\[ m=\lim_{x \to a} \frac {f(x)-f(a)}{x-a} \]
\[ v(a)=\lim_{h \to 0} \frac
{f(a+h)-f(a)}{h} \]
\[ f'(a)=\lim_{h \to 0} \frac
{f(a+h)-f(a)}{h} \]
\[ f'(a)=\lim_{x \to a} \frac
{f(x)-f(a)}{x-a} \]
\[ f'(a)=\lim_{h \to 0} \frac
{f(a+h)-f(a)}{h} \]
\[ f'(x)=\lim_{h \to 0} \frac
{f(x+h)-f(x)}{h} \]
\[ f'(x)=y'=\frac {dy}{dx}=\frac
{df}{dx}=\frac {d}{dx}f(x)=Df(x)=D_xf(x) \]
\[ \frac {d}{dx}(c)=0 \]
\[ \frac {d}{dx}(x^n)=nx^{n-1} \]
\[ \frac {d}{dx}[cf(x)]=cf'(x)
\]
\[ \frac
{d}{dx}\left[f(x)\,\pm\,g(x)\right]=f'(x)\,\pm\,g'(x) \]
\[ \frac
{d}{dx}\left[f(x)g(x)\right]={\color{red}{f'(x)}}g(x)+f(x){\color{red}{g'(x)}}
\]
\[ \frac {d}{dx}\left[\frac
{f(x)}{g(x)}\right]=\frac
{{\color{red}{f'(x)}}g(x)-f(x){\color{red}{g'(x)}}}{\left[
{g(x)}\right]^2} \]
\[ \frac {d}{dx}(x^n)=nx^{n-1} \]
\[\color{red}{\lim_{\theta \to 0}
\frac{\sin \theta}{\theta} = 1} \]
\[\color{red}{\lim_{\theta \to 0} \frac{\cos
\theta-1}{\theta} = 0} \]
\[F'(x)=f'(g(x))\cdot
g'(x)\]
\[ \frac {d}{dx}(u^n)=nu^{n-1}\frac {du}{dx} \]
\[ \frac
{d}{dx}[g(x)]^n=n[g(x)]^{n-1}g'(x) \]
隱函數微分 (Implicit Differentiation) Math’s Fun Advance https://www.mathsisfun.com/calculus/implicit-differentiation.html
Reference
Essential Calculus, metric edition 2e, (2022) James Stewart, Daniel K.
Clegg, Saleem Watson, Cengage Learning.