setwd("~/Library/CloudStorage/GoogleDrive-icarounam@gmail.com/Mi unidad/Agrosavia/Colaboraciones/Lucero/data")
library(Plasticity)
library(agricolae)
library(Rmisc)
## Loading required package: lattice
## Loading required package: plyr
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:plyr':
## 
##     arrange, count, desc, failwith, id, mutate, rename, summarise,
##     summarize
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)
library(psych)
## 
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
library(FSA)
## ## FSA v0.9.1. See citation('FSA') if used in publication.
## ## Run fishR() for related website and fishR('IFAR') for related book.
## 
## Attaching package: 'FSA'
## The following object is masked from 'package:psych':
## 
##     headtail
## The following object is masked from 'package:plyr':
## 
##     mapvalues
library(forcats)
library(Hmisc)
## Loading required package: survival
## Loading required package: Formula
## 
## Attaching package: 'Hmisc'
## The following object is masked from 'package:psych':
## 
##     describe
## The following objects are masked from 'package:dplyr':
## 
##     src, summarize
## The following objects are masked from 'package:plyr':
## 
##     is.discrete, summarize
## The following objects are masked from 'package:base':
## 
##     format.pval, units
library("PerformanceAnalytics")
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## Attaching package: 'xts'
## The following objects are masked from 'package:dplyr':
## 
##     first, last
## 
## Attaching package: 'PerformanceAnalytics'
## The following objects are masked from 'package:agricolae':
## 
##     kurtosis, skewness
## The following object is masked from 'package:graphics':
## 
##     legend
library(onewaytests)
## Registered S3 methods overwritten by 'car':
##   method       from
##   hist.boot    FSA 
##   confint.boot FSA
## 
## Attaching package: 'onewaytests'
## The following object is masked from 'package:Hmisc':
## 
##     describe
## The following object is masked from 'package:psych':
## 
##     describe
library(emmeans)
library(ggthemes)
library(multcompView)
library(RColorBrewer)
library(correlation)
## Warning: package 'correlation' was built under R version 4.1.2
## 
## Attaching package: 'correlation'
## The following object is masked from 'package:agricolae':
## 
##     correlation
library(tibble)
library(fmsb)
## Warning: package 'fmsb' was built under R version 4.1.2
##Reading data
clones <- read.table("sensof.csv", header=T, sep=",")
# Assigning some variables to factors
clones$gen<-as.factor(clones$gen)
clones$trat<-as.factor(clones$trat)
clones$time<-as.factor(clones$time)
clones$muestra<-as.factor(clones$muestra)
clones$gentrat<-as.factor(clones$gentrat)

## Generando bases de datos para los tiempos a evaluar
clones.4 <- filter(clones, clones$time == "4")
clones.5 <- filter(clones, clones$time == "5")
clones.6 <- filter(clones, clones$time == "6")
clones.7 <- filter(clones, clones$time == "7")

##Quitando los tiempos no utilizados
clones.4.fin <- droplevels(clones.4)
clones.5.fin <- droplevels(clones.5)
clones.6.fin <- droplevels(clones.6)
clones.7.fin <- droplevels(clones.7)

##Convirtiendo a factor los genotipos y ambientes
#genotipos
clones.4.fin$gen<-as.factor(clones.4.fin$gen)
clones.5.fin$gen<-as.factor(clones.5.fin$gen)
clones.6.fin$gen<-as.factor(clones.6.fin$gen)
clones.7.fin$gen<-as.factor(clones.7.fin$gen)

#ambientes
clones.4.fin$trat<-as.factor(clones.4.fin$trat)
clones.5.fin$trat<-as.factor(clones.5.fin$trat)
clones.6.fin$trat<-as.factor(clones.6.fin$trat)
clones.7.fin$trat<-as.factor(clones.7.fin$trat)

#interacción

clones.4.fin$gentrat<-as.factor(clones.4.fin$gentrat)
clones.5.fin$gentrat<-as.factor(clones.5.fin$gentrat)
clones.6.fin$gentrat<-as.factor(clones.6.fin$gentrat)
clones.7.fin$gentrat<-as.factor(clones.7.fin$gentrat)

##Diferencias entre genotipos, tratamientos y tratamientos por genotipo para los sabores
#144 hours

