cargando librerías

library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.3.6      ✔ purrr   0.3.4 
## ✔ tibble  3.1.8      ✔ dplyr   1.0.10
## ✔ tidyr   1.2.1      ✔ stringr 1.4.1 
## ✔ readr   2.1.2      ✔ forcats 0.5.2 
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
library(igraph)
## 
## Attaching package: 'igraph'
## 
## The following objects are masked from 'package:dplyr':
## 
##     as_data_frame, groups, union
## 
## The following objects are masked from 'package:purrr':
## 
##     compose, simplify
## 
## The following object is masked from 'package:tidyr':
## 
##     crossing
## 
## The following object is masked from 'package:tibble':
## 
##     as_data_frame
## 
## The following objects are masked from 'package:stats':
## 
##     decompose, spectrum
## 
## The following object is masked from 'package:base':
## 
##     union
library(tidygraph)
## 
## Attaching package: 'tidygraph'
## 
## The following object is masked from 'package:igraph':
## 
##     groups
## 
## The following object is masked from 'package:stats':
## 
##     filter
library(tosr)
library(bibliometrix)
## To cite bibliometrix in publications, please use:
## 
## Aria, M. & Cuccurullo, C. (2017) bibliometrix: An R-tool for comprehensive science mapping analysis, 
##                                  Journal of Informetrics, 11(4), pp 959-975, Elsevier.
##                         
## 
## https://www.bibliometrix.org
## 
##                         
## For information and bug reports:
##                         - Send an email to info@bibliometrix.org   
##                         - Write a post on https://github.com/massimoaria/bibliometrix/issues
##                         
## Help us to keep Bibliometrix free to download and use by contributing with a small donation to support our research team (https://bibliometrix.org/donate.html)
## 
##                         
## To start with the shiny web-interface, please digit:
## biblioshiny()

Cargando los datos

wos <- 
  bibliometrix::convert2df(file = "/Users/sebastianrobledo/Downloads/scientometrics.txt", dbsource = "wos", format = "plaintext")
## 
## Converting your wos collection into a bibliographic dataframe
## 
## Done!
## 
## 
## Generating affiliation field tag AU_UN from C1:  Done!
scopus <- bibliometrix::convert2df(file = "/Users/sebastianrobledo/Downloads/scientometrics.bib", dbsource = "wos", format = "bibtex")
## 
## Converting your wos collection into a bibliographic dataframe
## 
## 
## Warning:
## In your file, some mandatory metadata are missing. Bibliometrix functions may not work properly!
## 
## Please, take a look at the vignettes:
## - 'Data Importing and Converting' (https://www.bibliometrix.org/vignettes/Data-Importing-and-Converting.html)
## - 'A brief introduction to bibliometrix' (https://www.bibliometrix.org/vignettes/Introduction_to_bibliometrix.html)
## 
## 
## Missing fields:  ID CR 
## Done!
## 
## 
## Generating affiliation field tag AU_UN from C1:  Done!
wos_scopus <- 
  tosr::tosr_load("/Users/sebastianrobledo/Downloads/scientometrics.bib", "/Users/sebastianrobledo/Downloads/scientometrics.txt")
## [1] 2
## 
## Converting your scopus collection into a bibliographic dataframe
## 
## Done!
## 
## 
## Generating affiliation field tag AU_UN from C1:  Done!
## 
## 
## Converting your wos collection into a bibliographic dataframe
## 
## Done!
## 
## 
## Generating affiliation field tag AU_UN from C1:  Done!
## 
## 
##  247 duplicated documents have been removed

Análisis de redes

wos_scopus_tidygraph <- 
  wos_scopus$graph |> 
  tidygraph::as_tbl_graph()

Añadiendo el grado

wos_scopus_tidygraph_degree <- 
  wos_scopus_tidygraph |> 
  activate(nodes) |> 
  dplyr::mutate(out_degree = tidygraph::centrality_degree())