.0 3rd Qu.: 0.000 3rd Qu.: 0.000 3rd Qu.: 0.0000
## Max. :16421.0 Max. :324.000 Max. :276.000 Max. :138.0000
## FEBRERO.23 MARZO.23
## Min. :0 Min. :0
## 1st Qu.:0 1st Qu.:0
## Median :0 Median :0
## Mean :0 Mean :0
## 3rd Qu.:0 3rd Qu.:0
## Max. :0 Max. :0
bd1 <- bd
bd1 <- subset(bd1, select = -c (PROYECTO, ITEM, ID.ODOO ))
sum(is.na(bd1))
## [1] 0
sum(is.na(bd))
## [1] 0
sapply(bd1, function(x) sum(is.na(x)))
## CLIENTE.PLANTA JUNIO JULIO AGOSTO SEPTIEMBRE
## 0 0 0 0 0
## OCTUBRE NOVIEMBRE DICIEMBRE ENE.22 FEBRERO.22
## 0 0 0 0 0
## MARZO.22 ABRIL.22 MAYO.22 JUNIO.22 JULIO.22
## 0 0 0 0 0
## AGOSTO.22 SEPTIEMBRE.22 NOVIEMBRE.22 NOVIEMBRE.22.1 DICIEMBRE.22
## 0 0 0 0 0
## ENERO.23 FEBRERO.23 MARZO.23
## 0 0 0
sapply(bd, function(x) sum(is.na(x)))
## CLIENTE.PLANTA PROYECTO ID.ODOO ITEM JUNIO
## 0 0 0 0 0
## JULIO AGOSTO SEPTIEMBRE OCTUBRE NOVIEMBRE
## 0 0 0 0 0
## DICIEMBRE ENE.22 FEBRERO.22 MARZO.22 ABRIL.22
## 0 0 0 0 0
## MAYO.22 JUNIO.22 JULIO.22 AGOSTO.22 SEPTIEMBRE.22
## 0 0 0 0 0
## NOVIEMBRE.22 NOVIEMBRE.22.1 DICIEMBRE.22 ENERO.23 FEBRERO.23
## 0 0 0 0 0
## MARZO.23
## 0
#Cambiar el nombre de una columna
#library(dplyr)
#?colnames
#bd1$NOVIEMBRE.22 <- colnames("OCTUBRE.22")
Se generan las tablas de frecuencias de las variables únicamente de enero 2022 y enero 2023 ya que resulta poco práctico generar tablas de frecuencia con variables cuantitativas discretas y son 22 meses.
primer_año <- table(bd1$ENE.22)
knitr::kable(primer_año)
| Var1 | Freq |
|---|---|
| 0 | 155 |
| 2 | 1 |
| 4 | 2 |
| 5 | 1 |
| 6 | 2 |
| 7 | 2 |
| 15 | 4 |
| 16 | 1 |
| 19 | 1 |
| 21 | 1 |
| 22 | 1 |
| 25 | 1 |
| 26 | 1 |
| 27 | 1 |
| 30 | 3 |
| 32 | 2 |
| 35 | 1 |
| 39 | 1 |
| 40 | 1 |
| 42 | 1 |
| 45 | 1 |
| 47 | 1 |
| 50 | 3 |
| 52 | 1 |
| 55 | 1 |
| 58 | 1 |
| 60 | 6 |
| 65 | 1 |
| 83 | 1 |
| 96 | 2 |
| 100 | 1 |
| 114 | 1 |
| 120 | 1 |
| 125 | 1 |
| 126 | 1 |
| 140 | 1 |
| 144 | 1 |
| 183 | 1 |
| 187 | 1 |
| 196 | 1 |
| 198 | 1 |
| 230 | 2 |
| 240 | 2 |
| 300 | 1 |
| 350 | 1 |
| 400 | 1 |
| 480 | 1 |
| 500 | 2 |
| 506 | 1 |
| 600 | 1 |
| 800 | 2 |
| 945 | 1 |
| 1200 | 1 |
| 2000 | 1 |
| 2200 | 1 |
| 3200 | 1 |
segundo_año <- table(bd1$ENERO.23)
knitr::kable(segundo_año)
| Var1 | Freq |
|---|---|
| 0 | 230 |
| 138 | 1 |
library(plyr)
## ------------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## ------------------------------------------------------------------------------
##
## Attaching package: 'plyr'
## The following objects are masked from 'package:dplyr':
##
## arrange, count, desc, failwith, id, mutate, rename, summarise,
## summarize
pie(table(bd$CLIENTE.PLANTA))
En la gráfica podemos observar un panorama de qué clientes tienen mayor presencia que otros con la gráfica circular.
boxplot(bd3$PEDIDOS, main ="Total Ordenes 2022")
Podemos ver con el boxplot la dispersión que hay en las ordenes realizadas durante el año. Se tomó únicamente dicho año ya que es del único del que se tiene base completa de 12 meses. Podemos ver que la desviación estándar es simétrica y el bar está ligeramente por encima de la mitad de la caja de bigotes, por lo que el sesgo podría definirse negativo.
#?pie
pie((bd3$PEDIDOS), main="Ordenes por mes", las=1)
Cada número representa 1 mes consecutivamente y dicha gráfica nos permite ver de manera visual en qué mes hubo una mayor cantidad de deliveries.