group_by(clones.6.fin, gen) %>%
  summarise(
    count = n(),
    mean = mean(amargo, na.rm = TRUE),
    sd = sd(amargo, na.rm = TRUE),
    median = median(amargo, na.rm = TRUE),
    IQR = IQR(amargo, na.rm = TRUE)
  )
## # A tibble: 3 × 6
##   gen    count  mean    sd median   IQR
##   <fct>  <int> <dbl> <dbl>  <dbl> <dbl>
## 1 EET8      12  4.92 0.669    5    0.25
## 2 ICS 95    12  6.25 0.866    6.5  1.25
## 3 TCS01     12  4.5  0.674    5    1
group_by(clones.6.fin, gen) %>%
  summarise(
    count = n(),
    mean = mean(astringente, na.rm = TRUE),
    sd = sd(astringente, na.rm = TRUE),
    median = median(astringente, na.rm = TRUE),
    IQR = IQR(astringente, na.rm = TRUE)
  )
## # A tibble: 3 × 6
##   gen    count  mean    sd median   IQR
##   <fct>  <int> <dbl> <dbl>  <dbl> <dbl>
## 1 EET8      12  4.58 1.31     4.5  1.5 
## 2 ICS 95    12  5.75 0.622    6    1   
## 3 TCS01     12  4.08 1.24     4    1.25
group_by(clones.6.fin, gen) %>%
  summarise(
    count = n(),
    mean = mean(acido, na.rm = TRUE),
    sd = sd(acido, na.rm = TRUE),
    median = median(acido, na.rm = TRUE),
    IQR = IQR(acido, na.rm = TRUE)
  )
## # A tibble: 3 × 6
##   gen    count  mean    sd median   IQR
##   <fct>  <int> <dbl> <dbl>  <dbl> <dbl>
## 1 EET8      12  4.5  1        4.5     1
## 2 ICS 95    12  4.25 0.622    4       1
## 3 TCS01     12  3.25 0.622    3       1
group_by(clones.6.fin, gen) %>%
  summarise(
    count = n(),
    mean = mean(cacao, na.rm = TRUE),
    sd = sd(cacao, na.rm = TRUE),
    median = median(cacao, na.rm = TRUE),
    IQR = IQR(cacao, na.rm = TRUE)
  )
## # A tibble: 3 × 6
##   gen    count  mean    sd median   IQR
##   <fct>  <int> <dbl> <dbl>  <dbl> <dbl>
## 1 EET8      12  5.25 1.42       6   2  
## 2 ICS 95    12  2.75 0.622      3   1  
## 3 TCS01     12  5.83 1.11       6   0.5
group_by(clones.6.fin, gen) %>%
  summarise(
    count = n(),
    mean = mean(frutal, na.rm = TRUE),
    sd = sd(frutal, na.rm = TRUE),
    median = median(frutal, na.rm = TRUE),
    IQR = IQR(frutal, na.rm = TRUE)
  )
## # A tibble: 3 × 6
##   gen    count  mean    sd median   IQR
##   <fct>  <int> <dbl> <dbl>  <dbl> <dbl>
## 1 EET8      12  2.58 1.16     3     1.5
## 2 ICS 95    12  1.5  0.798    1.5   1  
## 3 TCS01     12  4.08 1.31     5     1.5
group_by(clones.6.fin, gen) %>%
  summarise(
    count = n(),
    mean = mean(floral, na.rm = TRUE),
    sd = sd(floral, na.rm = TRUE),
    median = median(floral, na.rm = TRUE),
    IQR = IQR(floral, na.rm = TRUE)
  )
## # A tibble: 3 × 6
##   gen    count  mean    sd median   IQR
##   <fct>  <int> <dbl> <dbl>  <dbl> <dbl>
## 1 EET8      12  2.08 0.793      2  1.25
## 2 ICS 95    12  0.5  0.798      0  1   
## 3 TCS01     12  3    1.35       3  2
group_by(clones.6.fin, gen) %>%
  summarise(
    count = n(),
    mean = mean(dulce, na.rm = TRUE),
    sd = sd(dulce, na.rm = TRUE),
    median = median(dulce, na.rm = TRUE),
    IQR = IQR(dulce, na.rm = TRUE)
  )
## # A tibble: 3 × 6
##   gen    count  mean    sd median   IQR
##   <fct>  <int> <dbl> <dbl>  <dbl> <dbl>
## 1 EET8      12 1.08  0.900      1     2
## 2 ICS 95    12 0.417 0.515      0     1
## 3 TCS01     12 3.75  1.36       4     2
group_by(clones.6.fin, gen) %>%
  summarise(
    count = n(),
    mean = mean(nuez, na.rm = TRUE),
    sd = sd(nuez, na.rm = TRUE),
    median = median(nuez, na.rm = TRUE),
    IQR = IQR(nuez, na.rm = TRUE)
  )
## # A tibble: 3 × 6
##   gen    count  mean    sd median   IQR
##   <fct>  <int> <dbl> <dbl>  <dbl> <dbl>
## 1 EET8      12  2.17 1.27     2    2   
## 2 ICS 95    12  1    0.953    1    2   
## 3 TCS01     12  3.17 1.03     3.5  1.25
group_by(clones.6.fin, gen) %>%
  summarise(
    count = n(),
    mean = mean(madera, na.rm = TRUE),
    sd = sd(madera, na.rm = TRUE),
    median = median(madera, na.rm = TRUE),
    IQR = IQR(madera, na.rm = TRUE)
  )
## # A tibble: 3 × 6
##   gen    count  mean    sd median   IQR
##   <fct>  <int> <dbl> <dbl>  <dbl> <dbl>
## 1 EET8      12  1.42 0.669    1.5   1  
## 2 ICS 95    12  1.58 0.669    1.5   1  
## 3 TCS01     12  1.67 1.61     1.5   2.5
group_by(clones.6.fin, gen) %>%
  summarise(
    count = n(),
    mean = mean(herbal, na.rm = TRUE),
    sd = sd(herbal, na.rm = TRUE),
    median = median(herbal, na.rm = TRUE),
    IQR = IQR(herbal, na.rm = TRUE)
  )
## # A tibble: 3 × 6
##   gen    count  mean    sd median   IQR
##   <fct>  <int> <dbl> <dbl>  <dbl> <dbl>
## 1 EET8      12 0.833 0.835    1    1.25
## 2 ICS 95    12 1.42  0.669    1.5  1   
## 3 TCS01     12 1.92  1.44     2    1.5
#Anova
fit.ama<-aov(clones.6.fin$amargo~clones.6.fin$gen*clones.6.fin$trat)
summary(fit.ama)
##                                    Df Sum Sq Mean Sq F value   Pr(>F)    
## clones.6.fin$gen                    2 20.056  10.028  25.786 3.05e-07 ***
## clones.6.fin$trat                   1  2.778   2.778   7.143   0.0121 *  
## clones.6.fin$gen:clones.6.fin$trat  2  3.722   1.861   4.786   0.0157 *  
## Residuals                          30 11.667   0.389                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fit.ast<-aov(clones.6.fin$astringente~clones.6.fin$gen*clones.6.fin$trat)
summary(fit.ast)
##                                    Df Sum Sq Mean Sq F value   Pr(>F)    
## clones.6.fin$gen                    2 17.556   8.778  11.049 0.000254 ***
## clones.6.fin$trat                   1  0.028   0.028   0.035 0.852928    
## clones.6.fin$gen:clones.6.fin$trat  2 16.222   8.111  10.210 0.000415 ***
## Residuals                          30 23.833   0.794                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fit.acd<-aov(clones.6.fin$acido~clones.6.fin$gen*clones.6.fin$trat)
summary(fit.acd)
##                                    Df Sum Sq Mean Sq F value  Pr(>F)   
## clones.6.fin$gen                    2 10.500   5.250   8.438 0.00124 **
## clones.6.fin$trat                   1  0.111   0.111   0.179 0.67562   
## clones.6.fin$gen:clones.6.fin$trat  2  0.722   0.361   0.580 0.56586   
## Residuals                          30 18.667   0.622                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fit.cac<-aov(clones.6.fin$cacao~clones.6.fin$gen*clones.6.fin$trat)
summary(fit.cac)
##                                    Df Sum Sq Mean Sq F value   Pr(>F)    
## clones.6.fin$gen                    2  64.39   32.19  41.993 2.01e-09 ***
## clones.6.fin$trat                   1   9.00    9.00  11.739   0.0018 ** 
## clones.6.fin$gen:clones.6.fin$trat  2   8.17    4.08   5.326   0.0105 *  
## Residuals                          30  23.00    0.77                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fit.frut<-aov(clones.6.fin$frutal~clones.6.fin$gen*clones.6.fin$trat)
summary(fit.frut)
##                                    Df Sum Sq Mean Sq F value   Pr(>F)    
## clones.6.fin$gen                    2  40.39  20.194  15.943 1.92e-05 ***
## clones.6.fin$trat                   1   0.44   0.444   0.351    0.558    
## clones.6.fin$gen:clones.6.fin$trat  2   2.39   1.194   0.943    0.401    
## Residuals                          30  38.00   1.267                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fit.flor<-aov(clones.6.fin$floral~clones.6.fin$gen*clones.6.fin$trat)
summary(fit.flor)
##                                    Df Sum Sq Mean Sq F value   Pr(>F)    
## clones.6.fin$gen                    2  38.39  19.194  17.718 8.31e-06 ***
## clones.6.fin$trat                   1   0.69   0.694   0.641    0.430    
## clones.6.fin$gen:clones.6.fin$trat  2   0.72   0.361   0.333    0.719    
## Residuals                          30  32.50   1.083                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fit.dul<-aov(clones.6.fin$dulce~clones.6.fin$gen*clones.6.fin$trat)
summary(fit.dul)
##                                    Df Sum Sq Mean Sq F value   Pr(>F)    
## clones.6.fin$gen                    2  74.67   37.33  43.355 1.41e-09 ***
## clones.6.fin$trat                   1   0.69    0.69   0.806   0.3763    
## clones.6.fin$gen:clones.6.fin$trat  2   5.56    2.78   3.226   0.0538 .  
## Residuals                          30  25.83    0.86                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fit.nuez<-aov(clones.6.fin$nuez~clones.6.fin$gen*clones.6.fin$trat)
summary(fit.nuez)
##                                    Df Sum Sq Mean Sq F value   Pr(>F)    
## clones.6.fin$gen                    2  28.22  14.111  12.959 8.78e-05 ***
## clones.6.fin$trat                   1   0.44   0.444   0.408   0.5278    
## clones.6.fin$gen:clones.6.fin$trat  2   6.22   3.111   2.857   0.0731 .  
## Residuals                          30  32.67   1.089                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fit.mad<-aov(clones.6.fin$madera~clones.6.fin$gen*clones.6.fin$trat)
summary(fit.mad)
##                                    Df Sum Sq Mean Sq F value Pr(>F)  
## clones.6.fin$gen                    2  0.389  0.1944   0.194 0.8243  
## clones.6.fin$trat                   1  2.778  2.7778   2.778 0.1060  
## clones.6.fin$gen:clones.6.fin$trat  2  5.722  2.8611   2.861 0.0729 .
## Residuals                          30 30.000  1.0000                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fit.her<-aov(clones.6.fin$herbal~clones.6.fin$gen*clones.6.fin$trat)
summary(fit.her)
