Apoyo la lucha contra el cancer de mama

Entre el 11 y 15% de los casos son de mujeres de 40 o menos años.

Importar base de datos

#file.choose()

base_de_datos <-read.csv( "/Users/joseramonvazquezguzman/Documents/Tecnológico de Monterrey/Septimo semestre/Analítica de datos /M3/cancer_de_mama.csv")

En México se registraron 15 mil 182 nuevos casos en 2019; en el mundo se registraron 2.2 millones de casos en 2020.

Entender base de datos

summary(base_de_datos)
##   diagnosis          radius_mean      texture_mean   perimeter_mean  
##  Length:569         Min.   : 6.981   Min.   : 9.71   Min.   : 43.79  
##  Class :character   1st Qu.:11.700   1st Qu.:16.17   1st Qu.: 75.17  
##  Mode  :character   Median :13.370   Median :18.84   Median : 86.24  
##                     Mean   :14.127   Mean   :19.29   Mean   : 91.97  
##                     3rd Qu.:15.780   3rd Qu.:21.80   3rd Qu.:104.10  
##                     Max.   :28.110   Max.   :39.28   Max.   :188.50  
##    area_mean      smoothness_mean   compactness_mean  concavity_mean   
##  Min.   : 143.5   Min.   :0.05263   Min.   :0.01938   Min.   :0.00000  
##  1st Qu.: 420.3   1st Qu.:0.08637   1st Qu.:0.06492   1st Qu.:0.02956  
##  Median : 551.1   Median :0.09587   Median :0.09263   Median :0.06154  
##  Mean   : 654.9   Mean   :0.09636   Mean   :0.10434   Mean   :0.08880  
##  3rd Qu.: 782.7   3rd Qu.:0.10530   3rd Qu.:0.13040   3rd Qu.:0.13070  
##  Max.   :2501.0   Max.   :0.16340   Max.   :0.34540   Max.   :0.42680  
##  concave.points_mean symmetry_mean    fractal_dimension_mean   radius_se     
##  Min.   :0.00000     Min.   :0.1060   Min.   :0.04996        Min.   :0.1115  
##  1st Qu.:0.02031     1st Qu.:0.1619   1st Qu.:0.05770        1st Qu.:0.2324  
##  Median :0.03350     Median :0.1792   Median :0.06154        Median :0.3242  
##  Mean   :0.04892     Mean   :0.1812   Mean   :0.06280        Mean   :0.4052  
##  3rd Qu.:0.07400     3rd Qu.:0.1957   3rd Qu.:0.06612        3rd Qu.:0.4789  
##  Max.   :0.20120     Max.   :0.3040   Max.   :0.09744        Max.   :2.8730  
##    texture_se      perimeter_se       area_se        smoothness_se     
##  Min.   :0.3602   Min.   : 0.757   Min.   :  6.802   Min.   :0.001713  
##  1st Qu.:0.8339   1st Qu.: 1.606   1st Qu.: 17.850   1st Qu.:0.005169  
##  Median :1.1080   Median : 2.287   Median : 24.530   Median :0.006380  
##  Mean   :1.2169   Mean   : 2.866   Mean   : 40.337   Mean   :0.007041  
##  3rd Qu.:1.4740   3rd Qu.: 3.357   3rd Qu.: 45.190   3rd Qu.:0.008146  
##  Max.   :4.8850   Max.   :21.980   Max.   :542.200   Max.   :0.031130  
##  compactness_se      concavity_se     concave.points_se   symmetry_se      
##  Min.   :0.002252   Min.   :0.00000   Min.   :0.000000   Min.   :0.007882  
##  1st Qu.:0.013080   1st Qu.:0.01509   1st Qu.:0.007638   1st Qu.:0.015160  
##  Median :0.020450   Median :0.02589   Median :0.010930   Median :0.018730  
##  Mean   :0.025478   Mean   :0.03189   Mean   :0.011796   Mean   :0.020542  
##  3rd Qu.:0.032450   3rd Qu.:0.04205   3rd Qu.:0.014710   3rd Qu.:0.023480  
##  Max.   :0.135400   Max.   :0.39600   Max.   :0.052790   Max.   :0.078950  
##  fractal_dimension_se  radius_worst   texture_worst   perimeter_worst 
##  Min.   :0.0008948    Min.   : 7.93   Min.   :12.02   Min.   : 50.41  
##  1st Qu.:0.0022480    1st Qu.:13.01   1st Qu.:21.08   1st Qu.: 84.11  
##  Median :0.0031870    Median :14.97   Median :25.41   Median : 97.66  
##  Mean   :0.0037949    Mean   :16.27   Mean   :25.68   Mean   :107.26  
##  3rd Qu.:0.0045580    3rd Qu.:18.79   3rd Qu.:29.72   3rd Qu.:125.40  
##  Max.   :0.0298400    Max.   :36.04   Max.   :49.54   Max.   :251.20  
##    area_worst     smoothness_worst  compactness_worst concavity_worst 
##  Min.   : 185.2   Min.   :0.07117   Min.   :0.02729   Min.   :0.0000  
##  1st Qu.: 515.3   1st Qu.:0.11660   1st Qu.:0.14720   1st Qu.:0.1145  
##  Median : 686.5   Median :0.13130   Median :0.21190   Median :0.2267  
##  Mean   : 880.6   Mean   :0.13237   Mean   :0.25427   Mean   :0.2722  
##  3rd Qu.:1084.0   3rd Qu.:0.14600   3rd Qu.:0.33910   3rd Qu.:0.3829  
##  Max.   :4254.0   Max.   :0.22260   Max.   :1.05800   Max.   :1.2520  
##  concave.points_worst symmetry_worst   fractal_dimension_worst
##  Min.   :0.00000      Min.   :0.1565   Min.   :0.05504        
##  1st Qu.:0.06493      1st Qu.:0.2504   1st Qu.:0.07146        
##  Median :0.09993      Median :0.2822   Median :0.08004        
##  Mean   :0.11461      Mean   :0.2901   Mean   :0.08395        
##  3rd Qu.:0.16140      3rd Qu.:0.3179   3rd Qu.:0.09208        
##  Max.   :0.29100      Max.   :0.6638   Max.   :0.20750