bd3$MES <- as.Date(bd3$MES, format ="%d/%m/%y")
library(tibble)
tibble(bd3)
## # A tibble: 12 × 2
## MES PEDIDOS
## <date> <int>
## 1 2020-01-01 19028
## 2 2020-02-01 23912
## 3 2020-03-01 35559
## 4 2020-04-01 43080
## 5 2020-05-01 43336
## 6 2020-06-01 39549
## 7 2020-07-01 73201
## 8 2020-08-01 30375
## 9 2020-09-01 62912
## 10 2020-10-01 27925
## 11 2020-11-01 488
## 12 2020-12-01 283
plot(bd3$MES, bd3$PEDIDOS, main = "Pedidos por mes 2022",
xlab = "Mes", ylab = "Ordenes",
pch = 19, frame = TRUE)
bd_delivery_perf <- read.csv("/Users/georginamartinez/Documents/Tec/Séptimo Semestre/Analítica para negocios, de los datos a decisiones/Base de datos FORM/BD Form Delivery Performance.csv")
# Convertir de caracter a fecha
bd_delivery_perf$Fecha <- as.Date(bd_delivery_perf$Fecha, format ="%d/%m/%y")
# Convertir de caracter a hora
bd_delivery_perf$Real.arrival <- substr(bd_delivery_perf$Real.arrival, start = 1, stop = 2)
bd_delivery_perf$Real.arrival<- as.integer(bd_delivery_perf$Real.arrival)
bd_delivery_perf$Real.Departure <- substr(bd_delivery_perf$Real.Departure, start = 1, stop = 2)
bd_delivery_perf$Real.Departure<- as.integer(bd_delivery_perf$Real.Departure)
# Cambiar los nombres de las variables más cortas y específicas
names(bd_delivery_perf) [2] = "Tptista"
names(bd_delivery_perf) [4] = "Plan_arr"
names(bd_delivery_perf) [5] = "Real_arr"
names(bd_delivery_perf) [6] = "Real_dep"
names(bd_delivery_perf) [7] = "Dif"
names(bd_delivery_perf)
## [1] "Cliente" "Tptista" "Fecha" "Plan_arr" "Real_arr" "Real_dep" "Dif"
Tptista <-table(bd_delivery_perf$Tptista)
Tptista
##
## DIONICIO EZEQUIEL JUVENCIO
## 39 13 52
knitr::kable(Tptista)
| Var1 | Freq |
|---|---|
| DIONICIO | 39 |
| EZEQUIEL | 13 |
| JUVENCIO | 52 |
Cliente <-table(bd_delivery_perf$Cliente)
Cliente
##
## MAGNA MAHLE PRINTEL VARROC
## 13 39 13 39
knitr::kable(Cliente)
| Var1 | Freq |
|---|---|
| MAGNA | 13 |
| MAHLE | 39 |
| PRINTEL | 13 |
| VARROC | 39 |
cruzada1<-table(bd_delivery_perf$Tptista,bd_delivery_perf$Dif)
knitr::kable(cruzada1)
| 0 | 0.2 | 0.3 | 0.5 | 0.51 | 0.55 | 0.95 | 1 | 1.05 | 1.1 | 1.5 | 2.15 | 3.3 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| DIONICIO | 13 | 1 | 1 | 1 | 1 | 2 | 2 | 10 | 2 | 3 | 2 | 1 | 0 |
| EZEQUIEL | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| JUVENCIO | 48 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
cruzada2<-table(bd_delivery_perf$Fecha,bd_delivery_perf$Dif,bd_delivery_perf$Cliente)
knitr::kable(cruzada2)
| Var1 | Var2 | Var3 | Freq |
|---|---|---|---|
| 2020-01-01 | 0 | MAGNA | 1 |
| 2020-02-01 | 0 | MAGNA | 1 |
| 2020-03-01 | 0 | MAGNA | 1 |
| 2020-04-01 | 0 | MAGNA | 1 |
| 2020-05-01 | 0 | MAGNA | 1 |
| 2020-06-01 | 0 | MAGNA | 1 |
| 2020-07-01 | 0 | MAGNA | 2 |
| 2020-08-01 | 0 | MAGNA | 1 |
| 2020-09-01 | 0 | MAGNA | 1 |
| 2020-10-01 | 0 | MAGNA | 1 |
| 2020-11-01 | 0 | MAGNA | 1 |
| 2020-12-01 | 0 | MAGNA | 1 |
| 2020-01-01 | 0.2 | MAGNA | 0 |
| 2020-02-01 | 0.2 | MAGNA | 0 |
| 2020-03-01 | 0.2 | MAGNA | 0 |
| 2020-04-01 | 0.2 | MAGNA | 0 |
| 2020-05-01 | 0.2 | MAGNA | 0 |
| 2020-06-01 | 0.2 | MAGNA | 0 |
| 2020-07-01 | 0.2 | MAGNA | 0 |
| 2020-08-01 | 0.2 | MAGNA | 0 |
| 2020-09-01 | 0.2 | MAGNA | 0 |
| 2020-10-01 | 0.2 | MAGNA | 0 |
| 2020-11-01 | 0.2 | MAGNA | 0 |
| 2020-12-01 | 0.2 | MAGNA | 0 |
| 2020-01-01 | 0.3 | MAGNA | 0 |
| 2020-02-01 | 0.3 | MAGNA | 0 |
| 2020-03-01 | 0.3 | MAGNA | 0 |
| 2020-04-01 | 0.3 | MAGNA | 0 |
| 2020-05-01 | 0.3 | MAGNA | 0 |
| 2020-06-01 | 0.3 | MAGNA | 0 |