##                                    Df Sum Sq Mean Sq F value Pr(>F)  
## clones.6.fin$gen                    2  7.056   3.528   3.451 0.0448 *
## clones.6.fin$trat                   1  2.778   2.778   2.717 0.1097  
## clones.6.fin$gen:clones.6.fin$trat  2  2.056   1.028   1.005 0.3779  
## Residuals                          30 30.667   1.022                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#gen
kruskal.test(amargo ~ gen, data = clones.6.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  amargo by gen
## Kruskal-Wallis chi-squared = 17.683, df = 2, p-value = 0.0001446
kruskal.test(astringente ~ gen, data = clones.6.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  astringente by gen
## Kruskal-Wallis chi-squared = 11.724, df = 2, p-value = 0.002845
kruskal.test(acido ~ gen, data = clones.6.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  acido by gen
## Kruskal-Wallis chi-squared = 12.623, df = 2, p-value = 0.001816
kruskal.test(cacao ~ gen, data = clones.6.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  cacao by gen
## Kruskal-Wallis chi-squared = 20.531, df = 2, p-value = 3.481e-05
kruskal.test(frutal ~ gen, data = clones.6.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  frutal by gen
## Kruskal-Wallis chi-squared = 16.655, df = 2, p-value = 0.0002418
kruskal.test(floral ~ gen, data = clones.6.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  floral by gen
## Kruskal-Wallis chi-squared = 18.79, df = 2, p-value = 8.313e-05
kruskal.test(dulce ~ gen, data = clones.6.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  dulce by gen
## Kruskal-Wallis chi-squared = 22.647, df = 2, p-value = 1.209e-05
kruskal.test(nuez ~ gen, data = clones.6.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  nuez by gen
## Kruskal-Wallis chi-squared = 14.517, df = 2, p-value = 0.0007041
kruskal.test(madera ~ gen, data = clones.6.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  madera by gen
## Kruskal-Wallis chi-squared = 0.14021, df = 2, p-value = 0.9323
kruskal.test(herbal ~ gen, data = clones.6.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  herbal by gen
## Kruskal-Wallis chi-squared = 4.8458, df = 2, p-value = 0.08867
#trat
kruskal.test(amargo ~ trat, data = clones.6.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  amargo by trat
## Kruskal-Wallis chi-squared = 1.8643, df = 1, p-value = 0.1721
kruskal.test(astringente ~ trat, data = clones.6.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  astringente by trat
## Kruskal-Wallis chi-squared = 0.11719, df = 1, p-value = 0.7321
kruskal.test(acido ~ trat, data = clones.6.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  acido by trat
## Kruskal-Wallis chi-squared = 0.34223, df = 1, p-value = 0.5585
kruskal.test(cacao ~ trat, data = clones.6.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  cacao by trat
## Kruskal-Wallis chi-squared = 3.1444, df = 1, p-value = 0.07619
kruskal.test(frutal ~ trat, data = clones.6.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  frutal by trat
## Kruskal-Wallis chi-squared = 0.33939, df = 1, p-value = 0.5602
kruskal.test(floral ~ trat, data = clones.6.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  floral by trat
## Kruskal-Wallis chi-squared = 0.23652, df = 1, p-value = 0.6267
kruskal.test(dulce ~ trat, data = clones.6.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  dulce by trat
## Kruskal-Wallis chi-squared = 0.1649, df = 1, p-value = 0.6847
kruskal.test(nuez ~ trat, data = clones.6.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  nuez by trat
## Kruskal-Wallis chi-squared = 0.37861, df = 1, p-value = 0.5383
kruskal.test(madera ~ trat, data = clones.6.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  madera by trat
## Kruskal-Wallis chi-squared = 1.9807, df = 1, p-value = 0.1593
kruskal.test(herbal ~ trat, data = clones.6.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  herbal by trat
## Kruskal-Wallis chi-squared = 1.5142, df = 1, p-value = 0.2185
#gentrat
kruskal.test(amargo ~ gentrat, data = clones.6.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  amargo by gentrat
## Kruskal-Wallis chi-squared = 24.003, df = 5, p-value = 0.0002169
kruskal.test(astringente ~ gentrat, data = clones.6.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  astringente by gentrat
## Kruskal-Wallis chi-squared = 20.485, df = 5, p-value = 0.001013
kruskal.test(acido ~ gentrat, data = clones.6.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  acido by gentrat
## Kruskal-Wallis chi-squared = 13.683, df = 5, p-value = 0.01775
kruskal.test(cacao ~ gentrat, data = clones.6.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  cacao by gentrat
## Kruskal-Wallis chi-squared = 26.464, df = 5, p-value = 7.252e-05
kruskal.test(frutal ~ gentrat, data = clones.6.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  frutal by gentrat
## Kruskal-Wallis chi-squared = 18.482, df = 5, p-value = 0.002399
kruskal.test(floral ~ gentrat, data = clones.6.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  floral by gentrat
## Kruskal-Wallis chi-squared = 19.234, df = 5, p-value = 0.001739
kruskal.test(dulce ~ gentrat, data = clones.6.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  dulce by gentrat
## Kruskal-Wallis chi-squared = 26.812, df = 5, p-value = 6.206e-05
kruskal.test(nuez ~ gentrat, data = clones.6.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  nuez by gentrat
## Kruskal-Wallis chi-squared = 18.271, df = 5, p-value = 0.002625
kruskal.test(madera ~ gentrat, data = clones.6.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  madera by gentrat
## Kruskal-Wallis chi-squared = 5.0097, df = 5, p-value = 0.4147
kruskal.test(herbal ~ gentrat, data = clones.6.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  herbal by gentrat
## Kruskal-Wallis chi-squared = 6.9723, df = 5, p-value = 0.2227
#a posteriori
pairwise.wilcox.test(clones.6.fin$amargo, clones.6.fin$gen,
                     p.adjust.method = "BH")
## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties
## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties
## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  clones.6.fin$amargo and clones.6.fin$gen 
## 
##        EET8    ICS 95 
## ICS 95 0.00237 -      
## TCS01  0.19032 0.00065
## 
## P value adjustment method: BH
pairwise.wilcox.test(clones.6.fin$astringente, clones.6.fin$gen,
                     p.adjust.method = "BH")
## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties
## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  clones.6.fin$astringente and clones.6.fin$gen 
## 
##        EET8   ICS 95
## ICS 95 0.0283 -     
## TCS01  0.4760 0.0023
## 
## P value adjustment method: BH
pairwise.wilcox.test(clones.6.fin$acido, clones.6.fin$gen,
                     p.adjust.method = "BH")
## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties
## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  clones.6.fin$acido and clones.6.fin$gen 
## 
##        EET8   ICS 95
## ICS 95 0.5147 -     
## TCS01  0.0049 0.0049
## 
## P value adjustment method: BH
pairwise.wilcox.test(clones.6.fin$cacao, clones.6.fin$gen,
                     p.adjust.method = "BH")
## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties
## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  clones.6.fin$cacao and clones.6.fin$gen 
## 
##        EET8    ICS 95 
## ICS 95 0.00035 -      
## TCS01  0.34330 0.00020
## 
## P value adjustment method: BH
pairwise.wilcox.test(clones.6.fin$frutal, clones.6.fin$gen,
                     p.adjust.method = "BH")
## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties
## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  clones.6.fin$frutal and clones.6.fin$gen 
## 
##        EET8    ICS 95 
## ICS 95 0.02664 -      
## TCS01  0.01270 0.00078
## 
## P value adjustment method: BH
pairwise.wilcox.test(clones.6.fin$floral, clones.6.fin$gen,
                     p.adjust.method = "BH")
## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties
## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  clones.6.fin$floral and clones.6.fin$gen 
## 
##        EET8    ICS 95 
## ICS 95 0.00084 -      
## TCS01  0.04213 0.00084
## 
## P value adjustment method: BH
pairwise.wilcox.test(clones.6.fin$dulce, clones.6.fin$gen,
                     p.adjust.method = "BH")
## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties
## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  clones.6.fin$dulce and clones.6.fin$gen 
## 
##        EET8    ICS 95 
## ICS 95 0.06167 -      
## TCS01  0.00036 0.00013
## 
## P value adjustment method: BH
pairwise.wilcox.test(clones.6.fin$nuez, clones.6.fin$gen,
                     p.adjust.method = "BH")
## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties
## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  clones.6.fin$nuez and clones.6.fin$gen 
## 
##        EET8  ICS 95
## ICS 95 0.044 -     
## TCS01  0.052 0.001 
## 
## P value adjustment method: BH
pairwise.wilcox.test(clones.6.fin$madera, clones.6.fin$gen,
                     p.adjust.method = "BH")
## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties
## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  clones.6.fin$madera and clones.6.fin$gen 
## 
##        EET8 ICS 95
## ICS 95 1    -     
## TCS01  1    1     
## 
## P value adjustment method: BH
pairwise.wilcox.test(clones.6.fin$herbal, clones.6.fin$gen,
                     p.adjust.method = "BH")
## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties
## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  clones.6.fin$herbal and clones.6.fin$gen 
## 
##        EET8 ICS 95
## ICS 95 0.13 -     
## TCS01  0.13 0.50  
## 
## P value adjustment method: BH
# 168 hours