El cáncer de mama es el cáncer más frecuente en las mujeres en México y en el mundo.

Crear árbol de decisión

library(rpart)
arbol <-rpart(formula= diagnosis ~., data = base_de_datos)
arbol
## n= 569 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 569 212 B (0.62741652 0.37258348)  
##    2) radius_worst< 16.795 379  33 B (0.91292876 0.08707124)  
##      4) concave.points_worst< 0.1358 333   5 B (0.98498498 0.01501502) *
##      5) concave.points_worst>=0.1358 46  18 M (0.39130435 0.60869565)  
##       10) texture_worst< 25.67 19   4 B (0.78947368 0.21052632) *
##       11) texture_worst>=25.67 27   3 M (0.11111111 0.88888889) *
##    3) radius_worst>=16.795 190  11 M (0.05789474 0.94210526) *
#install.packages("rpart.plot")
library(rpart.plot)

rpart.plot(arbol)

prp(arbol, extra=7,prefix="fracción\n")


#install.packages("ggplot")
library("ggplot2")

library("tidyverse")
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ tibble  3.1.8      ✔ dplyr   1.0.10
## ✔ tidyr   1.2.0      ✔ stringr 1.4.1 
## ✔ readr   2.1.2      ✔ forcats 0.5.2 
## ✔ purrr   0.3.4      
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
ggplot(data=base_de_datos, mapping= aes(radius_worst, concave.points_worst)) + geom_point(aes(color=diagnosis)) + theme_bw()

El 19 de octubre es el día internacional de la lucha contra el cancer de mama

Conclusiones

Realizar el árbol de decision nos sirve para visualizar mejor los valores e información y principalmente para predecir y ver las probabilidades de que una u otra cosa suceda.