| 2020-07-01 | 0.3 | MAGNA | 0 |
| 2020-08-01 | 0.3 | MAGNA | 0 |
| 2020-09-01 | 0.3 | MAGNA | 0 |
| 2020-10-01 | 0.3 | MAGNA | 0 |
| 2020-11-01 | 0.3 | MAGNA | 0 |
| 2020-12-01 | 0.3 | MAGNA | 0 |
| 2020-01-01 | 0.5 | MAGNA | 0 |
| 2020-02-01 | 0.5 | MAGNA | 0 |
| 2020-03-01 | 0.5 | MAGNA | 0 |
| 2020-04-01 | 0.5 | MAGNA | 0 |
| 2020-05-01 | 0.5 | MAGNA | 0 |
| 2020-06-01 | 0.5 | MAGNA | 0 |
| 2020-07-01 | 0.5 | MAGNA | 0 |
| 2020-08-01 | 0.5 | MAGNA | 0 |
| 2020-09-01 | 0.5 | MAGNA | 0 |
| 2020-10-01 | 0.5 | MAGNA | 0 |
| 2020-11-01 | 0.5 | MAGNA | 0 |
| 2020-12-01 | 0.5 | MAGNA | 0 |
| 2020-01-01 | 0.51 | MAGNA | 0 |
| 2020-02-01 | 0.51 | MAGNA | 0 |
| 2020-03-01 | 0.51 | MAGNA | 0 |
| 2020-04-01 | 0.51 | MAGNA | 0 |
| 2020-05-01 | 0.51 | MAGNA | 0 |
| 2020-06-01 | 0.51 | MAGNA | 0 |
| 2020-07-01 | 0.51 | MAGNA | 0 |
| 2020-08-01 | 0.51 | MAGNA | 0 |
| 2020-09-01 | 0.51 | MAGNA | 0 |
| 2020-10-01 | 0.51 | MAGNA | 0 |
| 2020-11-01 | 0.51 | MAGNA | 0 |
| 2020-12-01 | 0.51 | MAGNA | 0 |
| 2020-01-01 | 0.55 | MAGNA | 0 |
| 2020-02-01 | 0.55 | MAGNA | 0 |
| 2020-03-01 | 0.55 | MAGNA | 0 |
| 2020-04-01 | 0.55 | MAGNA | 0 |
| 2020-05-01 | 0.55 | MAGNA | 0 |
| 2020-06-01 | 0.55 | MAGNA | 0 |
| 2020-07-01 | 0.55 | MAGNA | 0 |
| 2020-08-01 | 0.55 | MAGNA | 0 |
| 2020-09-01 | 0.55 | MAGNA | 0 |
| 2020-10-01 | 0.55 | MAGNA | 0 |
| 2020-11-01 | 0.55 | MAGNA | 0 |
| 2020-12-01 | 0.55 | MAGNA | 0 |
| 2020-01-01 | 0.95 | MAGNA | 0 |
| 2020-02-01 | 0.95 | MAGNA | 0 |
| 2020-03-01 | 0.95 | MAGNA | 0 |
| 2020-04-01 | 0.95 | MAGNA | 0 |
| 2020-05-01 | 0.95 | MAGNA | 0 |
| 2020-06-01 | 0.95 | MAGNA | 0 |
| 2020-07-01 | 0.95 | MAGNA | 0 |
| 2020-08-01 | 0.95 | MAGNA | 0 |
| 2020-09-01 | 0.95 | MAGNA | 0 |
| 2020-10-01 | 0.95 | MAGNA | 0 |
| 2020-11-01 | 0.95 | MAGNA | 0 |
| 2020-12-01 | 0.95 | MAGNA | 0 |
| 2020-01-01 | 1 | MAGNA | 0 |
| 2020-02-01 | 1 | MAGNA | 0 |
| 2020-03-01 | 1 | MAGNA | 0 |
| 2020-04-01 | 1 | MAGNA | 0 |
| 2020-05-01 | 1 | MAGNA | 0 |
| 2020-06-01 | 1 | MAGNA | 0 |
| 2020-07-01 | 1 | MAGNA | 0 |
| 2020-08-01 | 1 | MAGNA | 0 |
| 2020-09-01 | 1 | MAGNA | 0 |
| 2020-10-01 | 1 | MAGNA | 0 |
| 2020-11-01 | 1 | MAGNA | 0 |
| 2020-12-01 | 1 | MAGNA | 0 |
| 2020-01-01 | 1.05 | MAGNA | 0 |
| 2020-02-01 | 1.05 | MAGNA | 0 |
| 2020-03-01 | 1.05 | MAGNA | 0 |
| 2020-04-01 | 1.05 | MAGNA | 0 |
| 2020-05-01 | 1.05 | MAGNA | 0 |
| 2020-06-01 | 1.05 | MAGNA | 0 |
| 2020-07-01 | 1.05 | MAGNA | 0 |
| 2020-08-01 | 1.05 | MAGNA | 0 |
| 2020-09-01 | 1.05 | MAGNA | 0 |
| 2020-10-01 | 1.05 | MAGNA | 0 |
| 2020-11-01 | 1.05 | MAGNA | 0 |
| 2020-12-01 | 1.05 | MAGNA | 0 |
| 2020-01-01 | 1.1 | MAGNA | 0 |
| 2020-02-01 | 1.1 | MAGNA | 0 |
| 2020-03-01 | 1.1 | MAGNA | 0 |
| 2020-04-01 | 1.1 | MAGNA | 0 |
| 2020-05-01 | 1.1 | MAGNA | 0 |
| 2020-06-01 | 1.1 | MAGNA | 0 |
| 2020-07-01 | 1.1 | MAGNA | 0 |
| 2020-08-01 | 1.1 | MAGNA | 0 |
| 2020-09-01 | 1.1 | MAGNA | 0 |
| 2020-10-01 | 1.1 | MAGNA | 0 |
| 2020-11-01 | 1.1 | MAGNA | 0 |
| 2020-12-01 | 1.1 | MAGNA | 0 |
| 2020-01-01 | 1.5 | MAGNA | 0 |
| 2020-02-01 | 1.5 | MAGNA | 0 |
| 2020-03-01 | 1.5 | MAGNA | 0 |
| 2020-04-01 | 1.5 | MAGNA | 0 |
| 2020-05-01 | 1.5 | MAGNA | 0 |
| 2020-06-01 | 1.5 | MAGNA | 0 |
| 2020-07-01 | 1.5 | MAGNA | 0 |
| 2020-08-01 | 1.5 | MAGNA | 0 |
| 2020-09-01 | 1.5 | MAGNA | 0 |
| 2020-10-01 | 1.5 | MAGNA | 0 |
| 2020-11-01 | 1.5 | MAGNA | 0 |
| 2020-12-01 | 1.5 | MAGNA | 0 |
| 2020-01-01 | 2.15 | MAGNA | 0 |
| 2020-02-01 | 2.15 | MAGNA | 0 |
| 2020-03-01 | 2.15 | MAGNA | 0 |
