#read in data from DHS in Uganda 2011 and 2016 and combine into one data-set
library (haven)
library (knitr)
library (tidyverse)
── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
✔ ggplot2 3.3.6 ✔ purrr 0.3.4
✔ tibble 3.1.8 ✔ dplyr 1.0.10
✔ tidyr 1.2.0 ✔ stringr 1.4.1
✔ readr 2.1.2 ✔ forcats 0.5.2
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
Loading required package: carData
Attaching package: 'car'
The following object is masked from 'package:dplyr':
recode
The following object is masked from 'package:purrr':
some
ugtotal <- read_dta ("C:/Users/rlutt/Downloads/UGIR7BFL.DTA" )
ugtotal<- zap_labels (ugtotal)
-My outcome used in this analysis is the event of a second birth. For this part of the analysis, I considers the covariates of martial status, age, and use of contraception. The original grouping variable emotional partner violence is not included here, but it will be included later on in a larger variable that accounts for all intimate partner violence as the main predictor. This analysis focuses on covariates known to affect likelihood of a second birth.
#emotional ipv & births & covariates
library (dplyr)
library (tibble)
#check what is censored
table (is.na (ugtotal$ bidx_01))
#cutdown data-set to only use variables of interest
sub<- ugtotal%>%
filter (bidx_01== 1 & b0_01== 0 )%>%
transmute (int.cmc= v008,
emoipv= d104,
fbir.cmc= b3_01,
sbir.cmc= b3_02,
contraception= v313,
marital= v501,
age= v012,
weight= v005/ 1000000 ,
psu= v021,
strata= v022)%>%
select (int.cmc, emoipv, fbir.cmc, sbir.cmc, contraception, marital, emoipv, age, weight, psu, strata)%>%
filter (emoipv== 1 )%>%
mutate (agefb = (age - (int.cmc - fbir.cmc)/ 12 ))
#calculate birth intervals
sub2<- sub%>%
mutate (secbi = ifelse (is.na (sbir.cmc)== T,
int.cmc - fbir.cmc,
fbir.cmc - sbir.cmc),
b2event = ifelse (is.na (sbir.cmc)== T,0 ,1 ))
#drop na
library (tidyr)
drop_na (sub2, secbi)
# A tibble: 2,986 × 13
int.cmc emoipv fbir.cmc sbir.cmc contrace…¹ marital age weight psu strata
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1400 1 1364 1316 0 2 26 1.10 1 1
2 1400 1 1384 NA 0 2 38 1.10 1 1
3 1400 1 1384 1342 3 1 24 1.10 1 1
4 1400 1 1377 1310 0 2 33 1.10 1 1
5 1400 1 1325 1199 0 5 43 1.10 1 1
6 1400 1 1396 1345 3 1 23 0.996 2 1
7 1400 1 1395 1324 3 1 34 0.996 2 1
8 1400 1 1290 1248 0 5 40 0.996 2 1
9 1400 1 1392 1378 0 1 31 0.996 2 1
10 1400 1 1398 1366 0 5 36 0.996 2 1
# … with 2,976 more rows, 3 more variables: agefb <dbl>, secbi <dbl>,
# b2event <dbl>, and abbreviated variable name ¹contraception
[1] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
[13] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[25] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[37] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE
[49] TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE
[61] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[73] TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
[85] TRUE FALSE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
[97] TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[109] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
[121] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[133] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[145] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[157] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[169] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[181] TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE
[193] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[205] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE
[217] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[229] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
[241] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE
[253] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[265] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[277] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[289] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[301] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[313] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE
[325] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
[337] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[349] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[361] TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE TRUE TRUE
[373] FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[385] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
[397] TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[409] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[421] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[433] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[445] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[457] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
[469] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
[481] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
[493] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[505] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[517] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[529] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
[541] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[553] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[565] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[577] FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[589] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[601] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[613] FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[625] TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[637] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[649] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[661] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE
[673] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[685] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE
[697] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE
[709] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[721] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[733] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
[745] TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[757] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE
[769] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE
[781] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE
[793] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[805] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
[817] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[829] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[841] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[853] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[865] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[877] TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE
[889] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE
[901] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE
[913] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[925] TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
[937] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[949] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[961] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
[973] TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[985] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[997] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1009] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1021] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1033] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[1045] TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1057] TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
[1069] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1081] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1093] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[1105] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[1117] TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE
[1129] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1141] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1153] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1165] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1177] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1189] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1201] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[1213] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1225] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[1237] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1249] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[1261] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE
[1273] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
[1285] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1297] TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
[1309] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1321] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1333] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[1345] TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE
[1357] TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1369] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
[1381] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
[1393] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1405] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1417] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1429] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1441] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE
[1453] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1465] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1477] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1489] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1501] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1513] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE
[1525] TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE
[1537] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1549] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1561] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1573] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1585] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1597] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE
[1609] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
[1621] FALSE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
[1633] TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
[1645] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1657] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1669] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE
[1681] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
[1693] TRUE TRUE FALSE FALSE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE
[1705] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[1717] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
[1729] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1741] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1753] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1765] TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE
[1777] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1789] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1801] TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
[1813] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[1825] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1837] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1849] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1861] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[1873] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE
[1885] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[1897] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[1909] TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE
[1921] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
[1933] TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
[1945] TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE
[1957] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[1969] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1981] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
[1993] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[2005] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE
[2017] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE TRUE TRUE FALSE
[2029] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE
[2041] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[2053] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE
[2065] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[2077] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
[2089] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[2101] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
[2113] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[2125] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[2137] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE
[2149] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[2161] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[2173] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[2185] TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE
[2197] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE
[2209] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[2221] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE
[2233] TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
[2245] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE FALSE TRUE
[2257] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[2269] FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[2281] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[2293] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE
[2305] TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[2317] TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
[2329] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[2341] FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
[2353] TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[2365] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[2377] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[2389] TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[2401] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE
[2413] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[2425] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
[2437] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[2449] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[2461] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[2473] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[2485] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[2497] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[2509] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[2521] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[2533] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[2545] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE
[2557] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[2569] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
[2581] FALSE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[2593] TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE
[2605] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[2617] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE
[2629] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[2641] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[2653] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
[2665] TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
[2677] TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[2689] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[2701] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[2713] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[2725] TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
[2737] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
[2749] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE FALSE
[2761] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE
[2773] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE
[2785] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[2797] TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[2809] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[2821] TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[2833] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
[2845] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[2857] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE
[2869] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[2881] TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
[2893] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
[2905] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE
[2917] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
[2929] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE
[2941] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[2953] TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[2965] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
[2977] TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE
#check distributions of event
smoothScatter (sub2$ secbi)
#kernel-density method of hazard
library (muhaz)
fit.haz.sm<- muhaz (sub2$ secbi, sub2$ b2event)
Did you choose an AFT or PH model and why?
I chose parametric hazard function because framing the event of giving birth using the proportional hazard model because literature on birth spacing that uses event history analysis usually uses a hazard framework rather than a survival framework.
Fit the parametric model of your choosing to the data.
#build model
#design
library (survey)
Loading required package: grid
Loading required package: Matrix
Attaching package: 'Matrix'
The following objects are masked from 'package:tidyr':
expand, pack, unpack
Loading required package: survival
Attaching package: 'survey'
The following object is masked from 'package:graphics':
dotchart
options (survey.lonely.psu = "adjust" )
des<- svydesign (ids= ~ psu, strata= ~ strata,
data= sub2, weight= ~ weight)
#use eha package and survival packages
library (eha)
library (survival)
#use weibull first
day<- 1 / 365
fit.1 <- phreg (Surv (secbi+ day, b2event)~ marital+ contraception+ age,
data= sub2,
dist= "weibull" ,
shape = 1 )
summary (fit.1 )
Covariate Mean Coef Rel.Risk S.E. LR p
marital 2.158 -0.052 0.950 0.014 0.0002
contraception 1.032 0.040 1.040 0.014 0.0038
age 33.450 -0.008 0.992 0.002 0.0005
Events 2671
Total time at risk 118376
Max. log. likelihood -12778
LR test statistic 39.78
Degrees of freedom 3
Overall p-value 1.18664e-08
#plot
plot (fit.1 )
lines (fit.haz.sm, col= 2 )
Justify what parametric distribution you choose
First I tried Weibull then I tried piecewise because it allows for me to set the parameters for the shape of the distribution. I compared the AICs at the end which showed that piecewise is the better fit.