Este árbol nos dio la oportunidad de ver si el cáncer es benigno o maligno. Con empezar el análisis ya se tiene una probabilidad de tener cáncer del 37%, y después analiza si el radio es mayor a 17. Podemos observar que se tiene un 94 % de probabilidad de que sea maligno y tan solo un 9% de benigno.

entre menor es el radio y menor los puntos cóncavos el diagnóstico será Benigno y entre mayor sea el radio y mayor los puntos cóncavos el diagnóstico será Maligno.

LS0tCnRpdGxlOiAiQ2FuY2VyIGRlIE1hbWEiCmF1dGhvcjogIkpvc8OpIFJhbcOzbiBBMDE2MjUyMDMiCmRhdGU6ICIwMjAtMDktMjAyMiIKb3V0cHV0OiAKICBodG1sX2RvY3VtZW50OgogICB0b2M6IHRydWUKICAgdG9jX2Zsb2F0OiB0cnVlCiAgIGNvZGVfZG93bmxvYWQ6IHRydWUKLS0tCgo8YiBzdHlsZSA9ICdjb2xvciA6IHBpbms7IGZvbnQtc2l6ZTogNTBweDsnPgpBcG95byBsYSBsdWNoYSBjb250cmEgZWwgY2FuY2VyIGRlIG1hbWE8L2I+Cgo8aW1nIHNyYz0gIi9Vc2Vycy9qb3NlcmFtb252YXpxdWV6Z3V6bWFuL0Rlc2t0b3AvY2RtLmpwZWciPgoKCgo8YiBzdHlsZSA9ICdjb2xvciA6IHBpbms7IGZvbnQtc2l6ZTogMzVweDsnPiBFbnRyZSBlbCAxMSB5IDE1JSBkZSBsb3MgY2Fzb3Mgc29uIGRlIG11amVyZXMgZGUgNDAgbyBtZW5vcyBhw7Fvcy4gPC9iPgoKCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6IHB1cnBsZSIgPiBJbXBvcnRhciBiYXNlIGRlIGRhdG9zIDwvc3Bhbj4gCmBgYHtyfQojZmlsZS5jaG9vc2UoKQoKYmFzZV9kZV9kYXRvcyA8LXJlYWQuY3N2KCAiL1VzZXJzL2pvc2VyYW1vbnZhenF1ZXpndXptYW4vRG9jdW1lbnRzL1RlY25vbG/MgWdpY28gZGUgTW9udGVycmV5L1NlcHRpbW8gc2VtZXN0cmUvQW5hbGnMgXRpY2EgZGUgZGF0b3MgL00zL2NhbmNlcl9kZV9tYW1hLmNzdiIpCmBgYAoKCgo8YiBzdHlsZSA9ICdjb2xvciA6IHBpbms7IGZvbnQtc2l6ZTogMzVweDsnPiBFbiBNw6l4aWNvIHNlIHJlZ2lzdHJhcm9uIDE1IG1pbCAxODIgbnVldm9zIGNhc29zIGVuIDIwMTk7IGVuIGVsIG11bmRvIHNlIHJlZ2lzdHJhcm9uIDIuMiBtaWxsb25lcyBkZSBjYXNvcyBlbiAyMDIwLjwvYj4KCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6IHB1cnBsZSIgPiBFbnRlbmRlciBiYXNlIGRlIGRhdG9zIDwvc3Bhbj4gCgpgYGB7cn0Kc3VtbWFyeShiYXNlX2RlX2RhdG9zKQpgYGAKCjxpbWcgc3JjPSAiL1VzZXJzL2pvc2VyYW1vbnZhenF1ZXpndXptYW4vRGVza3RvcC9jYW5jZXItbWFtYS5wbmciPgoKPGIgc3R5bGUgPSAnY29sb3IgOiBwaW5rOyBmb250LXNpemU6IDM1cHg7Jz4gRWwgY8OhbmNlciBkZSBtYW1hIGVzIGVsIGPDoW5jZXIgbcOhcyBmcmVjdWVudGUgZW4gbGFzIG11amVyZXMgZW4gTcOpeGljbyB5IGVuIGVsIG11bmRvLiA8L2I+CgojIyA8c3BhbiBzdHlsZT0iY29sb3I6IHB1cnBsZSIgPkNyZWFyIMOhcmJvbCBkZSBkZWNpc2nDs24gPC9zcGFuPiAKCmBgYHtyfQpsaWJyYXJ5KHJwYXJ0KQphcmJvbCA8LXJwYXJ0KGZvcm11bGE9IGRpYWdub3NpcyB+LiwgZGF0YSA9IGJhc2VfZGVfZGF0b3MpCmFyYm9sCgojaW5zdGFsbC5wYWNrYWdlcygicnBhcnQucGxvdCIpCmxpYnJhcnkocnBhcnQucGxvdCkKCnJwYXJ0LnBsb3QoYXJib2wpCnBycChhcmJvbCwgZXh0cmE9NyxwcmVmaXg9ImZyYWNjacOzblxuIikKCgojaW5zdGFsbC5wYWNrYWdlcygiZ2dwbG90IikKbGlicmFyeSgiZ2dwbG90MiIpCmxpYnJhcnkoInRpZHl2ZXJzZSIpCgoKZ2dwbG90KGRhdGE9YmFzZV9kZV9kYXRvcywgbWFwcGluZz0gYWVzKHJhZGl1c193b3JzdCwgY29uY2F2ZS5wb2ludHNfd29yc3QpKSArIGdlb21fcG9pbnQoYWVzKGNvbG9yPWRpYWdub3NpcykpICsgdGhlbWVfYncoKQpgYGAKCjxiIHN0eWxlID0gJ2NvbG9yIDogcGluazsgZm9udC1zaXplOiA1MHB4Oyc+CkVsIDE5IGRlIG9jdHVicmUgZXMgZWwgZMOtYSBpbnRlcm5hY2lvbmFsIGRlIGxhIGx1Y2hhIGNvbnRyYSBlbCBjYW5jZXIgZGUgbWFtYSA8L2I+CgojICpDb25jbHVzaW9uZXMqCgoKUmVhbGl6YXIgZWwgw6FyYm9sIGRlIGRlY2lzaW9uIG5vcyBzaXJ2ZSBwYXJhIHZpc3VhbGl6YXIgbWVqb3IgbG9zIHZhbG9yZXMgZSBpbmZvcm1hY2nDs24geSBwcmluY2lwYWxtZW50ZSBwYXJhIHByZWRlY2lyIHkgdmVyIGxhcyBwcm9iYWJpbGlkYWRlcyBkZSBxdWUgdW5hIHUgb3RyYSBjb3NhIHN1Y2VkYS4KCkVzdGUgw6FyYm9sIG5vcyBkaW8gbGEgb3BvcnR1bmlkYWQgZGUgdmVyIHNpIGVsIGPDoW5jZXIgZXMgYmVuaWdubyBvIG1hbGlnbm8uIENvbiBlbXBlemFyIGVsIGFuw6FsaXNpcyB5YSBzZSB0aWVuZSB1bmEgcHJvYmFiaWxpZGFkIGRlIHRlbmVyIGPDoW5jZXIgZGVsIDM3JSwgeSBkZXNwdcOpcyBhbmFsaXphIHNpIGVsIHJhZGlvIGVzIG1heW9yIGEgMTcuIApQb2RlbW9zIG9ic2VydmFyIHF1ZSBzZSB0aWVuZSB1biA5NCAlIGRlIHByb2JhYmlsaWRhZCBkZSBxdWUgc2VhIG1hbGlnbm8geSB0YW4gc29sbyB1biA5JSBkZSBiZW5pZ25vLgoKZW50cmUgbWVub3IgZXMgZWwgcmFkaW8geSBtZW5vciBsb3MgcHVudG9zIGPDs25jYXZvcyBlbCBkaWFnbsOzc3RpY28gc2Vyw6EgQmVuaWdubyB5IGVudHJlIG1heW9yIHNlYSBlbCByYWRpbyB5IG1heW9yIGxvcyBwdW50b3MgY8OzbmNhdm9zIGVsIGRpYWduw7NzdGljbyBzZXLDoSBNYWxpZ25vLiAKCgoKCgoKCgoKCgoKCg==