| 2020-04-01 | 2.15 | MAGNA | 0 |
| 2020-05-01 | 2.15 | MAGNA | 0 |
| 2020-06-01 | 2.15 | MAGNA | 0 |
| 2020-07-01 | 2.15 | MAGNA | 0 |
| 2020-08-01 | 2.15 | MAGNA | 0 |
| 2020-09-01 | 2.15 | MAGNA | 0 |
| 2020-10-01 | 2.15 | MAGNA | 0 |
| 2020-11-01 | 2.15 | MAGNA | 0 |
| 2020-12-01 | 2.15 | MAGNA | 0 |
| 2020-01-01 | 3.3 | MAGNA | 0 |
| 2020-02-01 | 3.3 | MAGNA | 0 |
| 2020-03-01 | 3.3 | MAGNA | 0 |
| 2020-04-01 | 3.3 | MAGNA | 0 |
| 2020-05-01 | 3.3 | MAGNA | 0 |
| 2020-06-01 | 3.3 | MAGNA | 0 |
| 2020-07-01 | 3.3 | MAGNA | 0 |
| 2020-08-01 | 3.3 | MAGNA | 0 |
| 2020-09-01 | 3.3 | MAGNA | 0 |
| 2020-10-01 | 3.3 | MAGNA | 0 |
| 2020-11-01 | 3.3 | MAGNA | 0 |
| 2020-12-01 | 3.3 | MAGNA | 0 |
| 2020-01-01 | 0 | MAHLE | 0 |
| 2020-02-01 | 0 | MAHLE | 0 |
| 2020-03-01 | 0 | MAHLE | 1 |
| 2020-04-01 | 0 | MAHLE | 3 |
| 2020-05-01 | 0 | MAHLE | 3 |
| 2020-06-01 | 0 | MAHLE | 0 |
| 2020-07-01 | 0 | MAHLE | 3 |
| 2020-08-01 | 0 | MAHLE | 0 |
| 2020-09-01 | 0 | MAHLE | 0 |
| 2020-10-01 | 0 | MAHLE | 3 |
| 2020-11-01 | 0 | MAHLE | 0 |
| 2020-12-01 | 0 | MAHLE | 0 |
| 2020-01-01 | 0.2 | MAHLE | 0 |
| 2020-02-01 | 0.2 | MAHLE | 0 |
| 2020-03-01 | 0.2 | MAHLE | 0 |
| 2020-04-01 | 0.2 | MAHLE | 0 |
| 2020-05-01 | 0.2 | MAHLE | 0 |
| 2020-06-01 | 0.2 | MAHLE | 1 |
| 2020-07-01 | 0.2 | MAHLE | 0 |
| 2020-08-01 | 0.2 | MAHLE | 0 |
| 2020-09-01 | 0.2 | MAHLE | 0 |
| 2020-10-01 | 0.2 | MAHLE | 0 |
| 2020-11-01 | 0.2 | MAHLE | 0 |
| 2020-12-01 | 0.2 | MAHLE | 0 |
| 2020-01-01 | 0.3 | MAHLE | 0 |
| 2020-02-01 | 0.3 | MAHLE | 0 |
| 2020-03-01 | 0.3 | MAHLE | 0 |
| 2020-04-01 | 0.3 | MAHLE | 0 |
| 2020-05-01 | 0.3 | MAHLE | 0 |
| 2020-06-01 | 0.3 | MAHLE | 1 |
| 2020-07-01 | 0.3 | MAHLE | 0 |
| 2020-08-01 | 0.3 | MAHLE | 0 |
| 2020-09-01 | 0.3 | MAHLE | 0 |
| 2020-10-01 | 0.3 | MAHLE | 0 |
| 2020-11-01 | 0.3 | MAHLE | 0 |
| 2020-12-01 | 0.3 | MAHLE | 0 |
| 2020-01-01 | 0.5 | MAHLE | 0 |
| 2020-02-01 | 0.5 | MAHLE | 0 |
| 2020-03-01 | 0.5 | MAHLE | 0 |
| 2020-04-01 | 0.5 | MAHLE | 0 |
| 2020-05-01 | 0.5 | MAHLE | 0 |
| 2020-06-01 | 0.5 | MAHLE | 0 |
| 2020-07-01 | 0.5 | MAHLE | 0 |
| 2020-08-01 | 0.5 | MAHLE | 0 |
| 2020-09-01 | 0.5 | MAHLE | 0 |
| 2020-10-01 | 0.5 | MAHLE | 0 |
| 2020-11-01 | 0.5 | MAHLE | 0 |
| 2020-12-01 | 0.5 | MAHLE | 1 |
| 2020-01-01 | 0.51 | MAHLE | 0 |
| 2020-02-01 | 0.51 | MAHLE | 0 |
| 2020-03-01 | 0.51 | MAHLE | 0 |
| 2020-04-01 | 0.51 | MAHLE | 0 |
| 2020-05-01 | 0.51 | MAHLE | 0 |
| 2020-06-01 | 0.51 | MAHLE | 0 |
| 2020-07-01 | 0.51 | MAHLE | 0 |
| 2020-08-01 | 0.51 | MAHLE | 1 |
| 2020-09-01 | 0.51 | MAHLE | 0 |
| 2020-10-01 | 0.51 | MAHLE | 0 |
| 2020-11-01 | 0.51 | MAHLE | 0 |
| 2020-12-01 | 0.51 | MAHLE | 0 |
| 2020-01-01 | 0.55 | MAHLE | 1 |
| 2020-02-01 | 0.55 | MAHLE | 0 |
| 2020-03-01 | 0.55 | MAHLE | 0 |
| 2020-04-01 | 0.55 | MAHLE | 0 |
| 2020-05-01 | 0.55 | MAHLE | 0 |
| 2020-06-01 | 0.55 | MAHLE | 0 |
| 2020-07-01 | 0.55 | MAHLE | 1 |
| 2020-08-01 | 0.55 | MAHLE | 0 |
| 2020-09-01 | 0.55 | MAHLE | 0 |
| 2020-10-01 | 0.55 | MAHLE | 0 |
| 2020-11-01 | 0.55 | MAHLE | 0 |
| 2020-12-01 | 0.55 | MAHLE | 0 |
| 2020-01-01 | 0.95 | MAHLE | 0 |
| 2020-02-01 | 0.95 | MAHLE | 0 |
| 2020-03-01 | 0.95 | MAHLE | 0 |
| 2020-04-01 | 0.95 | MAHLE | 0 |
| 2020-05-01 | 0.95 | MAHLE | 0 |
| 2020-06-01 | 0.95 | MAHLE | 1 |
| 2020-07-01 | 0.95 | MAHLE | 0 |
| 2020-08-01 | 0.95 | MAHLE | 0 |
| 2020-09-01 | 0.95 | MAHLE | 0 |
| 2020-10-01 | 0.95 | MAHLE | 0 |
| 2020-11-01 | 0.95 | MAHLE | 0 |
| 2020-12-01 | 0.95 | MAHLE | 1 |
| 2020-01-01 | 1 | MAHLE | 2 |