group_by(clones.7.fin, gen) %>%
  summarise(
    count = n(),
    mean = mean(amargo, na.rm = TRUE),
    sd = sd(amargo, na.rm = TRUE),
    median = median(amargo, na.rm = TRUE),
    IQR = IQR(amargo, na.rm = TRUE)
  )
## # A tibble: 3 × 6
##   gen    count  mean    sd median   IQR
##   <fct>  <int> <dbl> <dbl>  <dbl> <dbl>
## 1 EET8      12  5.67 1.07       6  1.25
## 2 ICS 95    12  5.17 0.718      5  1   
## 3 TCS01     12  3.5  0.674      4  1
group_by(clones.7.fin, gen) %>%
  summarise(
    count = n(),
    mean = mean(astringente, na.rm = TRUE),
    sd = sd(astringente, na.rm = TRUE),
    median = median(astringente, na.rm = TRUE),
    IQR = IQR(astringente, na.rm = TRUE)
  )
## # A tibble: 3 × 6
##   gen    count  mean    sd median   IQR
##   <fct>  <int> <dbl> <dbl>  <dbl> <dbl>
## 1 EET8      12  4.83 1.19       5  2   
## 2 ICS 95    12  4.92 1.08       5  1.25
## 3 TCS01     12  2.67 0.651      3  1
group_by(clones.7.fin, gen) %>%
  summarise(
    count = n(),
    mean = mean(acido, na.rm = TRUE),
    sd = sd(acido, na.rm = TRUE),
    median = median(acido, na.rm = TRUE),
    IQR = IQR(acido, na.rm = TRUE)
  )
## # A tibble: 3 × 6
##   gen    count  mean    sd median   IQR
##   <fct>  <int> <dbl> <dbl>  <dbl> <dbl>
## 1 EET8      12  4.17 0.937    4    1.25
## 2 ICS 95    12  3.67 0.778    3.5  1   
## 3 TCS01     12  3.83 0.937    3.5  2
group_by(clones.7.fin, gen) %>%
  summarise(
    count = n(),
    mean = mean(cacao, na.rm = TRUE),
    sd = sd(cacao, na.rm = TRUE),
    median = median(cacao, na.rm = TRUE),
    IQR = IQR(cacao, na.rm = TRUE)
  )
## # A tibble: 3 × 6
##   gen    count  mean    sd median   IQR
##   <fct>  <int> <dbl> <dbl>  <dbl> <dbl>
## 1 EET8      12  4.92 0.900      5  0.5 
## 2 ICS 95    12  3.5  1          3  1.25
## 3 TCS01     12  4.5  1.17       4  2
group_by(clones.7.fin, gen) %>%
  summarise(
    count = n(),
    mean = mean(frutal, na.rm = TRUE),
    sd = sd(frutal, na.rm = TRUE),
    median = median(frutal, na.rm = TRUE),
    IQR = IQR(frutal, na.rm = TRUE)
  )
## # A tibble: 3 × 6
##   gen    count  mean    sd median   IQR
##   <fct>  <int> <dbl> <dbl>  <dbl> <dbl>
## 1 EET8      12  2.83 1.59     2.5   2.5
## 2 ICS 95    12  2.17 0.718    2     1  
## 3 TCS01     12  3.17 1.47     3     3
group_by(clones.7.fin, gen) %>%
  summarise(
    count = n(),
    mean = mean(floral, na.rm = TRUE),
    sd = sd(floral, na.rm = TRUE),
    median = median(floral, na.rm = TRUE),
    IQR = IQR(floral, na.rm = TRUE)
  )
## # A tibble: 3 × 6
##   gen    count  mean    sd median   IQR
##   <fct>  <int> <dbl> <dbl>  <dbl> <dbl>
## 1 EET8      12 1.08  0.900      1  0.5 
## 2 ICS 95    12 0.833 0.389      1  0   
## 3 TCS01     12 2.67  1.07       3  1.25
group_by(clones.7.fin, gen) %>%
  summarise(
    count = n(),
    mean = mean(dulce, na.rm = TRUE),
    sd = sd(dulce, na.rm = TRUE),
    median = median(dulce, na.rm = TRUE),
    IQR = IQR(dulce, na.rm = TRUE)
  )
## # A tibble: 3 × 6
##   gen    count  mean    sd median   IQR
##   <fct>  <int> <dbl> <dbl>  <dbl> <dbl>
## 1 EET8      12 2.08  1.83     2     2.5
## 2 ICS 95    12 0.583 0.669    0.5   1  
## 3 TCS01     12 2.58  0.669    2.5   1
group_by(clones.7.fin, gen) %>%
  summarise(
    count = n(),
    mean = mean(nuez, na.rm = TRUE),
    sd = sd(nuez, na.rm = TRUE),
    median = median(nuez, na.rm = TRUE),
    IQR = IQR(nuez, na.rm = TRUE)
  )
## # A tibble: 3 × 6
##   gen    count  mean    sd median   IQR
##   <fct>  <int> <dbl> <dbl>  <dbl> <dbl>
## 1 EET8      12  1.83  1.27    1.5  1.25
## 2 ICS 95    12  1.58  1.08    2    1.25
## 3 TCS01     12  4.25  1.42    4    1.5
group_by(clones.7.fin, gen) %>%
  summarise(
    count = n(),
    mean = mean(madera, na.rm = TRUE),
    sd = sd(madera, na.rm = TRUE),
    median = median(madera, na.rm = TRUE),
    IQR = IQR(madera, na.rm = TRUE)
  )
## # A tibble: 3 × 6
##   gen    count  mean    sd median   IQR
##   <fct>  <int> <dbl> <dbl>  <dbl> <dbl>
## 1 EET8      12  1.42 0.793      2     1
## 2 ICS 95    12  1    0.426      1     0
## 3 TCS01     12  1.08 0.996      1     2
group_by(clones.7.fin, gen) %>%
  summarise(
    count = n(),
    mean = mean(herbal, na.rm = TRUE),
    sd = sd(herbal, na.rm = TRUE),
    median = median(herbal, na.rm = TRUE),
    IQR = IQR(herbal, na.rm = TRUE)
  )
## # A tibble: 3 × 6
##   gen    count  mean    sd median   IQR
##   <fct>  <int> <dbl> <dbl>  <dbl> <dbl>
## 1 EET8      12 0.833 0.835      1  1.25
## 2 ICS 95    12 0.583 0.515      1  1   
## 3 TCS01     12 1.83  1.59       2  3
#Anova
fit.ama<-aov(clones.7.fin$amargo~clones.7.fin$gen*clones.7.fin$trat)
summary(fit.ama)
##                                    Df Sum Sq Mean Sq F value   Pr(>F)    
## clones.7.fin$gen                    2  30.89  15.444   34.75 1.55e-08 ***
## clones.7.fin$trat                   1   4.00   4.000    9.00  0.00539 ** 
## clones.7.fin$gen:clones.7.fin$trat  2   6.00   3.000    6.75  0.00380 ** 
## Residuals                          30  13.33   0.444                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fit.ast<-aov(clones.7.fin$astringente~clones.7.fin$gen*clones.7.fin$trat)
summary(fit.ast)
##                                    Df Sum Sq Mean Sq F value   Pr(>F)    
## clones.7.fin$gen                    2  39.06  19.528  34.126 1.87e-08 ***
## clones.7.fin$trat                   1  10.03  10.028  17.524 0.000228 ***
## clones.7.fin$gen:clones.7.fin$trat  2   6.06   3.028   5.291 0.010758 *  
## Residuals                          30  17.17   0.572                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fit.acd<-aov(clones.7.fin$acido~clones.7.fin$gen*clones.7.fin$trat)
summary(fit.acd)
##                                    Df Sum Sq Mean Sq F value Pr(>F)
## clones.7.fin$gen                    2  1.556  0.7778   0.959  0.395
## clones.7.fin$trat                   1  0.111  0.1111   0.137  0.714
## clones.7.fin$gen:clones.7.fin$trat  2  1.556  0.7778   0.959  0.395
## Residuals                          30 24.333  0.8111
fit.cac<-aov(clones.7.fin$cacao~clones.7.fin$gen*clones.7.fin$trat)
summary(fit.cac)
##                                    Df Sum Sq Mean Sq F value   Pr(>F)    
## clones.7.fin$gen                    2 12.722   6.361   9.016 0.000859 ***
## clones.7.fin$trat                   1  1.361   1.361   1.929 0.175079    
## clones.7.fin$gen:clones.7.fin$trat  2 12.389   6.194   8.780 0.000996 ***
## Residuals                          30 21.167   0.706                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fit.frut<-aov(clones.7.fin$frutal~clones.7.fin$gen*clones.7.fin$trat)
summary(fit.frut)
##                                    Df Sum Sq Mean Sq F value   Pr(>F)    
## clones.7.fin$gen                    2   6.22   3.111   4.375   0.0215 *  
## clones.7.fin$trat                   1   1.00   1.000   1.406   0.2450    
## clones.7.fin$gen:clones.7.fin$trat  2  34.67  17.333  24.375 5.16e-07 ***
## Residuals                          30  21.33   0.711                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fit.flor<-aov(clones.7.fin$floral~clones.7.fin$gen*clones.7.fin$trat)
summary(fit.flor)
##                                    Df Sum Sq Mean Sq F value  Pr(>F)    
## clones.7.fin$gen                    2 23.722  11.861  17.941 7.5e-06 ***
## clones.7.fin$trat                   1  0.250   0.250   0.378   0.543    
## clones.7.fin$gen:clones.7.fin$trat  2  3.167   1.583   2.395   0.108    
## Residuals                          30 19.833   0.661                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fit.dul<-aov(clones.7.fin$dulce~clones.7.fin$gen*clones.7.fin$trat)
summary(fit.dul)
##                                    Df Sum Sq Mean Sq F value   Pr(>F)    
## clones.7.fin$gen                    2  26.00  13.000   19.02 4.62e-06 ***
## clones.7.fin$trat                   1  12.25  12.250   17.93 0.000200 ***
## clones.7.fin$gen:clones.7.fin$trat  2  14.00   7.000   10.24 0.000406 ***
## Residuals                          30  20.50   0.683                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fit.nuez<-aov(clones.7.fin$nuez~clones.7.fin$gen*clones.7.fin$trat)
summary(fit.nuez)
##                                    Df Sum Sq Mean Sq F value   Pr(>F)    
## clones.7.fin$gen                    2  52.06  26.028  22.099 1.26e-06 ***
## clones.7.fin$trat                   1   0.11   0.111   0.094  0.76085    
## clones.7.fin$gen:clones.7.fin$trat  2  17.39   8.694   7.382  0.00247 ** 
## Residuals                          30  35.33   1.178                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fit.mad<-aov(clones.7.fin$madera~clones.7.fin$gen*clones.7.fin$trat)
summary(fit.mad)
##                                    Df Sum Sq Mean Sq F value Pr(>F)
## clones.7.fin$gen                    2  1.167  0.5833   0.921  0.409
## clones.7.fin$trat                   1  0.444  0.4444   0.702  0.409
## clones.7.fin$gen:clones.7.fin$trat  2  0.389  0.1944   0.307  0.738
## Residuals                          30 19.000  0.6333
fit.her<-aov(clones.7.fin$herbal~clones.7.fin$gen*clones.7.fin$trat)
summary(fit.her)
##                                    Df Sum Sq Mean Sq F value Pr(>F)  
## clones.7.fin$gen                    2  10.50   5.250   4.749 0.0162 *
## clones.7.fin$trat                   1   0.03   0.028   0.025 0.8751  
## clones.7.fin$gen:clones.7.fin$trat  2   5.06   2.528   2.286 0.1191  
## Residuals                          30  33.17   1.106                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#gen
kruskal.test(amargo ~ gen, data = clones.7.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  amargo by gen
## Kruskal-Wallis chi-squared = 20.87, df = 2, p-value = 2.938e-05
kruskal.test(astringente ~ gen, data = clones.7.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  astringente by gen
## Kruskal-Wallis chi-squared = 19.523, df = 2, p-value = 5.762e-05
kruskal.test(acido ~ gen, data = clones.7.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  acido by gen
## Kruskal-Wallis chi-squared = 1.8205, df = 2, p-value = 0.4024
kruskal.test(cacao ~ gen, data = clones.7.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  cacao by gen
## Kruskal-Wallis chi-squared = 9.4108, df = 2, p-value = 0.009046
kruskal.test(frutal ~ gen, data = clones.7.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  frutal by gen
## Kruskal-Wallis chi-squared = 2.5129, df = 2, p-value = 0.2847
kruskal.test(floral ~ gen, data = clones.7.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  floral by gen
## Kruskal-Wallis chi-squared = 17.219, df = 2, p-value = 0.0001824
kruskal.test(dulce ~ gen, data = clones.7.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  dulce by gen
## Kruskal-Wallis chi-squared = 15.136, df = 2, p-value = 0.0005167
kruskal.test(nuez ~ gen, data = clones.7.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  nuez by gen
## Kruskal-Wallis chi-squared = 16.248, df = 2, p-value = 0.0002964
kruskal.test(madera ~ gen, data = clones.7.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  madera by gen
## Kruskal-Wallis chi-squared = 2.5996, df = 2, p-value = 0.2726
kruskal.test(herbal ~ gen, data = clones.7.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  herbal by gen
## Kruskal-Wallis chi-squared = 4.2588, df = 2, p-value = 0.1189
#trat
kruskal.test(amargo ~ trat, data = clones.7.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  amargo by trat
## Kruskal-Wallis chi-squared = 2.9798, df = 1, p-value = 0.08431
kruskal.test(astringente ~ trat, data = clones.7.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  astringente by trat
## Kruskal-Wallis chi-squared = 4.5403, df = 1, p-value = 0.03311
kruskal.test(acido ~ trat, data = clones.7.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  acido by trat
## Kruskal-Wallis chi-squared = 0.2219, df = 1, p-value = 0.6376
kruskal.test(cacao ~ trat, data = clones.7.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  cacao by trat
## Kruskal-Wallis chi-squared = 1.1942, df = 1, p-value = 0.2745
kruskal.test(frutal ~ trat, data = clones.7.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  frutal by trat
## Kruskal-Wallis chi-squared = 1.2131, df = 1, p-value = 0.2707
kruskal.test(floral ~ trat, data = clones.7.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  floral by trat
## Kruskal-Wallis chi-squared = 0.00028862, df = 1, p-value = 0.9864
kruskal.test(dulce ~ trat, data = clones.7.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  dulce by trat
## Kruskal-Wallis chi-squared = 5.9977, df = 1, p-value = 0.01432
kruskal.test(nuez ~ trat, data = clones.7.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  nuez by trat
## Kruskal-Wallis chi-squared = 0.46009, df = 1, p-value = 0.4976
kruskal.test(madera ~ trat, data = clones.7.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  madera by trat
## Kruskal-Wallis chi-squared = 0.9795, df = 1, p-value = 0.3223
kruskal.test(herbal ~ trat, data = clones.7.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  herbal by trat
## Kruskal-Wallis chi-squared = 0.18767, df = 1, p-value = 0.6649
#gentrat
kruskal.test(amargo ~ gentrat, data = clones.7.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  amargo by gentrat
## Kruskal-Wallis chi-squared = 27.004, df = 5, p-value = 5.693e-05
kruskal.test(astringente ~ gentrat, data = clones.7.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  astringente by gentrat
## Kruskal-Wallis chi-squared = 27.033, df = 5, p-value = 5.622e-05
kruskal.test(acido ~ gentrat, data = clones.7.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  acido by gentrat
## Kruskal-Wallis chi-squared = 4.2455, df = 5, p-value = 0.5146
kruskal.test(cacao ~ gentrat, data = clones.7.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  cacao by gentrat
## Kruskal-Wallis chi-squared = 19.682, df = 5, p-value = 0.001434
kruskal.test(frutal ~ gentrat, data = clones.7.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  frutal by gentrat
## Kruskal-Wallis chi-squared = 22.773, df = 5, p-value = 0.000373
kruskal.test(floral ~ gentrat, data = clones.7.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  floral by gentrat
## Kruskal-Wallis chi-squared = 19.343, df = 5, p-value = 0.001659
kruskal.test(dulce ~ gentrat, data = clones.7.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  dulce by gentrat
## Kruskal-Wallis chi-squared = 26.789, df = 5, p-value = 6.27e-05
kruskal.test(nuez ~ gentrat, data = clones.7.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  nuez by gentrat
## Kruskal-Wallis chi-squared = 21.56, df = 5, p-value = 0.0006346
kruskal.test(madera ~ gentrat, data = clones.7.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  madera by gentrat
## Kruskal-Wallis chi-squared = 4.3152, df = 5, p-value = 0.505
kruskal.test(herbal ~ gentrat, data = clones.7.fin)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  herbal by gentrat
## Kruskal-Wallis chi-squared = 9.3705, df = 5, p-value = 0.09517
#a posteriori
pairwise.wilcox.test(clones.7.fin$amargo, clones.7.fin$gen,
                     p.adjust.method = "BH")
## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties
## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  clones.7.fin$amargo and clones.7.fin$gen 
## 
##        EET8    ICS 95 
## ICS 95 0.21350 -      
## TCS01  0.00018 0.00018
## 
## P value adjustment method: BH
pairwise.wilcox.test(clones.7.fin$astringente, clones.7.fin$gen,
                     p.adjust.method = "BH")
## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties
## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  clones.7.fin$astringente and clones.7.fin$gen 
## 
##        EET8    ICS 95 
## ICS 95 1.00000 -      
## TCS01  0.00034 0.00029
## 
## P value adjustment method: BH
pairwise.wilcox.test(clones.7.fin$acido, clones.7.fin$gen,
                     p.adjust.method = "BH")
## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties
## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  clones.7.fin$acido and clones.7.fin$gen 
## 
##        EET8 ICS 95
## ICS 95 0.56 -     
## TCS01  0.62 0.73  
## 
## P value adjustment method: BH
pairwise.wilcox.test(clones.7.fin$cacao, clones.7.fin$gen,
                     p.adjust.method = "BH")
## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties
## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  clones.7.fin$cacao and clones.7.fin$gen 
## 
##        EET8  ICS 95
## ICS 95 0.011 -     
## TCS01  0.321 0.049 
## 
## P value adjustment method: BH
pairwise.wilcox.test(clones.7.fin$frutal, clones.7.fin$gen,
                     p.adjust.method = "BH")
## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties
## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  clones.7.fin$frutal and clones.7.fin$gen 
## 
##        EET8 ICS 95
## ICS 95 0.55 -     
## TCS01  0.55 0.32  
## 
## P value adjustment method: BH
pairwise.wilcox.test(clones.7.fin$floral, clones.7.fin$gen,
                     p.adjust.method = "BH")
## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties
## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  clones.7.fin$floral and clones.7.fin$gen 
## 
##        EET8    ICS 95 
## ICS 95 0.55615 -      
## TCS01  0.00329 0.00041
## 
## P value adjustment method: BH
pairwise.wilcox.test(clones.7.fin$dulce, clones.7.fin$gen,
                     p.adjust.method = "BH")
## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties
## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  clones.7.fin$dulce and clones.7.fin$gen 
## 
##        EET8    ICS 95 
## ICS 95 0.04518 -      
## TCS01  0.26794 0.00014
## 
## P value adjustment method: BH
pairwise.wilcox.test(clones.7.fin$nuez, clones.7.fin$gen,
                     p.adjust.method = "BH")
## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties
## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  clones.7.fin$nuez and clones.7.fin$gen 
## 
##        EET8   ICS 95
## ICS 95 0.8808 -     
## TCS01  0.0015 0.0010
## 
## P value adjustment method: BH
pairwise.wilcox.test(clones.7.fin$madera, clones.7.fin$gen,
                     p.adjust.method = "BH")
## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties
## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  clones.7.fin$madera and clones.7.fin$gen 
## 
##        EET8 ICS 95
## ICS 95 0.25 -     
## TCS01  0.49 1.00  
## 
## P value adjustment method: BH
pairwise.wilcox.test(clones.7.fin$herbal, clones.7.fin$gen,
                     p.adjust.method = "BH")
## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties

## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties
## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  clones.7.fin$herbal and clones.7.fin$gen 
## 
##        EET8 ICS 95
## ICS 95 0.53 -     
## TCS01  0.19 0.19  
## 
## P value adjustment method: BH
## Correlaciones para variables originales en tiempo 6 y 7
# Tiempo 6
phenom.6<-clones.6.fin %>%
  select(trat, amargo, astringente, acido, cacao, frutal, floral, dulce, nuez, madera, herbal
  ) %>%
  group_by(trat) %>%
  correlation(method = "spearman")
phenom6<-phenom.6 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 90 × 11
##    Group    Parameter1  Parameter2      rho    CI   CI_low CI_high     S       p
##    <chr>    <chr>       <chr>         <dbl> <dbl>    <dbl>   <dbl> <dbl>   <dbl>
##  1 "Large " amargo      astringen…  0.718    0.95  3.65e-1  0.890   273. 3.18e-2
##  2 "Large " amargo      acido       0.484    0.95  6.94e-3  0.781   500. 9.27e-1
##  3 "Large " amargo      cacao      -0.663    0.95 -8.66e-1 -0.270  1611. 9.37e-2
##  4 "Large " amargo      frutal     -0.667    0.95 -8.68e-1 -0.277  1616. 9.19e-2
##  5 "Large " amargo      floral     -0.724    0.95 -8.93e-1 -0.376  1671. 2.76e-2
##  6 "Large " amargo      dulce      -0.813    0.95 -9.30e-1 -0.548  1757. 1.80e-3
##  7 "Large " amargo      nuez       -0.700    0.95 -8.83e-1 -0.333  1647. 4.77e-2
##  8 "Large " amargo      madera      0.286    0.95 -2.23e-1  0.672   692. 1   e+0
##  9 "Large " amargo      herbal     -0.102    0.95 -5.54e-1  0.395  1068. 1   e+0
## 10 "Large " astringente acido       0.667    0.95  2.77e-1  0.868   322. 9.19e-2
## 11 "Large " astringente cacao      -0.619    0.95 -8.47e-1 -0.199  1569. 1.86e-1
## 12 "Large " astringente frutal     -0.689    0.95 -8.78e-1 -0.314  1637. 5.95e-2
## 13 "Large " astringente floral     -0.582    0.95 -8.30e-1 -0.144  1533. 3.26e-1
## 14 "Large " astringente dulce      -0.850    0.95 -9.45e-1 -0.627  1793. 3.52e-4
## 15 "Large " astringente nuez       -0.415    0.95 -7.46e-1  0.0788 1372. 1   e+0
## 16 "Large " astringente madera      0.252    0.95 -2.58e-1  0.652   725. 1   e+0
## 17 "Large " astringente herbal     -0.0880   0.95 -5.44e-1  0.408  1054. 1   e+0
## 18 "Large " acido       cacao      -0.277    0.95 -6.67e-1  0.232  1237. 1   e+0
## 19 "Large " acido       frutal     -0.339    0.95 -7.03e-1  0.167  1297. 1   e+0
## 20 "Large " acido       floral     -0.203    0.95 -6.21e-1  0.305  1166. 1   e+0
## 21 "Large " acido       dulce      -0.521    0.95 -8.00e-1 -0.0571 1474. 6.36e-1
## 22 "Large " acido       nuez       -0.0844   0.95 -5.41e-1  0.411  1051. 1   e+0
## 23 "Large " acido       madera      0.0524   0.95 -4.37e-1  0.518   918. 1   e+0
## 24 "Large " acido       herbal     -0.259    0.95 -6.56e-1  0.251  1220. 1   e+0
## 25 "Large " cacao       frutal      0.642    0.95  2.36e-1  0.857   347. 1.34e-1
## 26 "Large " cacao       floral      0.641    0.95  2.34e-1  0.857   348. 1.34e-1
## 27 "Large " cacao       dulce       0.735    0.95  3.97e-1  0.898   256. 2.12e-2
## 28 "Large " cacao       nuez        0.540    0.95  8.32e-2  0.809   446. 5.17e-1
## 29 "Large " cacao       madera     -0.568    0.95 -8.23e-1 -0.123  1519. 3.63e-1
## 30 "Large " cacao       herbal     -0.0698   0.95 -5.31e-1  0.423  1037. 1   e+0
## 31 "Large " frutal      floral      0.625    0.95  2.08e-1  0.849   364. 1.73e-1
## 32 "Large " frutal      dulce       0.664    0.95  2.71e-1  0.867   326. 9.37e-2
## 33 "Large " frutal      nuez        0.746    0.95  4.15e-1  0.902   246. 1.64e-2
## 34 "Large " frutal      madera     -0.318    0.95 -6.91e-1  0.189  1277. 1   e+0
## 35 "Large " frutal      herbal      0.144    0.95 -3.59e-1  0.582   830. 1   e+0
## 36 "Large " floral      dulce       0.579    0.95  1.39e-1  0.828   408. 3.31e-1
## 37 "Large " floral      nuez        0.487    0.95  1.13e-2  0.783   497. 9.27e-1
## 38 "Large " floral      madera     -0.321    0.95 -6.93e-1  0.186  1280. 1   e+0
## 39 "Large " floral      herbal     -0.0467   0.95 -5.14e-1  0.442  1014. 1   e+0
## 40 "Large " dulce       nuez        0.572    0.95  1.29e-1  0.825   415. 3.55e-1
## 41 "Large " dulce       madera     -0.355    0.95 -7.12e-1  0.149  1313. 1   e+0
## 42 "Large " dulce       herbal      0.00114  0.95 -4.78e-1  0.479   968. 1   e+0
## 43 "Large " nuez        madera     -0.393    0.95 -7.34e-1  0.105  1350. 1   e+0
## 44 "Large " nuez        herbal     -0.0641   0.95 -5.26e-1  0.428  1031. 1   e+0
## 45 "Large " madera      herbal      0.342    0.95 -1.64e-1  0.705   638. 1   e+0
## 46 "Small"  amargo      astringen…  0.478    0.95 -6.79e-4  0.778   506. 1   e+0
## 47 "Small"  amargo      acido      -0.140    0.95 -5.80e-1  0.363  1105. 1   e+0
## 48 "Small"  amargo      cacao      -0.490    0.95 -7.84e-1 -0.0148 1444. 1   e+0
## 49 "Small"  amargo      frutal     -0.0956   0.95 -5.49e-1  0.401  1062. 1   e+0
## 50 "Small"  amargo      floral     -0.497    0.95 -7.88e-1 -0.0242 1451. 1   e+0
## 51 "Small"  amargo      dulce      -0.0555   0.95 -5.20e-1  0.435  1023. 1   e+0
## 52 "Small"  amargo      nuez       -0.276    0.95 -6.66e-1  0.233  1236. 1   e+0
## 53 "Small"  amargo      madera      0.0650   0.95 -4.27e-1  0.527   906. 1   e+0
## 54 "Small"  amargo      herbal      0.216    0.95 -2.92e-1  0.630   759. 1   e+0
## 55 "Small"  astringente acido       0.100    0.95 -3.97e-1  0.552   872. 1   e+0
## 56 "Small"  astringente cacao      -0.00413  0.95 -4.82e-1  0.475   973. 1   e+0
## 57 "Small"  astringente frutal     -0.0909   0.95 -5.46e-1  0.405  1057. 1   e+0
## 58 "Small"  astringente floral     -0.199    0.95 -6.18e-1  0.309  1162. 1   e+0
## 59 "Small"  astringente dulce       0.251    0.95 -2.59e-1  0.651   726. 1   e+0
## 60 "Small"  astringente nuez        0.251    0.95 -2.59e-1  0.651   726. 1   e+0
## 61 "Small"  astringente madera      0.384    0.95 -1.16e-1  0.728   597. 1   e+0
## 62 "Small"  astringente herbal      0.225    0.95 -2.84e-1  0.635   751. 1   e+0
## 63 "Small"  acido       cacao       0.0257   0.95 -4.58e-1  0.498   944. 1   e+0
## 64 "Small"  acido       frutal     -0.553    0.95 -8.16e-1 -0.101  1505. 6.43e-1
## 65 "Small"  acido       floral     -0.302    0.95 -6.82e-1  0.207  1261. 1   e+0
## 66 "Small"  acido       dulce      -0.517    0.95 -7.98e-1 -0.0506 1470. 1   e+0
## 67 "Small"  acido       nuez       -0.234    0.95 -6.41e-1  0.275  1196. 1   e+0
## 68 "Small"  acido       madera     -0.284    0.95 -6.71e-1  0.225  1244. 1   e+0
## 69 "Small"  acido       herbal     -0.408    0.95 -7.41e-1  0.0880 1364. 1   e+0
## 70 "Small"  cacao       frutal      0.516    0.95  4.94e-2  0.797   469. 1   e+0
## 71 "Small"  cacao       floral      0.650    0.95  2.49e-1  0.861   339. 1.50e-1
## 72 "Small"  cacao       dulce       0.454    0.95 -3.09e-2  0.766   529. 1   e+0
## 73 "Small"  cacao       nuez        0.619    0.95  1.99e-1  0.847   369. 2.54e-1
## 74 "Small"  cacao       madera      0.282    0.95 -2.27e-1  0.670   696. 1   e+0
## 75 "Small"  cacao       herbal      0.207    0.95 -3.02e-1  0.623   769. 1   e+0
## 76 "Small"  frutal      floral      0.819    0.95  5.60e-1  0.932   175. 1.44e-3
## 77 "Small"  frutal      dulce       0.569    0.95  1.24e-1  0.823   418. 5.38e-1
## 78 "Small"  frutal      nuez        0.697    0.95  3.27e-1  0.881   294. 5.81e-2
## 79 "Small"  frutal      madera      0.344    0.95 -1.61e-1  0.706   636. 1   e+0
## 80 "Small"  frutal      herbal      0.565    0.95  1.18e-1  0.821   422. 5.57e-1
## 81 "Small"  floral      dulce       0.356    0.95 -1.47e-1  0.713   624. 1   e+0
## 82 "Small"  floral      nuez        0.624    0.95  2.08e-1  0.849   364. 2.35e-1
## 83 "Small"  floral      madera      0.412    0.95 -8.32e-2  0.744   570. 1   e+0
## 84 "Small"  floral      herbal      0.446    0.95 -4.16e-2  0.762   537. 1   e+0
## 85 "Small"  dulce       nuez        0.616    0.95  1.95e-1  0.845   372. 2.60e-1
## 86 "Small"  dulce       madera      0.484    0.95  7.59e-3  0.782   500. 1   e+0
## 87 "Small"  dulce       herbal      0.262    0.95 -2.48e-1  0.658   715. 1   e+0
## 88 "Small"  nuez        madera      0.318    0.95 -1.89e-1  0.691   661. 1   e+0
## 89 "Small"  nuez        herbal      0.439    0.95 -4.98e-2  0.758   543. 1   e+0
## 90 "Small"  madera      herbal      0.489    0.95  1.44e-2  0.784   495. 1   e+0
## # … with 2 more variables: Method <chr>, n_Obs <int>
write.csv(phenom6, "~/Library/CloudStorage/GoogleDrive-icarounam@gmail.com/Mi unidad/Agrosavia/Colaboraciones/Lucero/data/phenom6.csv")


