#packges
library("tidyverse")
#abro copia_df
df <- read.csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vSFXHAlpWr7P2GHtqOi3F3_KLXFVbLxl5Q2armt4NS1Ju9iXrnrNL3AElAK4cfyllxWqLuJPLi-pMJs/pub?gid=1082241407&single=true&output=csv")
#summary
summary(df)
NOMBRE EDAD RUT TAMAÑO.PROSTATA METODO
Length:75 Min. :52.0 Length:75 Min. : 30.0 Length:75
Class :character 1st Qu.:63.5 Class :character 1st Qu.: 50.0 Class :character
Mode :character Median :69.0 Mode :character Median : 65.0 Mode :character
Mean :69.7 Mean : 73.5
3rd Qu.:75.0 3rd Qu.: 87.5
Max. :89.0 Max. :190.0
UFM.QMAX.PRE UFM.QMAX.POST PSA.pre PSA.post
Length:75 Length:75 Length:75 Length:75
Class :character Class :character Class :character Class :character
Mode :character Mode :character Mode :character Mode :character
RPM.PRE VEJIGA.DE.LUCHA RPM.POST FECHA BIOPSIA..GR.
Length:75 Length:75 Length:75 Length:75 Min. : 6.0
Class :character Class :character Class :character Class :character 1st Qu.: 32.0
Mode :character Mode :character Mode :character Mode :character Median : 50.0
Mean : 51.9
3rd Qu.: 61.0
Max. :170.0
X..RESECCION TECNICA.QX TIEMPO.ENUCLEACION TIEMPO.MORCELACION HORAS.DE.SONDA
Mode:logical Length:75 Min. : 30.0 Min. : 5.0 Min. :12
NA's:75 Class :character 1st Qu.: 45.0 1st Qu.:10.0 1st Qu.:24
Mode :character Median : 60.0 Median :15.0 Median :24
Mean : 62.9 Mean :16.7 Mean :29
3rd Qu.: 77.5 3rd Qu.:20.0 3rd Qu.:24
Max. :180.0 Max. :50.0 Max. :72
HORAS.IRRIGACION ESTADIA.DIA COMPLICACION.INTRA.OPERATORIO DISURIA
Min. :10.0 Min. :1.00 Length:75 Length:75
1st Qu.:12.0 1st Qu.:1.00 Class :character Class :character
Median :12.0 Median :1.00 Mode :character Mode :character
Mean :14.9 Mean :1.44
3rd Qu.:12.0 3rd Qu.:1.50
Max. :48.0 Max. :7.00
URGENCIA RAO INCONTINENCIA ITU
Length:75 Length:75 Length:75 Length:75
Class :character Class :character Class :character Class :character
Mode :character Mode :character Mode :character Mode :character
HEMATURIA REINGRESO X CANCER.PROSTATA
Length:75 Length:75 Length:75 Length:75
Class :character Class :character Class :character Class :character
Mode :character Mode :character Mode :character Mode :character
CANCER.PROSTATA.IRRADIADO X.1 LITIASIS.CONCOMITANTE MORCELACIÓN.2DO.TIEMPO
Length:75 Length:75 Length:75 Length:75
Class :character Class :character Class :character Class :character
Mode :character Mode :character Mode :character Mode :character
#Edad (B)
options(digits=3) #agregar solo un decimal
df %>%
summarise(promedio = mean(EDAD), desviacion = sd(EDAD), rango= max(EDAD)-min(EDAD))
#histograma edad
hist(df$EDAD)
#Tamaño prostata (D)
options(digits=3) #agregar solo un decimal
df %>%
summarise(promedio = mean(TAMAÑO.PROSTATA), desviacion = sd(TAMAÑO.PROSTATA), rango= max(TAMAÑO.PROSTATA)-min(TAMAÑO.PROSTATA))
#Biopsia (GR) (N)
options(digits=3) #agregar solo un decimal
df %>%
summarise(promedio = mean(BIOPSIA..GR.), desviacion = sd(BIOPSIA..GR.), rango= max(BIOPSIA..GR.)-min(BIOPSIA..GR.))