| 2020-02-01 | 1 | MAHLE | 0 |
| 2020-03-01 | 1 | MAHLE | 1 |
| 2020-04-01 | 1 | MAHLE | 0 |
| 2020-05-01 | 1 | MAHLE | 0 |
| 2020-06-01 | 1 | MAHLE | 0 |
| 2020-07-01 | 1 | MAHLE | 1 |
| 2020-08-01 | 1 | MAHLE | 2 |
| 2020-09-01 | 1 | MAHLE | 3 |
| 2020-10-01 | 1 | MAHLE | 0 |
| 2020-11-01 | 1 | MAHLE | 0 |
| 2020-12-01 | 1 | MAHLE | 1 |
| 2020-01-01 | 1.05 | MAHLE | 0 |
| 2020-02-01 | 1.05 | MAHLE | 0 |
| 2020-03-01 | 1.05 | MAHLE | 1 |
| 2020-04-01 | 1.05 | MAHLE | 0 |
| 2020-05-01 | 1.05 | MAHLE | 0 |
| 2020-06-01 | 1.05 | MAHLE | 0 |
| 2020-07-01 | 1.05 | MAHLE | 0 |
| 2020-08-01 | 1.05 | MAHLE | 0 |
| 2020-09-01 | 1.05 | MAHLE | 0 |
| 2020-10-01 | 1.05 | MAHLE | 0 |
| 2020-11-01 | 1.05 | MAHLE | 1 |
| 2020-12-01 | 1.05 | MAHLE | 0 |
| 2020-01-01 | 1.1 | MAHLE | 0 |
| 2020-02-01 | 1.1 | MAHLE | 0 |
| 2020-03-01 | 1.1 | MAHLE | 0 |
| 2020-04-01 | 1.1 | MAHLE | 0 |
| 2020-05-01 | 1.1 | MAHLE | 0 |
| 2020-06-01 | 1.1 | MAHLE | 0 |
| 2020-07-01 | 1.1 | MAHLE | 1 |
| 2020-08-01 | 1.1 | MAHLE | 0 |
| 2020-09-01 | 1.1 | MAHLE | 0 |
| 2020-10-01 | 1.1 | MAHLE | 0 |
| 2020-11-01 | 1.1 | MAHLE | 2 |
| 2020-12-01 | 1.1 | MAHLE | 0 |
| 2020-01-01 | 1.5 | MAHLE | 0 |
| 2020-02-01 | 1.5 | MAHLE | 2 |
| 2020-03-01 | 1.5 | MAHLE | 0 |
| 2020-04-01 | 1.5 | MAHLE | 0 |
| 2020-05-01 | 1.5 | MAHLE | 0 |
| 2020-06-01 | 1.5 | MAHLE | 0 |
| 2020-07-01 | 1.5 | MAHLE | 0 |
| 2020-08-01 | 1.5 | MAHLE | 0 |
| 2020-09-01 | 1.5 | MAHLE | 0 |
| 2020-10-01 | 1.5 | MAHLE | 0 |
| 2020-11-01 | 1.5 | MAHLE | 0 |
| 2020-12-01 | 1.5 | MAHLE | 0 |
| 2020-01-01 | 2.15 | MAHLE | 0 |
| 2020-02-01 | 2.15 | MAHLE | 1 |
| 2020-03-01 | 2.15 | MAHLE | 0 |
| 2020-04-01 | 2.15 | MAHLE | 0 |
| 2020-05-01 | 2.15 | MAHLE | 0 |
| 2020-06-01 | 2.15 | MAHLE | 0 |
| 2020-07-01 | 2.15 | MAHLE | 0 |
| 2020-08-01 | 2.15 | MAHLE | 0 |
| 2020-09-01 | 2.15 | MAHLE | 0 |
| 2020-10-01 | 2.15 | MAHLE | 0 |
| 2020-11-01 | 2.15 | MAHLE | 0 |
| 2020-12-01 | 2.15 | MAHLE | 0 |
| 2020-01-01 | 3.3 | MAHLE | 0 |
| 2020-02-01 | 3.3 | MAHLE | 0 |
| 2020-03-01 | 3.3 | MAHLE | 0 |
| 2020-04-01 | 3.3 | MAHLE | 0 |
| 2020-05-01 | 3.3 | MAHLE | 0 |
| 2020-06-01 | 3.3 | MAHLE | 0 |
| 2020-07-01 | 3.3 | MAHLE | 0 |
| 2020-08-01 | 3.3 | MAHLE | 0 |
| 2020-09-01 | 3.3 | MAHLE | 0 |
| 2020-10-01 | 3.3 | MAHLE | 0 |
| 2020-11-01 | 3.3 | MAHLE | 0 |
| 2020-12-01 | 3.3 | MAHLE | 0 |
| 2020-01-01 | 0 | PRINTEL | 0 |
| 2020-02-01 | 0 | PRINTEL | 1 |
| 2020-03-01 | 0 | PRINTEL | 1 |
| 2020-04-01 | 0 | PRINTEL | 1 |
| 2020-05-01 | 0 | PRINTEL | 1 |
| 2020-06-01 | 0 | PRINTEL | 1 |
| 2020-07-01 | 0 | PRINTEL | 2 |
| 2020-08-01 | 0 | PRINTEL | 0 |
| 2020-09-01 | 0 | PRINTEL | 0 |
| 2020-10-01 | 0 | PRINTEL | 1 |
| 2020-11-01 | 0 | PRINTEL | 1 |
| 2020-12-01 | 0 | PRINTEL | 0 |
| 2020-01-01 | 0.2 | PRINTEL | 0 |
| 2020-02-01 | 0.2 | PRINTEL | 0 |
| 2020-03-01 | 0.2 | PRINTEL | 0 |
| 2020-04-01 | 0.2 | PRINTEL | 0 |
| 2020-05-01 | 0.2 | PRINTEL | 0 |
| 2020-06-01 | 0.2 | PRINTEL | 0 |
| 2020-07-01 | 0.2 | PRINTEL | 0 |
| 2020-08-01 | 0.2 | PRINTEL | 0 |
| 2020-09-01 | 0.2 | PRINTEL | 0 |
| 2020-10-01 | 0.2 | PRINTEL | 0 |
| 2020-11-01 | 0.2 | PRINTEL | 0 |
| 2020-12-01 | 0.2 | PRINTEL | 0 |
| 2020-01-01 | 0.3 | PRINTEL | 0 |
| 2020-02-01 | 0.3 | PRINTEL | 0 |
| 2020-03-01 | 0.3 | PRINTEL | 0 |
| 2020-04-01 | 0.3 | PRINTEL | 0 |
| 2020-05-01 | 0.3 | PRINTEL | 0 |
| 2020-06-01 | 0.3 | PRINTEL | 0 |
| 2020-07-01 | 0.3 | PRINTEL | 0 |
| 2020-08-01 | 0.3 | PRINTEL | 0 |
| 2020-09-01 | 0.3 | PRINTEL | 0 |
