#Importar base de datos # ~
bd<- read.csv( "/Users/lizmanzano/Desktop/CSV DOCS/rentadebicis.csv")
resumen <- summary(bd)
resumen
## hora dia mes año
## Min. : 0.00 Min. : 1.000 Min. : 1.000 Min. :2011
## 1st Qu.: 6.00 1st Qu.: 5.000 1st Qu.: 4.000 1st Qu.:2011
## Median :12.00 Median :10.000 Median : 7.000 Median :2012
## Mean :11.54 Mean : 9.993 Mean : 6.521 Mean :2012
## 3rd Qu.:18.00 3rd Qu.:15.000 3rd Qu.:10.000 3rd Qu.:2012
## Max. :23.00 Max. :19.000 Max. :12.000 Max. :2012
## estacion dia_de_la_semana asueto temperatura
## Min. :1.000 Min. :1.000 Min. :0.00000 Min. : 0.82
## 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:0.00000 1st Qu.:13.94
## Median :3.000 Median :4.000 Median :0.00000 Median :20.50
## Mean :2.507 Mean :4.014 Mean :0.02857 Mean :20.23
## 3rd Qu.:4.000 3rd Qu.:6.000 3rd Qu.:0.00000 3rd Qu.:26.24
## Max. :4.000 Max. :7.000 Max. :1.00000 Max. :41.00
## sensacion_termica humedad velocidad_del_viento
## Min. : 0.76 Min. : 0.00 Min. : 0.000
## 1st Qu.:16.66 1st Qu.: 47.00 1st Qu.: 7.002
## Median :24.24 Median : 62.00 Median :12.998
## Mean :23.66 Mean : 61.89 Mean :12.799
## 3rd Qu.:31.06 3rd Qu.: 77.00 3rd Qu.:16.998
## Max. :45.45 Max. :100.00 Max. :56.997
## rentas_de_no_registrados rentas_de_registrados rentas_totales
## Min. : 0.00 Min. : 0.0 Min. : 1.0
## 1st Qu.: 4.00 1st Qu.: 36.0 1st Qu.: 42.0
## Median : 17.00 Median :118.0 Median :145.0
## Mean : 36.02 Mean :155.6 Mean :191.6
## 3rd Qu.: 49.00 3rd Qu.:222.0 3rd Qu.:284.0
## Max. :367.00 Max. :886.0 Max. :977.0
#1. Por qué los dias llegan hasta el 19 y no hasta el 31? #2. ¿Qué significan los números de las estaciones? R: 1 es primavera, 2 es verano, 3 es otoño y 4 es invierno.
plot(bd$temperatura,bd$rentas_totales, main = "Influencia de la Temperatura sobre las Rentas Totales", xlab = "Temperatura (Cº)", ylab = "Cantidad")
regresion <- lm(rentas_totales ~ hora + dia + mes + año + estacion + dia_de_la_semana + asueto + temperatura + sensacion_termica + humedad + velocidad_del_viento, data = bd)
regresion
##
## Call:
## lm(formula = rentas_totales ~ hora + dia + mes + año + estacion +
## dia_de_la_semana + asueto + temperatura + sensacion_termica +
## humedad + velocidad_del_viento, data = bd)
##
## Coefficients:
## (Intercept) hora dia
## -1.661e+05 7.735e+00 3.844e-01
## mes año estacion
## 9.996e+00 8.258e+01 -7.774e+00
## dia_de_la_semana asueto temperatura
## 4.393e-01 -4.864e+00 1.582e+00
## sensacion_termica humedad velocidad_del_viento
## 4.748e+00 -2.115e+00 5.582e-01
summary(regresion)
##
## Call:
## lm(formula = rentas_totales ~ hora + dia + mes + año + estacion +
## dia_de_la_semana + asueto + temperatura + sensacion_termica +
## humedad + velocidad_del_viento, data = bd)
##
## Residuals:
## Min 1Q Median 3Q Max
## -305.52 -93.64 -27.70 61.85 649.10
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.661e+05 5.496e+03 -30.217 < 2e-16 ***
## hora 7.735e+00 2.070e-01 37.368 < 2e-16 ***
## dia 3.844e-01 2.482e-01 1.549 0.12150
## mes 9.996e+00 1.682e+00 5.943 2.89e-09 ***
## año 8.258e+01 2.732e+00 30.225 < 2e-16 ***
## estacion -7.774e+00 5.177e+00 -1.502 0.13324
## dia_de_la_semana 4.393e-01 6.918e-01 0.635 0.52545
## asueto -4.864e+00 8.365e+00 -0.582 0.56089
## temperatura 1.582e+00 1.038e+00 1.524 0.12752
## sensacion_termica 4.748e+00 9.552e-01 4.971 6.76e-07 ***
## humedad -2.115e+00 7.884e-02 -26.827 < 2e-16 ***
## velocidad_del_viento 5.582e-01 1.809e-01 3.086 0.00203 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 141.7 on 10874 degrees of freedom
## Multiple R-squared: 0.3891, Adjusted R-squared: 0.3885
## F-statistic: 629.6 on 11 and 10874 DF, p-value: < 2.2e-16
regresion <- lm(rentas_totales ~ hora + mes + año + sensacion_termica + humedad + velocidad_del_viento, data = bd)
regresion
##
## Call:
## lm(formula = rentas_totales ~ hora + mes + año + sensacion_termica +
## humedad + velocidad_del_viento, data = bd)
##
## Coefficients:
## (Intercept) hora mes
## -1.662e+05 7.734e+00 7.574e+00
## año sensacion_termica humedad
## 8.266e+01 6.172e+00 -2.121e+00
## velocidad_del_viento
## 6.208e-01
summary(regresion)
##
## Call:
## lm(formula = rentas_totales ~ hora + mes + año + sensacion_termica +
## humedad + velocidad_del_viento, data = bd)
##
## Residuals:
## Min 1Q Median 3Q Max
## -308.60 -93.85 -28.34 61.05 648.09
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.662e+05 5.496e+03 -30.250 < 2e-16 ***
## hora 7.734e+00 2.070e-01 37.364 < 2e-16 ***
## mes 7.574e+00 4.207e-01 18.002 < 2e-16 ***
## año 8.266e+01 2.732e+00 30.258 < 2e-16 ***
## sensacion_termica 6.172e+00 1.689e-01 36.539 < 2e-16 ***
## humedad -2.121e+00 7.858e-02 -26.988 < 2e-16 ***
## velocidad_del_viento 6.208e-01 1.771e-01 3.506 0.000457 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 141.7 on 10879 degrees of freedom
## Multiple R-squared: 0.3886, Adjusted R-squared: 0.3883
## F-statistic: 1153 on 6 and 10879 DF, p-value: < 2.2e-16
datos_nuevos <- data.frame(hora=12, mes=1, año=2013, sensacion_termica=24, humedad=62, velocidad_del_viento= 13)
predict(regresion,datos_nuevos)
## 1
## 279.1478
Durante este análisis se trabajó en una predicción de rentas totales de bicicletas. Dentro del mismo se trabajó y se hizo un análisis de la influencia de la temperatura sobre las rentas totales de bicis, en donde se pudo observar que se tiene una mayor cantidad de rentas cuando la temperatura es de 30 y 40 grados.