Taller 2 Informatica Medica Joseph Alejandro Valdes

Actividad 2.1

"A"
## [1] "A"
x= c(1,3,5,7,9)
x
## [1] 1 3 5 7 9
"B"
## [1] "B"
y=c(2,4,6,7,11,12)
y
## [1]  2  4  6  7 11 12
"C"
## [1] "C"
x + 1
## [1]  2  4  6  8 10
"D"
## [1] "D"
y*2
## [1]  4  8 12 14 22 24
"E"
## [1] "E"
length(x) 
## [1] 5
length(y)
## [1] 6
"F"
## [1] "F"
x+y
## Warning in x + y: longitud de objeto mayor no es múltiplo de la longitud de uno
## menor
## [1]  3  7 11 14 20 13
"G"
## [1] "G"
sum(x>5)  
## [1] 2
sum(x[x>5])
## [1] 16
"H"
## [1] "H"
sum(x>5 | x< 3)
## [1] 3
"I"
## [1] "I"
y[2]
## [1] 4
"J"
## [1] "J"
y[-2]
## [1]  2  6  7 11 12
"K"
## [1] "K"
y[x]
## [1]  2  6 11 NA NA
"L"
## [1] "L"
"NA es la representacion de un dato perdido o a una operacion que no tuvo exito en su solucion"
## [1] "NA es la representacion de un dato perdido o a una operacion que no tuvo exito en su solucion"
"M"
## [1] "M"
y[y>=8]
## [1] 11 12

Actividad 2.2

millas= c(65241,65665,65998,66014,66547,66857,67025,67447,66958,67002)
"B"
## [1] "B"
mks= millas*1609/1
mks
##  [1] 104972769 105654985 106190782 106216526 107074123 107572913 107843225
##  [8] 108522223 107735422 107806218
"C"
## [1] "C"
diff(mks)
## [1]  682216  535797   25744  857597  498790  270312  678998 -786801   70796
diff(millas)
## [1]  424  333   16  533  310  168  422 -489   44
"D"
## [1] "D"

Actividad 2.3

facturas = c(47,32,40,36,49,31,49,30,49,35,48,32)
"A"
## [1] "A"
sum(facturas)
## [1] 478
"B"
## [1] "B"
mean(facturas)
## [1] 39.83333
"C"
## [1] "C"
min(facturas)
## [1] 30
max(facturas)
## [1] 49
"D"
## [1] "D"
facturas ==30
##  [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
facturas ==49
##  [1] FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE
"E"
## [1] "E"
sum(facturas>40)
## [1] 5
pago_40E= facturas>40
pago_40E
##  [1]  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE
"F"
## [1] "F"
pago_40E*5/100
##  [1] 0.05 0.00 0.00 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00

Actividad 2.4

datos =c(61,88,73,49,41,72,99,07,12,13,87,91,05,17,97)
names(datos)=c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)
"A"
## [1] "A"
"Hacer un diagrama porcentual"
## [1] "Hacer un diagrama porcentual"
barplot(datos)

"B"
## [1] "B"
head(datos)
##  1  2  3  4  5  6 
## 61 88 73 49 41 72
summary(datos)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    5.00   15.00   61.00   54.13   87.50   99.00
fivenum(datos)
##   13   10    1   11    7 
##  5.0 15.0 61.0 87.5 99.0
"C"
## [1] "C"
"¿Qué diferencias hay entre summary(x) y fivenum(x)?"
## [1] "¿Qué diferencias hay entre summary(x) y fivenum(x)?"
"summary nos da un resumen general de las variables que escojamos, como minimo, maximo, media, mediana y algunos cuartiles"
## [1] "summary nos da un resumen general de las variables que escojamos, como minimo, maximo, media, mediana y algunos cuartiles"
"en cambio la función fivenum solo nos da un reusmen de los cuartiles"
## [1] "en cambio la función fivenum solo nos da un reusmen de los cuartiles"