| 2020-10-01 | 0.3 | PRINTEL | 0 |
| 2020-11-01 | 0.3 | PRINTEL | 0 |
| 2020-12-01 | 0.3 | PRINTEL | 0 |
| 2020-01-01 | 0.5 | PRINTEL | 0 |
| 2020-02-01 | 0.5 | PRINTEL | 0 |
| 2020-03-01 | 0.5 | PRINTEL | 0 |
| 2020-04-01 | 0.5 | PRINTEL | 0 |
| 2020-05-01 | 0.5 | PRINTEL | 0 |
| 2020-06-01 | 0.5 | PRINTEL | 0 |
| 2020-07-01 | 0.5 | PRINTEL | 0 |
| 2020-08-01 | 0.5 | PRINTEL | 0 |
| 2020-09-01 | 0.5 | PRINTEL | 0 |
| 2020-10-01 | 0.5 | PRINTEL | 0 |
| 2020-11-01 | 0.5 | PRINTEL | 0 |
| 2020-12-01 | 0.5 | PRINTEL | 0 |
| 2020-01-01 | 0.51 | PRINTEL | 0 |
| 2020-02-01 | 0.51 | PRINTEL | 0 |
| 2020-03-01 | 0.51 | PRINTEL | 0 |
| 2020-04-01 | 0.51 | PRINTEL | 0 |
| 2020-05-01 | 0.51 | PRINTEL | 0 |
| 2020-06-01 | 0.51 | PRINTEL | 0 |
| 2020-07-01 | 0.51 | PRINTEL | 0 |
| 2020-08-01 | 0.51 | PRINTEL | 0 |
| 2020-09-01 | 0.51 | PRINTEL | 0 |
| 2020-10-01 | 0.51 | PRINTEL | 0 |
| 2020-11-01 | 0.51 | PRINTEL | 0 |
| 2020-12-01 | 0.51 | PRINTEL | 0 |
| 2020-01-01 | 0.55 | PRINTEL | 0 |
| 2020-02-01 | 0.55 | PRINTEL | 0 |
| 2020-03-01 | 0.55 | PRINTEL | 0 |
| 2020-04-01 | 0.55 | PRINTEL | 0 |
| 2020-05-01 | 0.55 | PRINTEL | 0 |
| 2020-06-01 | 0.55 | PRINTEL | 0 |
| 2020-07-01 | 0.55 | PRINTEL | 0 |
| 2020-08-01 | 0.55 | PRINTEL | 0 |
| 2020-09-01 | 0.55 | PRINTEL | 0 |
| 2020-10-01 | 0.55 | PRINTEL | 0 |
| 2020-11-01 | 0.55 | PRINTEL | 0 |
| 2020-12-01 | 0.55 | PRINTEL | 0 |
| 2020-01-01 | 0.95 | PRINTEL | 0 |
| 2020-02-01 | 0.95 | PRINTEL | 0 |
| 2020-03-01 | 0.95 | PRINTEL | 0 |
| 2020-04-01 | 0.95 | PRINTEL | 0 |
| 2020-05-01 | 0.95 | PRINTEL | 0 |
| 2020-06-01 | 0.95 | PRINTEL | 0 |
| 2020-07-01 | 0.95 | PRINTEL | 0 |
| 2020-08-01 | 0.95 | PRINTEL | 0 |
| 2020-09-01 | 0.95 | PRINTEL | 0 |
| 2020-10-01 | 0.95 | PRINTEL | 0 |
| 2020-11-01 | 0.95 | PRINTEL | 0 |
| 2020-12-01 | 0.95 | PRINTEL | 0 |
| 2020-01-01 | 1 | PRINTEL | 0 |
| 2020-02-01 | 1 | PRINTEL | 0 |
| 2020-03-01 | 1 | PRINTEL | 0 |
| 2020-04-01 | 1 | PRINTEL | 0 |
| 2020-05-01 | 1 | PRINTEL | 0 |
| 2020-06-01 | 1 | PRINTEL | 0 |
| 2020-07-01 | 1 | PRINTEL | 0 |
| 2020-08-01 | 1 | PRINTEL | 1 |
| 2020-09-01 | 1 | PRINTEL | 0 |
| 2020-10-01 | 1 | PRINTEL | 0 |
| 2020-11-01 | 1 | PRINTEL | 0 |
| 2020-12-01 | 1 | PRINTEL | 0 |
| 2020-01-01 | 1.05 | PRINTEL | 0 |
| 2020-02-01 | 1.05 | PRINTEL | 0 |
| 2020-03-01 | 1.05 | PRINTEL | 0 |
| 2020-04-01 | 1.05 | PRINTEL | 0 |
| 2020-05-01 | 1.05 | PRINTEL | 0 |
| 2020-06-01 | 1.05 | PRINTEL | 0 |
| 2020-07-01 | 1.05 | PRINTEL | 0 |
| 2020-08-01 | 1.05 | PRINTEL | 0 |
| 2020-09-01 | 1.05 | PRINTEL | 0 |
| 2020-10-01 | 1.05 | PRINTEL | 0 |
| 2020-11-01 | 1.05 | PRINTEL | 0 |
| 2020-12-01 | 1.05 | PRINTEL | 1 |
| 2020-01-01 | 1.1 | PRINTEL | 0 |
| 2020-02-01 | 1.1 | PRINTEL | 0 |
| 2020-03-01 | 1.1 | PRINTEL | 0 |
| 2020-04-01 | 1.1 | PRINTEL | 0 |
| 2020-05-01 | 1.1 | PRINTEL | 0 |
| 2020-06-01 | 1.1 | PRINTEL | 0 |
| 2020-07-01 | 1.1 | PRINTEL | 0 |
| 2020-08-01 | 1.1 | PRINTEL | 0 |
| 2020-09-01 | 1.1 | PRINTEL | 1 |
| 2020-10-01 | 1.1 | PRINTEL | 0 |
| 2020-11-01 | 1.1 | PRINTEL | 0 |
| 2020-12-01 | 1.1 | PRINTEL | 0 |
| 2020-01-01 | 1.5 | PRINTEL | 0 |
| 2020-02-01 | 1.5 | PRINTEL | 0 |
| 2020-03-01 | 1.5 | PRINTEL | 0 |
| 2020-04-01 | 1.5 | PRINTEL | 0 |
| 2020-05-01 | 1.5 | PRINTEL | 0 |
| 2020-06-01 | 1.5 | PRINTEL | 0 |
| 2020-07-01 | 1.5 | PRINTEL | 0 |
| 2020-08-01 | 1.5 | PRINTEL | 0 |
| 2020-09-01 | 1.5 | PRINTEL | 0 |
| 2020-10-01 | 1.5 | PRINTEL | 0 |
| 2020-11-01 | 1.5 | PRINTEL | 0 |
| 2020-12-01 | 1.5 | PRINTEL | 0 |