Carry out model fit diagnostics for the model
Include all main effects in the model
Test for an interaction between at least two of the predictors
#interaction between marriage and contraception
fit.2 <- phreg (Surv (secbi+ day, b2event)~ marital+ marital* contraception+ contraception+ age,
data= sub2,
dist= "weibull" ,
shape = 1 )
summary (fit.2 )
Single term deletions
Model:
Surv(secbi + day, b2event) ~ marital + marital * contraception +
contraception + age
Df AIC LRT Pr(>Chi)
<none> 25566
age 1 25576 12.08 0.00051 ***
marital:contraception 1 25564 0.02 0.87698
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Covariate Mean Coef Rel.Risk S.E. Wald p
marital 2.158 -0.053 0.948 0.017 0.0021
contraception 1.032 0.037 1.037 0.024 0.1315
age 33.450 -0.008 0.992 0.002 0.0005
marital:contraception
: 0.002 1.002 0.010 0.8769
Events 2671
Total time at risk 118376
Max. log. likelihood -12778
LR test statistic 39.80
Degrees of freedom 4
Overall p-value 4.75328e-08
plot (fit.2 , fn= "haz" )
lines (fit.haz.sm, col= 2 )
Interpret your results and write them up
Provide tabular and graphical output to support your conclusions
#try piecewise model
fit.3 <- pchreg (Surv (secbi, b2event)~ marital+ contraception+ age,
data= sub2,
cuts= seq (1 , 300 , 12 ))
summary (fit.3 )
Covariate Mean Coef Rel.Risk S.E. LR p
marital 2.158 -0.067 0.935 0.014 0.0000
contraception 1.032 0.036 1.037 0.014 0.0084
age 33.450 -0.016 0.984 0.003 0.0000
Events 2671
Total time at risk 118368
Max. log. likelihood -11765
LR test statistic 74.33
Degrees of freedom 3
Overall p-value 5.55112e-16
Restricted mean survival: 27.80497 in (1, 289]
plot (fit.3 , fn= "haz" )
lines (fit.haz.sm, col= 2 )
fit.4 <- pchreg (Surv (secbi, b2event)~ marital* contraception+ age+ marital+ contraception,
data= sub2,
cuts= seq (1 , 300 , 12 ))
summary (fit.4 )
Single term deletions
Model:
Surv(secbi, b2event) ~ marital * contraception + age + marital +
contraception
Df AIC LRT Pr(>Chi)
<none> 23586
age 1 23622 38.8 4.7e-10 ***
marital:contraception 1 23584 0.0 0.9
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Covariate Mean Coef Rel.Risk S.E. Wald p
marital 2.158 -0.068 0.934 0.017 0.0001
contraception 1.032 0.034 1.034 0.024 0.1645
age 33.450 -0.016 0.984 0.003 0.0000
marital:contraception
: 0.001 1.001 0.010 0.9006
Events 2671
Total time at risk 118368
Max. log. likelihood -11765
LR test statistic 74.34
Degrees of freedom 4
Overall p-value 2.77556e-15
Restricted mean survival: 27.77653 in (1, 289]
plot (fit.4 , fn= "haz" )
lines (fit.haz.sm, col= 2 )
- 2 * fit.3 $ loglik[2 ]+ length (fit.3 $ coefficients)
- 2 * fit.4 $ loglik[2 ]+ length (fit.4 $ coefficients)
The piecewise distribution without an interaction term seems to be the best fit given the lowest AIC score.
The results show that martial status has a negative effect on the hazard of giving birth as does age. I would not expect marital status to have this effect. Secondly, contraception has a small, but positive effect on the hazard of giving birth, which seems to be against what you would expect, however in the context of second births in sub-Saharan Africa it makes sense because of the prevalence of using short term contraception to space out births rather than to stop having children altogether.