Four-Factor Model. Path Diagram I

Model the WAIS-III IQ Scale (Wechsler Adult Intelligence Scale version III)

Path Diagram I

Any Heywood Cases?

A Heywood case occurs a) when the estimation of the correlation between variables is over the absolute value of 1, or out of bounds, or b) when negative variances are estimated for the model. Generally, correlation errors happen on the latent variables and negative variances occur in the error terms.

The output summary indicates a problem with the correlation between perceptual organization and processing speed (Std.all = 1.031).

lavaan 0.6-12 ended normally after 153 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        30

  Number of observations                           300

Model Test User Model:
                                                      
  Test statistic                               233.268
  Degrees of freedom                                48
  P-value (Chi-square)                           0.000

Model Test Baseline Model:

  Test statistic                              1042.916
  Degrees of freedom                                66
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.810
  Tucker-Lewis Index (TLI)                       0.739

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -9939.800
  Loglikelihood unrestricted model (H1)      -9823.166
                                                      
  Akaike (AIC)                               19939.599
  Bayesian (BIC)                             20050.713
  Sample-size adjusted Bayesian (BIC)        19955.570

Root Mean Square Error of Approximation:

  RMSEA                                          0.113
  90 Percent confidence interval - lower         0.099
  90 Percent confidence interval - upper         0.128
  P-value RMSEA <= 0.05                          0.000

Standardized Root Mean Square Residual:

  SRMR                                           0.073

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model          Structured

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)
  verbalcomp =~                                       
    vocab             1.000                           
    simil             0.296    0.031    9.470    0.000
    inform            0.450    0.043   10.483    0.000
    compreh           0.315    0.035    8.986    0.000
  workingmemory =~                                    
    arith             1.000                           
    digspan           0.875    0.137    6.373    0.000
    lnseq             0.225    0.106    2.130    0.033
  perceptorg =~                                       
    piccomp           1.000                           
    block             3.988    0.421    9.477    0.000
    matrixreason      0.909    0.127    7.171    0.000
  processing =~                                       
    digsym            1.000                           
    symbolsearch      1.065    0.300    3.547    0.000
   Std.lv  Std.all
                  
    6.282    0.879
    1.859    0.581
    2.825    0.645
    1.979    0.551
                  
    2.530    0.845
    2.213    0.561
    0.570    0.142
                  
    1.391    0.596
    5.546    0.719
    1.264    0.494
                  
    2.809    0.239
    2.990    0.724

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)
  verbalcomp ~~                                       
    workingmemory     6.120    1.232    4.969    0.000
    perceptorg        5.644    0.868    6.503    0.000
    processing       10.050    3.150    3.190    0.001
  workingmemory ~~                                    
    perceptorg        2.437    0.371    6.561    0.000
    processing        2.701    0.984    2.745    0.006
  perceptorg ~~                                       
    processing        4.027    1.200    3.356    0.001
   Std.lv  Std.all
                  
    0.385    0.385
    0.646    0.646
    0.570    0.570
                  
    0.693    0.693
    0.380    0.380
                  
    1.031    1.031

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .vocab            11.573    2.656    4.357    0.000
   .simil             6.792    0.620   10.951    0.000
   .inform           11.201    1.084   10.330    0.000
   .compreh           8.969    0.804   11.157    0.000
   .arith             2.560    0.901    2.842    0.004
   .digspan          10.653    1.102    9.666    0.000
   .lnseq            15.750    1.294   12.173    0.000
   .piccomp           3.505    0.323   10.851    0.000
   .block            28.761    3.207    8.968    0.000
   .matrixreason      4.957    0.431   11.509    0.000
   .digsym          130.314   10.847   12.014    0.000
   .symbolsearch      8.127    2.480    3.277    0.001
    verbalcomp       39.459    4.757    8.294    0.000
    workingmemory     6.399    1.122    5.703    0.000
    perceptorg        1.934    0.371    5.211    0.000
    processing        7.889    4.309    1.831    0.067
   Std.lv  Std.all
   11.573    0.227
    6.792    0.663
   11.201    0.584
    8.969    0.696
    2.560    0.286
   10.653    0.685
   15.750    0.980
    3.505    0.644
   28.761    0.483
    4.957    0.756
  130.314    0.943
    8.127    0.476
    1.000    1.000
    1.000    1.000
    1.000    1.000
    1.000    1.000