| 2020-01-01 | 2.15 | PRINTEL | 0 |
| 2020-02-01 | 2.15 | PRINTEL | 0 |
| 2020-03-01 | 2.15 | PRINTEL | 0 |
| 2020-04-01 | 2.15 | PRINTEL | 0 |
| 2020-05-01 | 2.15 | PRINTEL | 0 |
| 2020-06-01 | 2.15 | PRINTEL | 0 |
| 2020-07-01 | 2.15 | PRINTEL | 0 |
| 2020-08-01 | 2.15 | PRINTEL | 0 |
| 2020-09-01 | 2.15 | PRINTEL | 0 |
| 2020-10-01 | 2.15 | PRINTEL | 0 |
| 2020-11-01 | 2.15 | PRINTEL | 0 |
| 2020-12-01 | 2.15 | PRINTEL | 0 |
| 2020-01-01 | 3.3 | PRINTEL | 1 |
| 2020-02-01 | 3.3 | PRINTEL | 0 |
| 2020-03-01 | 3.3 | PRINTEL | 0 |
| 2020-04-01 | 3.3 | PRINTEL | 0 |
| 2020-05-01 | 3.3 | PRINTEL | 0 |
| 2020-06-01 | 3.3 | PRINTEL | 0 |
| 2020-07-01 | 3.3 | PRINTEL | 0 |
| 2020-08-01 | 3.3 | PRINTEL | 0 |
| 2020-09-01 | 3.3 | PRINTEL | 0 |
| 2020-10-01 | 3.3 | PRINTEL | 0 |
| 2020-11-01 | 3.3 | PRINTEL | 0 |
| 2020-12-01 | 3.3 | PRINTEL | 0 |
| 2020-01-01 | 0 | VARROC | 3 |
| 2020-02-01 | 0 | VARROC | 3 |
| 2020-03-01 | 0 | VARROC | 3 |
| 2020-04-01 | 0 | VARROC | 3 |
| 2020-05-01 | 0 | VARROC | 3 |
| 2020-06-01 | 0 | VARROC | 3 |
| 2020-07-01 | 0 | VARROC | 6 |
| 2020-08-01 | 0 | VARROC | 3 |
| 2020-09-01 | 0 | VARROC | 3 |
| 2020-10-01 | 0 | VARROC | 3 |
| 2020-11-01 | 0 | VARROC | 3 |
| 2020-12-01 | 0 | VARROC | 3 |
| 2020-01-01 | 0.2 | VARROC | 0 |
| 2020-02-01 | 0.2 | VARROC | 0 |
| 2020-03-01 | 0.2 | VARROC | 0 |
| 2020-04-01 | 0.2 | VARROC | 0 |
| 2020-05-01 | 0.2 | VARROC | 0 |
| 2020-06-01 | 0.2 | VARROC | 0 |
| 2020-07-01 | 0.2 | VARROC | 0 |
| 2020-08-01 | 0.2 | VARROC | 0 |
| 2020-09-01 | 0.2 | VARROC | 0 |
| 2020-10-01 | 0.2 | VARROC | 0 |
| 2020-11-01 | 0.2 | VARROC | 0 |
| 2020-12-01 | 0.2 | VARROC | 0 |
| 2020-01-01 | 0.3 | VARROC | 0 |
| 2020-02-01 | 0.3 | VARROC | 0 |
| 2020-03-01 | 0.3 | VARROC | 0 |
| 2020-04-01 | 0.3 | VARROC | 0 |
| 2020-05-01 | 0.3 | VARROC | 0 |
| 2020-06-01 | 0.3 | VARROC | 0 |
| 2020-07-01 | 0.3 | VARROC | 0 |
| 2020-08-01 | 0.3 | VARROC | 0 |
| 2020-09-01 | 0.3 | VARROC | 0 |
| 2020-10-01 | 0.3 | VARROC | 0 |
| 2020-11-01 | 0.3 | VARROC | 0 |
| 2020-12-01 | 0.3 | VARROC | 0 |
| 2020-01-01 | 0.5 | VARROC | 0 |
| 2020-02-01 | 0.5 | VARROC | 0 |
| 2020-03-01 | 0.5 | VARROC | 0 |
| 2020-04-01 | 0.5 | VARROC | 0 |
| 2020-05-01 | 0.5 | VARROC | 0 |
| 2020-06-01 | 0.5 | VARROC | 0 |
| 2020-07-01 | 0.5 | VARROC | 0 |
| 2020-08-01 | 0.5 | VARROC | 0 |
| 2020-09-01 | 0.5 | VARROC | 0 |
| 2020-10-01 | 0.5 | VARROC | 0 |
| 2020-11-01 | 0.5 | VARROC | 0 |
| 2020-12-01 | 0.5 | VARROC | 0 |
| 2020-01-01 | 0.51 | VARROC | 0 |
| 2020-02-01 | 0.51 | VARROC | 0 |
| 2020-03-01 | 0.51 | VARROC | 0 |
| 2020-04-01 | 0.51 | VARROC | 0 |
| 2020-05-01 | 0.51 | VARROC | 0 |
| 2020-06-01 | 0.51 | VARROC | 0 |
| 2020-07-01 | 0.51 | VARROC | 0 |
| 2020-08-01 | 0.51 | VARROC | 0 |
| 2020-09-01 | 0.51 | VARROC | 0 |
| 2020-10-01 | 0.51 | VARROC | 0 |
| 2020-11-01 | 0.51 | VARROC | 0 |
| 2020-12-01 | 0.51 | VARROC | 0 |
| 2020-01-01 | 0.55 | VARROC | 0 |
| 2020-02-01 | 0.55 | VARROC | 0 |
| 2020-03-01 | 0.55 | VARROC | 0 |
| 2020-04-01 | 0.55 | VARROC | 0 |
| 2020-05-01 | 0.55 | VARROC | 0 |
| 2020-06-01 | 0.55 | VARROC | 0 |
| 2020-07-01 | 0.55 | VARROC | 0 |
| 2020-08-01 | 0.55 | VARROC | 0 |
| 2020-09-01 | 0.55 | VARROC | 0 |
| 2020-10-01 | 0.55 | VARROC | 0 |
| 2020-11-01 | 0.55 | VARROC | 0 |
| 2020-12-01 | 0.55 | VARROC | 0 |
| 2020-01-01 | 0.95 | VARROC | 0 |
| 2020-02-01 | 0.95 | VARROC | 0 |
| 2020-03-01 | 0.95 | VARROC | 0 |
| 2020-04-01 | 0.95 | VARROC | 0 |
| 2020-05-01 | 0.95 | VARROC | 0 |
| 2020-06-01 | 0.95 | VARROC | 0 |