Actividad 2.5

"A"
## [1] "A"
arreglo = rnorm(100)
arreglo
##   [1]  0.758567763  0.970237460 -1.554872639  0.915579974 -2.304084261
##   [6] -0.298948685  0.581336928 -0.501864292 -0.098407593  0.343662740
##  [11] -0.128744379  0.470450932  0.826334853 -0.921381182  0.007928847
##  [16] -0.801549258 -2.020405467  0.261386124  1.294014620  0.506199358
##  [21] -0.358993993  0.616114256 -0.173604231  1.118117694 -0.027557239
##  [26] -0.109109270  0.570346934  0.497445815 -2.028914369 -0.219271670
##  [31]  0.378626113  0.355202548 -0.421972711  1.548915324  1.444969748
##  [36] -0.511468109 -0.737270238 -1.732185698  0.566258769 -1.770082901
##  [41] -0.224538569 -0.714611309  2.571756246 -1.266709431  0.549420870
##  [46] -0.975378091 -0.710920616  1.807723921  0.158128764  0.880739969
##  [51]  0.777962348 -1.161412391  0.520697383 -0.619949094 -1.533272352
##  [56] -1.035107516 -0.155033311 -0.860194790 -0.374062393  0.062736461
##  [61]  0.683896451 -0.084686746  1.132835732 -0.752352465  0.712006673
##  [66]  0.023087241  0.047337016  0.316358795 -0.990073782 -1.122308246
##  [71]  0.083171346 -0.583365738 -0.387704299 -0.903534424  1.015860354
##  [76]  0.800818627 -0.183176402  0.289930898 -0.577210091  0.195073620
##  [81] -0.535613937 -1.999151298  0.655478284  0.732089120  1.325979214
##  [86] -0.013506015  0.591535200 -1.250082571 -0.570003642  1.248133950
##  [91]  0.716426396  0.455689787  0.532200604  0.352238695 -1.121897606
##  [96]  1.469631416  0.448391558  0.251758878  1.642412333  0.454895402
hist(arreglo)

"B"
## [1] "B"
"Se observa que los valores que arroja la función rnorm son diferentes cada vez que se ejecuta, por lo tanto, la grafica y resumen de datos son diferentes de igual manera"
## [1] "Se observa que los valores que arroja la función rnorm son diferentes cada vez que se ejecuta, por lo tanto, la grafica y resumen de datos son diferentes de igual manera"
"C"
## [1] "C"
summary(arreglo)
##      Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
## -2.304084 -0.592512  0.055037  0.001116  0.597680  2.571756

Actividad 2.6

Act_6 = rbinom(30,5,0.9)
Act_6
##  [1] 4 5 5 5 5 5 4 5 4 5 5 3 5 3 5 4 4 3 4 4 2 4 4 5 5 5 3 5 5 4
"A"
## [1] "A"
barplot(Act_6)

"B"
## [1] "B"
head(Act_6)
## [1] 4 5 5 5 5 5
summary(Act_6)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     2.0     4.0     4.5     4.3     5.0     5.0

Actividad 2.7

Num_fallos =c(0,1,0,NA,0,0,0,0,0,1,1,1,0,0,3,0,0,0,0,0,2,0,1)
"A"
## [1] "A"
barplot(Num_fallos)

"el diagrama de cajas no nos proporciona la informacion de forma precisa, habría que suministrar otros datos. Es mas adecuado un diagrama de barras"
## [1] "el diagrama de cajas no nos proporciona la informacion de forma precisa, habría que suministrar otros datos. Es mas adecuado un diagrama de barras"
"B"
## [1] "B"
Num_med_errores = mean(Num_fallos,na.rm = TRUE)
Num_med_errores
## [1] 0.4545455

Actividad 2.8

"A"
## [1] "A"
Estudiantes = c(1,2,3,4,5,6,7,8,9,10)
Estudiantes
##  [1]  1  2  3  4  5  6  7  8  9 10
P1 = c(3,3,3,4,3,4,3,4,4,3)
P1
##  [1] 3 3 3 4 3 4 3 4 4 3
P2 = c(5,5,2,2,5,2,2,5,5,2)
P2
##  [1] 5 5 2 2 5 2 2 5 5 2
P3 = c(1,3,1,3,3,3,1,3,1,1)
"B"
## [1] "B"
tabla = c(P1,P2,P3)
matriz = matrix(tabla,3,10,byrow = TRUE)
rownames(matriz)= c("P1","P2","P3")
colnames(matriz)=paste("Est",1:10)
matriz
##    Est 1 Est 2 Est 3 Est 4 Est 5 Est 6 Est 7 Est 8 Est 9 Est 10
## P1     3     3     3     4     3     4     3     4     4      3
## P2     5     5     2     2     5     2     2     5     5      2
## P3     1     3     1     3     3     3     1     3     1      1
Estudiantes=data.entry(matriz,Names = Estudiantes)
Estudiantes
## [1] "matriz"
"C"
## [1] "C"
matriz[2,]
##  1  2  3  4  5  6  7  8  9 10 
##  5  5  2  2  5  2  2  5  5  2
matriz[3,]
##  1  2  3  4  5  6  7  8  9 10 
##  1  3  1  3  3  3  1  3  1  1
"D"
## [1] "D"
Datos_2 = c(P2,P3)
Datos_3 = matrix(Datos_2,2,10,byrow = TRUE)
Datos_3
##      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,]    5    5    2    2    5    2    2    5    5     2
## [2,]    1    3    1    3    3    3    1    3    1     1
barplot(Datos_3,beside=F,xlab = "Estudiantes")

"C"
## [1] "C"
barplot(matriz,beside = T,xlab = "Estudiantes")