#Tecnica QX (P)
#Tiempo de enucleación (Q)
options(digits=3) #agregar solo un decimal
df %>%
summarise(promedio = mean(TIEMPO.ENUCLEACION), desviacion = sd(TIEMPO.ENUCLEACION), rango= max(TIEMPO.ENUCLEACION)-min(TIEMPO.ENUCLEACION))
#Tiempo de Morcelacion (R)
options(digits=3) #agregar solo un decimal
df %>%
summarise(promedio = mean(TIEMPO.MORCELACION), desviacion = sd(TIEMPO.MORCELACION), rango= max(TIEMPO.MORCELACION)-min(TIEMPO.MORCELACION))
#horas de sonda (S)
options(digits=3) #agregar solo un decimal
df %>%
summarise(promedio = mean(HORAS.DE.SONDA), desviacion = sd(HORAS.DE.SONDA), rango= max(HORAS.DE.SONDA)-min(HORAS.DE.SONDA))
#horas de sonda (clasifico por horas de sonda) (S)
#horas de irrigacion (T)
options(digits=3) #agregar solo un decimal
df %>%
summarise(promedio = mean(HORAS.IRRIGACION), desviacion = sd(HORAS.IRRIGACION), rango= max(HORAS.IRRIGACION)-min(HORAS.IRRIGACION))
#horas de irrigacion (clasifico por horas de irrigacion) (T)
#Estadia dia (U)
options(digits=3) #agregar solo un decimal
df %>%
summarise(promedio = mean(ESTADIA.DIA), desviacion = sd(ESTADIA.DIA), rango= max(ESTADIA.DIA)-min(ESTADIA.DIA))
#estadia dia (clasifico por estadia dia)(U)
#Variables de frecuencia para datos amarillos y verdes (61 datos) #abrir el df para esta planilla de datos
df1 <- read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vSFXHAlpWr7P2GHtqOi3F3_KLXFVbLxl5Q2armt4NS1Ju9iXrnrNL3AElAK4cfyllxWqLuJPLi-pMJs/pub?gid=1359141274&single=true&output=csv")
#agrupo por Disuria (W)
options(digits=3) #agregar solo un decimal
df1 %>%
group_by(DISURIA) %>%
summarise(n=n(), Porcentaje = `n`/61*100) #son 61 datos
#agrupo por Urgencia (X)
options(digits=3) #agregar solo un decimal
df1 %>%
group_by(URGENCIA) %>%
summarise(n=n(), Porcentaje = `n`/61*100) #son 61 datos
#Agrupo por RAO (Y)
options(digits=3) #agregar solo un decimal
df1 %>%
group_by(RAO) %>%
summarise(n=n(), Porcentaje = `n`/61*100) #son 61 datos
#Agrupo por Incontinencia (Z)
options(digits=3) #agregar solo un decimal
df1 %>%
group_by(INCONTINENCIA) %>%
summarise(n=n(), Porcentaje = `n`/61*100) #son 61 datos
#Agrupo por ITU (AA)
options(digits=3) #agregar solo un decimal
df1 %>%
group_by(ITU) %>%
summarise(n=n(), Porcentaje = `n`/61*100) #son 61 datos
#Agrupo por Hematuria (AB)
options(digits=3) #agregar solo un decimal
df1 %>%
group_by(HEMATURIA) %>%
summarise(n=n(), Porcentaje = `n`/61*100) #son 61 datos
#Agrupo por reingreso
#abro el df2 para t.test
df3 <- read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vSFXHAlpWr7P2GHtqOi3F3_KLXFVbLxl5Q2armt4NS1Ju9iXrnrNL3AElAK4cfyllxWqLuJPLi-pMJs/pub?gid=1545735592&single=true&output=csv")
#summary
summary(df3)
#t.test para UFM (existen diferencias)
t.test(df3$`Valor UFM`~df3$UFM)
Welch Two Sample t-test
data: df3$`Valor UFM` by df3$UFM
t = 13, df = 70, p-value <2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
11.1 15.1
sample estimates:
mean in group UFM QMAX POST mean in group UFM QMAX PRE
22.3 9.2
#t.test para PSA (existen diferencias)
t.test(df3$`Valor PSA`~df3$PSA) #Existen diferencias
Welch Two Sample t-test
data: df3$`Valor PSA` by df3$PSA
t = -7, df = 43, p-value = 4e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-5.54 -2.97
sample estimates:
mean in group PSA post mean in group PSA pre
0.654 4.909
#t.test para RPM (existen diferencias)
t.test(df3$`Valor RPM`~df3$RPM)
Welch Two Sample t-test
data: df3$`Valor RPM` by df3$RPM
t = -13, df = 43, p-value <2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-142 -105
sample estimates:
mean in group RPM POST mean in group RPM PRE
4.7 128.5