R-Square:
                   Estimate
    vocab             0.773
    simil             0.337
    inform            0.416
    compreh           0.304
    arith             0.714
    digspan           0.315
    lnseq             0.020
    piccomp           0.356
    block             0.517
    matrixreason      0.244
    digsym            0.057
    symbolsearch      0.524

Model Update I. Three-Factor Model

In order to fix a highly correlated set of latent variables, you should collapse those two variables into one latent variable. This makes the original Four-Factor Model a Three-Factor Model without Heywood Cases, as you can verify in the summary output.

lavaan 0.6-12 ended normally after 110 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        27

  Number of observations                           300

Model Test User Model:
                                                      
  Test statistic                               252.809
  Degrees of freedom                                51
  P-value (Chi-square)                           0.000

Model Test Baseline Model:

  Test statistic                              1042.916
  Degrees of freedom                                66
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.793
  Tucker-Lewis Index (TLI)                       0.733

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -9949.570
  Loglikelihood unrestricted model (H1)      -9823.166
                                                      
  Akaike (AIC)                               19953.141
  Bayesian (BIC)                             20053.143
  Sample-size adjusted Bayesian (BIC)        19967.515

Root Mean Square Error of Approximation:

  RMSEA                                          0.115
  90 Percent confidence interval - lower         0.101
  90 Percent confidence interval - upper         0.129
  P-value RMSEA <= 0.05                          0.000

Standardized Root Mean Square Residual:

  SRMR                                           0.076

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model          Structured

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)
  verbalcomp =~                                       
    vocab             1.000                           
    simil             0.296    0.031    9.483    0.000
    inform            0.449    0.043   10.481    0.000
    compreh           0.315    0.035    8.999    0.000
  workingmemory =~                                    
    arith             1.000                           
    digspan           0.881    0.152    5.786    0.000
    lnseq             0.205    0.107    1.920    0.055
  performance =~                                      
    piccomp           1.000                           
    block             3.739    0.390    9.583    0.000
    matrixreason      0.832    0.117    7.099    0.000
    digsym            1.603    0.507    3.160    0.002
    symbolsearch      1.880    0.204    9.236    0.000
   Std.lv  Std.all
                  
    6.281    0.879
    1.861    0.581
    2.822    0.644
    1.981    0.552
                  
    2.528    0.844
    2.227    0.565
    0.518    0.129
                  
    1.517    0.650
    5.672    0.735
    1.262    0.493
    2.431    0.207
    2.852    0.690

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)
  verbalcomp ~~                                       
    workingmemory     6.132    1.234    4.970    0.000
    performance       5.892    0.886    6.647    0.000
  workingmemory ~~                                    
    performance       2.227    0.362    6.149    0.000
   Std.lv  Std.all
                  
    0.386    0.386
    0.618    0.618
                  
    0.581    0.581

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .vocab            11.577    2.651    4.367    0.000
   .simil             6.787    0.620   10.950    0.000
   .inform           11.218    1.085   10.342    0.000
   .compreh           8.962    0.803   11.155    0.000
   .arith             2.571    1.014    2.535    0.011
   .digspan          10.590    1.161    9.121    0.000
   .lnseq            15.807    1.297   12.183    0.000
   .piccomp           3.138    0.317    9.913    0.000
   .block            27.343    3.226    8.476    0.000
   .matrixreason      4.960    0.441   11.243    0.000
   .digsym          132.291   10.925   12.109    0.000
   .symbolsearch      8.936    0.957    9.333    0.000
    verbalcomp       39.455    4.754    8.299    0.000
    workingmemory     6.388    1.215    5.259    0.000
    performance       2.301    0.408    5.646    0.000
   Std.lv  Std.all
   11.577    0.227
    6.787    0.662
   11.218    0.585
    8.962    0.696
    2.571    0.287
   10.590    0.681
   15.807    0.983
    3.138    0.577
   27.343    0.459
    4.960    0.757
  132.291    0.957
    8.936    0.524
    1.000    1.000
    1.000    1.000
    1.000    1.000

R-Square:
                   Estimate
    vocab             0.773
    simil             0.338
    inform            0.415
    compreh           0.304
    arith             0.713
    digspan           0.319
    lnseq             0.017
    piccomp           0.423
    block             0.541
    matrixreason      0.243
    digsym            0.043
    symbolsearch      0.476

Path Diagram II

The plot shows that some of the loadings are not very strong (lighter shading), which indicate some of the manifest variables not measuring their latent variable as expected.