# Tiempo 7
phenom.7<-clones.7.fin %>%
  select(trat, amargo, astringente, acido, cacao, frutal, floral, dulce, nuez, madera, herbal
  ) %>%
  group_by(trat) %>%
  correlation(method = "spearman")
phenom7<-phenom.7 %>% as_tibble() %>% print(n=Inf)
## # A tibble: 90 × 11
##    Group   Parameter1 Parameter2      rho    CI   CI_low  CI_high      S       p
##    <chr>   <chr>      <chr>         <dbl> <dbl>    <dbl>    <dbl>  <dbl>   <dbl>
##  1 "Large… amargo     astringen…  0.788    0.95  4.98e-1  0.920    205.  4.16e-3
##  2 "Large… amargo     acido       0.00850  0.95 -4.72e-1  0.485    961.  1   e+0
##  3 "Large… amargo     cacao      -0.409    0.95 -7.42e-1  0.0863  1365.  1   e+0
##  4 "Large… amargo     frutal     -0.805    0.95 -9.26e-1 -0.530   1749.  2.39e-3
##  5 "Large… amargo     floral     -0.731    0.95 -8.96e-1 -0.389   1677.  1.98e-2
##  6 "Large… amargo     dulce      -0.568    0.95 -8.23e-1 -0.123   1519.  3.62e-1
##  7 "Large… amargo     nuez       -0.747    0.95 -9.03e-1 -0.417   1692.  1.45e-2
##  8 "Large… amargo     madera      0.260    0.95 -2.49e-1  0.657    717.  1   e+0
##  9 "Large… amargo     herbal     -0.113    0.95 -5.61e-1  0.386   1079.  1   e+0
## 10 "Large… astringen… acido      -0.0574   0.95 -5.22e-1  0.433   1025.  1   e+0
## 11 "Large… astringen… cacao      -0.710    0.95 -8.87e-1 -0.351   1657.  3.07e-2
## 12 "Large… astringen… frutal     -0.782    0.95 -9.17e-1 -0.485   1727.  5.05e-3
## 13 "Large… astringen… floral     -0.714    0.95 -8.89e-1 -0.357   1661.  2.91e-2
## 14 "Large… astringen… dulce      -0.737    0.95 -8.99e-1 -0.399   1683.  1.74e-2
## 15 "Large… astringen… nuez       -0.887    0.95 -9.59e-1 -0.711   1829.  3.98e-5
## 16 "Large… astringen… madera      0.167    0.95 -3.38e-1  0.598    807.  1   e+0
## 17 "Large… astringen… herbal      0.0957   0.95 -4.01e-1  0.549    876.  1   e+0
## 18 "Large… acido      cacao       0.154    0.95 -3.50e-1  0.589    820.  1   e+0
## 19 "Large… acido      frutal      0.0997   0.95 -3.98e-1  0.552    872.  1   e+0
## 20 "Large… acido      floral      0.207    0.95 -3.02e-1  0.623    769.  1   e+0
## 21 "Large… acido      dulce       0.238    0.95 -2.71e-1  0.643    738.  1   e+0
## 22 "Large… acido      nuez        0.118    0.95 -3.82e-1  0.564    855.  1   e+0
## 23 "Large… acido      madera     -0.173    0.95 -6.02e-1  0.333   1136.  1   e+0
## 24 "Large… acido      herbal     -0.213    0.95 -6.28e-1  0.295   1176.  1   e+0
## 25 "Large… cacao      frutal      0.625    0.95  2.10e-1  0.850    363.  1.60e-1
## 26 "Large… cacao      floral      0.498    0.95  2.57e-2  0.789    486.  8.85e-1
## 27 "Large… cacao      dulce       0.624    0.95  2.07e-1  0.849    365.  1.60e-1
## 28 "Large… cacao      nuez        0.695    0.95  3.24e-1  0.880    296.  4.28e-2
## 29 "Large… cacao      madera     -0.0193   0.95 -4.93e-1  0.463    988.  1   e+0
## 30 "Large… cacao      herbal     -0.273    0.95 -6.65e-1  0.236   1234.  1   e+0
## 31 "Large… frutal     floral      0.859    0.95  6.45e-1  0.948    137.  2.19e-4
## 32 "Large… frutal     dulce       0.729    0.95  3.85e-1  0.895    263.  2.04e-2
## 33 "Large… frutal     nuez        0.898    0.95  7.35e-1  0.963     98.9 1.93e-5
## 34 "Large… frutal     madera     -0.0382   0.95 -5.07e-1  0.448   1006.  1   e+0
## 35 "Large… frutal     herbal     -0.0777   0.95 -5.36e-1  0.416   1044.  1   e+0
## 36 "Large… floral     dulce       0.680    0.95  2.99e-1  0.874    310.  5.67e-2
## 37 "Large… floral     nuez        0.743    0.95  4.10e-1  0.901    249.  1.53e-2
## 38 "Large… floral     madera     -0.0560   0.95 -5.21e-1  0.434   1023.  1   e+0
## 39 "Large… floral     herbal      0.0401   0.95 -4.47e-1  0.509    930.  1   e+0
## 40 "Large… dulce      nuez        0.744    0.95  4.12e-1  0.901    248.  1.53e-2
## 41 "Large… dulce      madera     -0.266    0.95 -6.60e-1  0.243   1227.  1   e+0
## 42 "Large… dulce      herbal     -0.0147   0.95 -4.90e-1  0.467    983.  1   e+0
## 43 "Large… nuez       madera     -0.0914   0.95 -5.46e-1  0.405   1058.  1   e+0
## 44 "Large… nuez       herbal     -0.0285   0.95 -5.00e-1  0.456    997.  1   e+0
## 45 "Large… madera     herbal     -0.571    0.95 -8.24e-1 -0.128   1523.  3.57e-1
## 46 "Small" amargo     astringen…  0.478    0.95 -1.97e-5  0.779    505.  1   e+0
## 47 "Small" amargo     acido       0.151    0.95 -3.53e-1  0.587    822.  1   e+0
## 48 "Small" amargo     cacao       0.0115   0.95 -4.70e-1  0.487    958.  1   e+0
## 49 "Small" amargo     frutal      0.268    0.95 -2.41e-1  0.662    709.  1   e+0
## 50 "Small" amargo     floral     -0.325    0.95 -6.96e-1  0.181   1284.  1   e+0
## 51 "Small" amargo     dulce      -0.0557   0.95 -5.20e-1  0.434   1023.  1   e+0
## 52 "Small" amargo     nuez       -0.143    0.95 -5.82e-1  0.360   1108.  1   e+0
## 53 "Small" amargo     madera     -0.0134   0.95 -4.89e-1  0.468    982.  1   e+0
## 54 "Small" amargo     herbal     -0.141    0.95 -5.80e-1  0.362   1106.  1   e+0
## 55 "Small" astringen… acido       0.0831   0.95 -4.12e-1  0.540    889.  1   e+0
## 56 "Small" astringen… cacao      -0.259    0.95 -6.56e-1  0.251   1220.  1   e+0
## 57 "Small" astringen… frutal      0.302    0.95 -2.06e-1  0.682    676.  1   e+0
## 58 "Small" astringen… floral     -0.612    0.95 -8.44e-1 -0.189   1562.  2.97e-1
## 59 "Small" astringen… dulce      -0.481    0.95 -7.80e-1 -0.00324 1435.  1   e+0
## 60 "Small" astringen… nuez       -0.343    0.95 -7.05e-1  0.163   1301.  1   e+0
## 61 "Small" astringen… madera      0.210    0.95 -2.98e-1  0.626    765.  1   e+0
## 62 "Small" astringen… herbal     -0.424    0.95 -7.50e-1  0.0679  1380.  1   e+0
## 63 "Small" acido      cacao       0.129    0.95 -3.73e-1  0.572    844.  1   e+0
## 64 "Small" acido      frutal      0.160    0.95 -3.45e-1  0.593    814.  1   e+0
## 65 "Small" acido      floral     -0.317    0.95 -6.91e-1  0.190   1276.  1   e+0
## 66 "Small" acido      dulce      -0.00847  0.95 -4.85e-1  0.472    977.  1   e+0
## 67 "Small" acido      nuez        0.325    0.95 -1.82e-1  0.695    654.  1   e+0
## 68 "Small" acido      madera      0.302    0.95 -2.06e-1  0.682    676.  1   e+0
## 69 "Small" acido      herbal     -0.548    0.95 -8.13e-1 -0.0938  1500.  7.82e-1
## 70 "Small" cacao      frutal      0.454    0.95 -3.17e-2  0.766    529.  1   e+0
## 71 "Small" cacao      floral      0.0901   0.95 -4.06e-1  0.545    882.  1   e+0
## 72 "Small" cacao      dulce       0.669    0.95  2.80e-1  0.869    321.  1.06e-1
## 73 "Small" cacao      nuez        0.187    0.95 -3.20e-1  0.611    788.  1   e+0
## 74 "Small" cacao      madera      0.117    0.95 -3.83e-1  0.564    856.  1   e+0
## 75 "Small" cacao      herbal      0.0592   0.95 -4.32e-1  0.523    912.  1   e+0
## 76 "Small" frutal     floral     -0.313    0.95 -6.88e-1  0.194   1272.  1   e+0
## 77 "Small" frutal     dulce       0.0744   0.95 -4.19e-1  0.534    897.  1   e+0
## 78 "Small" frutal     nuez       -0.200    0.95 -6.19e-1  0.308   1163.  1   e+0
## 79 "Small" frutal     madera      0.206    0.95 -3.02e-1  0.623    769.  1   e+0
## 80 "Small" frutal     herbal     -0.108    0.95 -5.58e-1  0.391   1074.  1   e+0
## 81 "Small" floral     dulce       0.214    0.95 -2.95e-1  0.628    762.  1   e+0
## 82 "Small" floral     nuez        0.306    0.95 -2.02e-1  0.685    672.  1   e+0
## 83 "Small" floral     madera     -0.164    0.95 -5.96e-1  0.341   1128.  1   e+0
## 84 "Small" floral     herbal      0.672    0.95  2.85e-1  0.870    318.  1.02e-1
## 85 "Small" dulce      nuez        0.197    0.95 -3.11e-1  0.617    778.  1   e+0
## 86 "Small" dulce      madera      0.172    0.95 -3.34e-1  0.601    803.  1   e+0
## 87 "Small" dulce      herbal      0.392    0.95 -1.07e-1  0.733    589.  1   e+0
## 88 "Small" nuez       madera      0.205    0.95 -3.03e-1  0.623    770.  1   e+0
## 89 "Small" nuez       herbal      0.0651   0.95 -4.27e-1  0.527    906.  1   e+0
## 90 "Small" madera     herbal     -0.00858  0.95 -4.85e-1  0.472    977.  1   e+0
## # … with 2 more variables: Method <chr>, n_Obs <int>
write.csv(phenom7, "~/Library/CloudStorage/GoogleDrive-icarounam@gmail.com/Mi unidad/Agrosavia/Colaboraciones/Lucero/data/phenom7.csv")