| 2020-07-01 | 0.95 | VARROC | 0 |
| 2020-08-01 | 0.95 | VARROC | 0 |
| 2020-09-01 | 0.95 | VARROC | 0 |
| 2020-10-01 | 0.95 | VARROC | 0 |
| 2020-11-01 | 0.95 | VARROC | 0 |
| 2020-12-01 | 0.95 | VARROC | 0 |
| 2020-01-01 | 1 | VARROC | 0 |
| 2020-02-01 | 1 | VARROC | 0 |
| 2020-03-01 | 1 | VARROC | 0 |
| 2020-04-01 | 1 | VARROC | 0 |
| 2020-05-01 | 1 | VARROC | 0 |
| 2020-06-01 | 1 | VARROC | 0 |
| 2020-07-01 | 1 | VARROC | 0 |
| 2020-08-01 | 1 | VARROC | 0 |
| 2020-09-01 | 1 | VARROC | 0 |
| 2020-10-01 | 1 | VARROC | 0 |
| 2020-11-01 | 1 | VARROC | 0 |
| 2020-12-01 | 1 | VARROC | 0 |
| 2020-01-01 | 1.05 | VARROC | 0 |
| 2020-02-01 | 1.05 | VARROC | 0 |
| 2020-03-01 | 1.05 | VARROC | 0 |
| 2020-04-01 | 1.05 | VARROC | 0 |
| 2020-05-01 | 1.05 | VARROC | 0 |
| 2020-06-01 | 1.05 | VARROC | 0 |
| 2020-07-01 | 1.05 | VARROC | 0 |
| 2020-08-01 | 1.05 | VARROC | 0 |
| 2020-09-01 | 1.05 | VARROC | 0 |
| 2020-10-01 | 1.05 | VARROC | 0 |
| 2020-11-01 | 1.05 | VARROC | 0 |
| 2020-12-01 | 1.05 | VARROC | 0 |
| 2020-01-01 | 1.1 | VARROC | 0 |
| 2020-02-01 | 1.1 | VARROC | 0 |
| 2020-03-01 | 1.1 | VARROC | 0 |
| 2020-04-01 | 1.1 | VARROC | 0 |
| 2020-05-01 | 1.1 | VARROC | 0 |
| 2020-06-01 | 1.1 | VARROC | 0 |
| 2020-07-01 | 1.1 | VARROC | 0 |
| 2020-08-01 | 1.1 | VARROC | 0 |
| 2020-09-01 | 1.1 | VARROC | 0 |
| 2020-10-01 | 1.1 | VARROC | 0 |
| 2020-11-01 | 1.1 | VARROC | 0 |
| 2020-12-01 | 1.1 | VARROC | 0 |
| 2020-01-01 | 1.5 | VARROC | 0 |
| 2020-02-01 | 1.5 | VARROC | 0 |
| 2020-03-01 | 1.5 | VARROC | 0 |
| 2020-04-01 | 1.5 | VARROC | 0 |
| 2020-05-01 | 1.5 | VARROC | 0 |
| 2020-06-01 | 1.5 | VARROC | 0 |
| 2020-07-01 | 1.5 | VARROC | 0 |
| 2020-08-01 | 1.5 | VARROC | 0 |
| 2020-09-01 | 1.5 | VARROC | 0 |
| 2020-10-01 | 1.5 | VARROC | 0 |
| 2020-11-01 | 1.5 | VARROC | 0 |
| 2020-12-01 | 1.5 | VARROC | 0 |
| 2020-01-01 | 2.15 | VARROC | 0 |
| 2020-02-01 | 2.15 | VARROC | 0 |
| 2020-03-01 | 2.15 | VARROC | 0 |
| 2020-04-01 | 2.15 | VARROC | 0 |
| 2020-05-01 | 2.15 | VARROC | 0 |
| 2020-06-01 | 2.15 | VARROC | 0 |
| 2020-07-01 | 2.15 | VARROC | 0 |
| 2020-08-01 | 2.15 | VARROC | 0 |
| 2020-09-01 | 2.15 | VARROC | 0 |
| 2020-10-01 | 2.15 | VARROC | 0 |
| 2020-11-01 | 2.15 | VARROC | 0 |
| 2020-12-01 | 2.15 | VARROC | 0 |
| 2020-01-01 | 3.3 | VARROC | 0 |
| 2020-02-01 | 3.3 | VARROC | 0 |
| 2020-03-01 | 3.3 | VARROC | 0 |
| 2020-04-01 | 3.3 | VARROC | 0 |
| 2020-05-01 | 3.3 | VARROC | 0 |
| 2020-06-01 | 3.3 | VARROC | 0 |
| 2020-07-01 | 3.3 | VARROC | 0 |
| 2020-08-01 | 3.3 | VARROC | 0 |
| 2020-09-01 | 3.3 | VARROC | 0 |
| 2020-10-01 | 3.3 | VARROC | 0 |
| 2020-11-01 | 3.3 | VARROC | 0 |
| 2020-12-01 | 3.3 | VARROC | 0 |
plot(bd_delivery_perf$Fecha,bd_delivery_perf$Dif, type="b", main= "Diferencia de tiempo por inicio de mes", xlab= "Mes", ylab= "Diferencia Tiempo")
plot(bd_delivery_perf$Fecha,bd_delivery_perf$Dif, main = "Diferencia tiempo por mes",
xlab = "Incio Mes", ylab = "Diferencia Tiempo",
pch = 19, frame = FALSE)
Tenemos un tiempo constante, pero vemos que en Enero se toma más tiempo
en distribución.
boxplot(bd_delivery_perf$Dif, vertical = TRUE, main ="Total Diferencia Tiempo Distribución")
Podemos ver que tenemos tiempos fuera del promedio y que en promedio se
tiene entre 1 hora en tiempos.
En este analisis pudimos trabajar con las bases de datos para poder conocer información valiosa de la empresa FORM y encontrar insights que nos permitieran desarrollar propuestas que puedan mejorar el rendimiento de la empresa en distintas áreas.