Actividad 2.9

VEC_1= rnorm(50)
VEC_1
##  [1] -0.347245192  0.662616790  1.481524495  1.506145631  1.270172090
##  [6]  0.704499120 -0.514572430 -0.818626543 -0.502027867 -1.262105288
## [11] -0.730995685 -0.472622274  1.648046363 -1.318294010 -0.392958418
## [16] -1.097597080  0.503324375  1.241896063  0.598202738 -1.596422551
## [21]  0.927001180  0.417191055 -0.629422385 -0.057872138 -0.301736294
## [26]  0.838273754  0.299370916  0.240879453  0.775890459  0.187276838
## [31] -0.126095363  0.242901865  0.250886501  0.526232095  0.261035402
## [36] -0.001049428  0.123640700  1.192964103 -0.090073811 -0.889549691
## [41] -0.496040147  1.229005009  1.444616606 -0.265857679  0.353085354
## [46]  0.284343407 -0.731706001 -0.693649183  0.155718499  1.920311395
VEC_2 = rnorm(50)
VEC_2
##  [1]  0.722571006  1.430384129 -0.282245780 -1.209216200  1.274945941
##  [6]  0.883275307  1.642667301  1.092660200  1.329698366  0.774136571
## [11]  0.388473130 -0.758900369 -0.490144911  0.209933232  0.525619465
## [16] -0.011253807 -0.680268548  1.098904737  0.028134090 -0.367071314
## [21] -0.007675149 -1.150322447 -1.230913239 -0.519658725  1.547687900
## [26]  0.018872129  1.417112795 -0.894794694 -1.467448825 -0.362061670
## [31]  0.107984443  2.125335901 -0.203560530  1.089361446 -0.649451685
## [36]  0.903121403 -0.238822256 -0.472596363 -0.218036010  0.876312687
## [41]  0.602804828 -0.599747998 -0.955964979  0.235519398  0.340314815
## [46]  0.363291482 -0.958545395 -0.624678638  1.928447336 -0.446758466
"A"
## [1] "A"
shapiro.test(VEC_1)
## 
##  Shapiro-Wilk normality test
## 
## data:  VEC_1
## W = 0.9855, p-value = 0.7927
shapiro.test(VEC_2)
## 
##  Shapiro-Wilk normality test
## 
## data:  VEC_2
## W = 0.97276, p-value = 0.2987
"B"
## [1] "B"
TEST = t.test(VEC_1,VEC_2)
TEST
## 
##  Welch Two Sample t-test
## 
## data:  VEC_1 and VEC_2
## t = -0.023667, df = 97.397, p-value = 0.9812
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.3511303  0.3428544
## sample estimates:
## mean of x mean of y 
## 0.1590107 0.1631486

Actividad 2.10

VEC_3 = rnorm(50)
VEC_3
##  [1]  0.58667605 -0.71808428 -1.33029935 -0.70260832 -0.56658162  0.42617821
##  [7] -0.15022596 -0.26867749  1.17811527  0.77125353  0.61093253  0.83207171
## [13]  0.07030169  1.02730674  1.32202827 -0.14232699  1.36849427  0.44446842
## [19]  1.04411607 -1.74610773  0.77256657 -0.51639450  0.25120732 -0.71985032
## [25] -0.67504599  0.30703642 -0.02416357 -0.30644442  0.26502998  1.01133152
## [31] -0.22406580 -0.39647257 -0.37557126  0.17025622  0.42009694  1.05024639
## [37]  1.27680081 -0.95152699 -0.05434760  1.08878850  0.54703702 -2.69031196
## [43] -0.75181438  0.62594090 -0.29472433 -0.53657741  2.05503019  1.45879789
## [49] -0.25536684 -0.65284979
VEC_4 = rbinom(50,3,0.9)
VEC_4
##  [1] 2 3 3 2 3 3 2 2 2 3 2 3 3 3 2 3 3 3 3 3 2 2 2 3 3 2 3 3 3 3 2 3 3 3 3 3 3 2
## [39] 3 3 3 3 1 3 3 2 3 3 3 3
"A"
## [1] "A"
shapiro.test(VEC_3)
## 
##  Shapiro-Wilk normality test
## 
## data:  VEC_3
## W = 0.97355, p-value = 0.3209
shapiro.test(VEC_4)
## 
##  Shapiro-Wilk normality test
## 
## data:  VEC_4
## W = 0.61292, p-value = 3.044e-10
"B"
## [1] "B"
TEST_2 = t.test(VEC_3,VEC_4)
TEST_2
## 
##  Welch Two Sample t-test
## 
## data:  VEC_3 and VEC_4
## t = -17.538, df = 77.957, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -2.852126 -2.270607
## sample estimates:
## mean of x mean of y 
## 0.1186334 2.6800000