##Gráficos radar
# 144 hours
radar6<-group_by(clones.6.fin, gen) %>%
  summarise_at(vars(amargo:herbal), median, na.rm = TRUE) %>%
  rename(Bitter=amargo, Astringent=astringente, Acid=acido, Cocoa=cacao,Fruity=frutal, 
         Floral=floral, Sweet=dulce, Nut=nuez, Wood=madera, Herbal=herbal) %>%
  column_to_rownames(var = "gen") %>% head()
radar6 <-rbind(rep(7,10) , rep(0,10) , radar6)
radar6
##        Bitter Astringent Acid Cocoa Fruity Floral Sweet Nut Wood Herbal
## 1         7.0        7.0  7.0     7    7.0      7     7 7.0  7.0    7.0
## 2         0.0        0.0  0.0     0    0.0      0     0 0.0  0.0    0.0
## EET8      5.0        4.5  4.5     6    3.0      2     1 2.0  1.5    1.0
## ICS 95    6.5        6.0  4.0     3    1.5      0     0 1.0  1.5    1.5
## TCS01     5.0        4.0  3.0     6    5.0      3     4 3.5  1.5    2.0
# Color vector
colors_border=c( rgb(0.2,0.5,0.5,0.9), rgb(0.8,0.2,0.5,0.9) , rgb(0.7,0.5,0.1,0.9) )
colors_in=c( rgb(0.2,0.5,0.5,0.4), rgb(0.8,0.2,0.5,0.4) , rgb(0.7,0.5,0.1,0.4) )

