# install.packages("WDI")
# install.packages("wbstats")
# install.packages("tidyverse")
library(wbstats)
gdp_data <- wb_data(country = "MX", indicator ="NY.GDP.PCAP.CD", start_date = 1973, end_date = 2022)
summary(gdp_data)
## iso2c iso3c country date
## Length:49 Length:49 Length:49 Min. :1973
## Class :character Class :character Class :character 1st Qu.:1985
## Mode :character Mode :character Mode :character Median :1997
## Mean :1997
## 3rd Qu.:2009
## Max. :2021
## NY.GDP.PCAP.CD unit obs_status footnote
## Min. : 981.5 Length:49 Length:49 Length:49
## 1st Qu.: 2569.2 Class :character Class :character Class :character
## Median : 5650.0 Mode :character Mode :character Mode :character
## Mean : 5751.7
## 3rd Qu.: 9068.3
## Max. :10928.9
## last_updated
## Min. :2022-09-16
## 1st Qu.:2022-09-16
## Median :2022-09-16
## Mean :2022-09-16
## 3rd Qu.:2022-09-16
## Max. :2022-09-16
head(gdp_data)
## # A tibble: 6 × 9
## iso2c iso3c country date NY.GDP.PCAP.CD unit obs_status footnote last_upda…¹
## <chr> <chr> <chr> <dbl> <dbl> <chr> <chr> <chr> <date>
## 1 MX MEX Mexico 1973 981. <NA> <NA> <NA> 2022-09-16
## 2 MX MEX Mexico 1974 1242. <NA> <NA> <NA> 2022-09-16
## 3 MX MEX Mexico 1975 1476. <NA> <NA> <NA> 2022-09-16
## 4 MX MEX Mexico 1976 1454. <NA> <NA> <NA> 2022-09-16
## 5 MX MEX Mexico 1977 1301. <NA> <NA> <NA> 2022-09-16
## 6 MX MEX Mexico 1978 1589. <NA> <NA> <NA> 2022-09-16
## # … with abbreviated variable name ¹last_updated
tail(gdp_data)
## # A tibble: 6 × 9
## iso2c iso3c country date NY.GDP.PCAP.CD unit obs_status footnote last_upda…¹
## <chr> <chr> <chr> <dbl> <dbl> <chr> <chr> <chr> <date>
## 1 MX MEX Mexico 2016 8745. <NA> <NA> <NA> 2022-09-16
## 2 MX MEX Mexico 2017 9288. <NA> <NA> <NA> 2022-09-16
## 3 MX MEX Mexico 2018 9687. <NA> <NA> <NA> 2022-09-16
## 4 MX MEX Mexico 2019 9950. <NA> <NA> <NA> 2022-09-16
## 5 MX MEX Mexico 2020 8432. <NA> <NA> <NA> 2022-09-16
## 6 MX MEX Mexico 2021 9926. <NA> <NA> <NA> 2022-09-16
## # … with abbreviated variable name ¹last_updated
library(ggplot2)
ggplot(gdp_data, aes(x = date, y = NY.GDP.PCAP.CD)) + geom_point()
ggplot(gdp_data, aes(x = date, y = NY.GDP.PCAP.CD)) + geom_col()
ggplot(gdp_data, aes(x = date, y = NY.GDP.PCAP.CD)) + geom_col(fill ="red") + geom_point(color = "blue")
more_gpd_data <- wb_data(country = c("NG", "HT", "KE"), indicator= "NY.GDP.PCAP.CD", start_date = 1981, end_date = 2015)
ggplot (more_gpd_data, aes(x = date, y = NY.GDP.PCAP.CD, color = country, shape = country)) + geom_point()
Dentro de este programa, pudimos realizar un análisis a través de indicadores que se encuentran dentro de estadísticas y bases de datos del Banco Mundial, para este caso estuvimos analizando primero la información en México de como ha crecido el PIB con el paso de los años y en las primeras 3 gráficas podemos ver el comportamiento de que tiene un crecimiento a pesar de que en algunos años baja, pero vuelve a crecer, pero en el año 2020 debido a la pandemia ha bajado. Después se analizaron 3 países: Haiti, Kenia y Nigeria y podemos ver que el estaba teniendo un crecimiento alto era Nigeria, pero igualmente vemos que en 2020 hubo un decrecimiento donde la pandemia pudo ser factor importante.
En conclusión, R es un programa versátil y completo que llega permitir trabajar tambien con información externa de bases de datos externas, ya sea de revistas, de internet, etc.