- Sorting out your RStudio working environment.
- Getting you ready to write reproducible reports in RMarkdown.
What is RMarkdown?
.pdf
, .html
, .docx
, .doc
Code
> Download ZIP
> unzip directory on your machine.stats-iii.Rproj
xxx/slides.Rmd
: slides in RMarkdown formatxxx/exercises
: R scripts that we will work withdata/
: my scripts will read in data from herermarkdown
tinytex
# Is tidyverse installed? 'tidyverse' %in% rownames(installed.packages()) # Should return TRUE but if not run install.packages('tidyverse')
install.packages('tinytex') tinytex::install_tinytex() # then restart RStudio
# Then, try tinytex:::is_tinytex() # should return TRUE
rmarkdown
will render pdf documents:writeLines('Hello $x^2$', 'test.Rmd') rmarkdown::render('test.Rmd', output_format = 'pdf_document')
writeLines
creates an .Rmd
file named test.Rmd
.rmarkdown::render
renders .Rmd
as pdf named test.pdf
.rmarkdown/examples/example.Rmd
Knit > Knit to PDF
to compile .Rmd
to .pdf
. Wow!!!File
> New File
> R Markdown
output: pdf_document
: use pdfs for writing manuscriptsfa-linear-regression.Rmd
.Rproj
file.CTRL+ALT+I
or CMD+ALT+I
(i.e. the letter “i”)packages
and load libraries needed:library(tidyverse)
loaddata
and load Blomkvist et al. (2017) data:blomkvist <- read_csv("data/blomkvist.csv") %>% select(id, age, smoker, sex, rt = rt_hand_d) %>% drop_na()
{r setup, echo=FALSE}
setup
is a label of this chunk (optional; useful for cross-referencing of figures and tables).echo = FALSE
: don’t display chunk in output; echo = TRUE
: display chunk.knitr::opts_chunk$set(message = FALSE, # don't return messages warning = FALSE, # don't return warnings comment = NA, # don't comment output echo = TRUE, # display chunk (is default) eval = TRUE, # evaluate chunk (is default) out.width = '45%', # figure width fig.align='center') # figure alignment
# This is a section header ## This is a subsection header # This is another section header ## This is another subsection header ### This is a subsubsection header
myscatterplot
echo = F
cause we only need the figure.fig.cap = "A scatterplot."
in the chunk configurations.library(psyntur) scatterplot(x = age, y = rt, data = blomkvist)
ggplot2
ggplot(blomkvist, aes(x = age, y = rt)) + geom_point() + theme_classic()
out.width = 50%
.\ref{fig:myscatterplot}
in the text."A scatterplot of age and reaction time can be found in Figure \ref{fig:myscatterplot}."
header-includes: - \usepackage{booktabs}
booktabs
to improve type setting.library(psyntur) (smoker_age <- describe(data = blomkvist, by = smoker, mean = mean(age), sd = sd(age)))
# A tibble: 3 × 3 smoker mean sd <chr> <dbl> <dbl> 1 former 65.2 16.9 2 no 53.0 21.3 3 yes 50.6 17.5
library(kableExtra) smoker_age %>% kable(format = 'latex', booktabs = TRUE, digits = 2, align = 'c', # centre value in each column caption = 'Descriptives of age by smoker.') %>% kable_styling(position = 'center') # centre position of table
smoker
” and cross-reference the table in the text using Table \ref{tab:smoker}
.bibliography: refs.bib biblio-style: apalike
refs.bib
(save in same working directory as your .Rmd
file).bib
entry for Blomkvist et al. (2017) from Google Scholar and paste it into refs.bib
:
cite
and BibTeX
.bib
entry into refs.bib
blomkvist2017reference
@blomkvist2017reference
or [@blomkvist2017reference]
.# References
”# Fit the model and get the summary model <- lm(rt ~ sex, data = blomkvist) model_summary <- summary(model)
# Extract R^2 r2 <- model_summary$r.sq
The $R^2$ for this model is `r round(r2, 2)`.
Renders “The \(R^2\) for this model is 0.03.”
# Extract F statistic f_stat <- model_summary$fstatistic p_value <- pf(f_stat[1], f_stat[2], f_stat[3], lower.tail = FALSE)
The model summary can be summarised like so: $F(`r round(f_stat[2])`, `r round(f_stat[3])`) = `r round(f_stat[1],2)`$, $p `r format.pval(p_value, eps = 0.01)`$.
Renders “The model summary can be summarised like so: \(F(1, 263) = 7.48\), \(p <0.01\).”
p <- c(0.05, 0.02, 0.011, 0.005, 0.001) format.pval(p, eps = 0.01)
[1] "0.05" "0.02" "0.01" "<0.01" "<0.01"
'$'
symbols for inline mode.$\beta$
renders \(\beta\).$\beta_0$
is \(\beta_0\) and using '{}'
for more than one symbol as in $\beta_{01}$
which is \(\beta_{01}\)'^'
as in $\sigma^2$
which is \(\sigma^2\).$x + y$
, $x - y$
$\cdot$
or $\times$
to get \(\cdot\) or \(\times\), respectively, as in \(3 \cdot 2\)$/$
or $\div$
to get \(/\) or \(\div\), respectively, or $\frac{1}{2}$
for \(\frac{1}{2}\)$\pm$
renders to \(\pm\)install.packages("rmdformats")
or
install.packages("remotes") remotes::install_github("juba/rmdformats")
File
> New File
> R Markdown
(e.g. readthedown
or robobook
for documents)rmdshower::shower_presentations
and ioslides_presentation
for slidespapaja
kableExtra
check herermarkdown
website.Blomkvist, Andreas W., Fredrik Eika, Martin T. Rahbek, Karin D. Eikhof, Mette D. Hansen, Malene Søndergaard, Jesper Ryg, Stig Andersen, and Martin G. Jørgensen. 2017. “Reference Data on Reaction Time and Aging Using the Nintendo Wii Balance Board: A Cross-Sectional Study of 354 Subjects from 20 to 99 Years of Age.” PLoS One 12 (12): e0189598.
Knuth, Donald Ervin. 1984. “Literate Programming.” The Computer Journal 27 (2): 97–111.
Open Science Collaboration. 2015. “Estimating the Reproducibility of Psychological Science.” Science 349 (6251): aac4716.
Roeser, Jens, Sven De Maeyer, Mariëlle Leijten, and Luuk Van Waes. 2021. “Modelling Typing Disfluencies as Finite Mixture Process.” Reading and Writing, 1–26.
Wickham, Hadley, and Garrett Grolemund. 2016. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data. O’Reilly Media, Inc.
Xie, Yihui. 2017. Dynamic Documents with R and Knitr. Chapman; Hall/CRC.