radarchart(radar6, axistype=1, seg = 7,
            #custom polygon
            pcol=colors_border , pfcol=colors_in , plwd=4 , plty=1,
            #custom the grid
            cglcol="grey", cglty=1, axislabcol="grey", caxislabels=seq(0,7,1), calcex=0.8, cglwd=0.8,
            #custom labels
            vlcex=0.8, )

legend(x=1.5, y=1, legend = rownames(radar6[-c(1,2),]), bty = "n", pch=20 , col=colors_in , cex=0.8, pt.cex=1)

# 168 hours

radar7<-group_by(clones.7.fin, gen) %>%
  summarise_at(vars(amargo:herbal), median, na.rm = TRUE) %>%
  rename(Bitter=amargo, Astringent=astringente, Acid=acido, Cocoa=cacao,Fruity=frutal, 
         Floral=floral, Sweet=dulce, Nut=nuez, Wood=madera, Herbal=herbal) %>%
  column_to_rownames(var = "gen") %>% head()
radar7 <-rbind(rep(7,10) , rep(0,10) , radar7)
radar7
##        Bitter Astringent Acid Cocoa Fruity Floral Sweet Nut Wood Herbal
## 1           7          7  7.0     7    7.0      7   7.0 7.0    7      7
## 2           0          0  0.0     0    0.0      0   0.0 0.0    0      0
## EET8        6          5  4.0     5    2.5      1   2.0 1.5    2      1
## ICS 95      5          5  3.5     3    2.0      1   0.5 2.0    1      1
## TCS01       4          3  3.5     4    3.0      3   2.5 4.0    1      2
# Color vector
colors_border=c( rgb(0.2,0.5,0.5,0.9), rgb(0.8,0.2,0.5,0.9) , rgb(0.7,0.5,0.1,0.9) )
colors_in=c( rgb(0.2,0.5,0.5,0.4), rgb(0.8,0.2,0.5,0.4) , rgb(0.7,0.5,0.1,0.4) )

radarchart(radar7, axistype=1, seg = 7,
           #custom polygon
           pcol=colors_border , pfcol=colors_in , plwd=4 , plty=1,
           #custom the grid
           cglcol="grey", cglty=1, axislabcol="grey", caxislabels=seq(0,7,1), calcex=0.8, cglwd=0.8,
           #custom labels
           vlcex=0.8)

legend(x=1.5, y=1, legend = rownames(radar7[-c(1,2),]), bty = "n", pch=20 , col=colors_in , cex=0.8, pt.cex=1)