Path Diagram II

Model Update II

Once the model is stable, you can look for potential areas to improve the model by exploring the loadings and fit indices.

Overall, the model fit is poor, as the goodness-of-fit measures with CFI and TLI are lower than 0.8, while the RMSEA is higher than 0.1, and SRMR is OK (lower than 0.1).

Fit Statistics

lavaan 0.6-12 ended normally after 110 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        27

  Number of observations                           300

Model Test User Model:
                                                      
  Test statistic                               252.809
  Degrees of freedom                                51
  P-value (Chi-square)                           0.000

Model Test Baseline Model:

  Test statistic                              1042.916
  Degrees of freedom                                66
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.793
  Tucker-Lewis Index (TLI)                       0.733

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -9949.570
  Loglikelihood unrestricted model (H1)      -9823.166
                                                      
  Akaike (AIC)                               19953.141
  Bayesian (BIC)                             20053.143
  Sample-size adjusted Bayesian (BIC)        19967.515

Root Mean Square Error of Approximation:

  RMSEA                                          0.115
  90 Percent confidence interval - lower         0.101
  90 Percent confidence interval - upper         0.129
  P-value RMSEA <= 0.05                          0.000

Standardized Root Mean Square Residual:

  SRMR                                           0.076

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model          Structured

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)
  verbalcomp =~                                       
    vocab             1.000                           
    simil             0.296    0.031    9.483    0.000
    inform            0.449    0.043   10.481    0.000
    compreh           0.315    0.035    8.999    0.000
  workingmemory =~                                    
    arith             1.000                           
    digspan           0.881    0.152    5.786    0.000
    lnseq             0.205    0.107    1.920    0.055
  performance =~                                      
    piccomp           1.000                           
    block             3.739    0.390    9.583    0.000
    matrixreason      0.832    0.117    7.099    0.000
    digsym            1.603    0.507    3.160    0.002
    symbolsearch      1.880    0.204    9.236    0.000
   Std.lv  Std.all
                  
    6.281    0.879
    1.861    0.581
    2.822    0.644
    1.981    0.552
                  
    2.528    0.844
    2.227    0.565
    0.518    0.129
                  
    1.517    0.650
    5.672    0.735
    1.262    0.493
    2.431    0.207
    2.852    0.690

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)
  verbalcomp ~~                                       
    workingmemory     6.132    1.234    4.970    0.000
    performance       5.892    0.886    6.647    0.000
  workingmemory ~~                                    
    performance       2.227    0.362    6.149    0.000
   Std.lv  Std.all
                  
    0.386    0.386
    0.618    0.618
                  
    0.581    0.581

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .vocab            11.577    2.651    4.367    0.000
   .simil             6.787    0.620   10.950    0.000
   .inform           11.218    1.085   10.342    0.000
   .compreh           8.962    0.803   11.155    0.000
   .arith             2.571    1.014    2.535    0.011
   .digspan          10.590    1.161    9.121    0.000
   .lnseq            15.807    1.297   12.183    0.000
   .piccomp           3.138    0.317    9.913    0.000
   .block            27.343    3.226    8.476    0.000
   .matrixreason      4.960    0.441   11.243    0.000
   .digsym          132.291   10.925   12.109    0.000
   .symbolsearch      8.936    0.957    9.333    0.000
    verbalcomp       39.455    4.754    8.299    0.000
    workingmemory     6.388    1.215    5.259    0.000
    performance       2.301    0.408    5.646    0.000
   Std.lv  Std.all
   11.577    0.227
    6.787    0.662
   11.218    0.585
    8.962    0.696
    2.571    0.287
   10.590    0.681
   15.807    0.983
    3.138    0.577
   27.343    0.459
    4.960    0.757
  132.291    0.957
    8.936    0.524
    1.000    1.000
    1.000    1.000
    1.000    1.000

R-Square:
                   Estimate
    vocab             0.773
    simil             0.338
    inform            0.415
    compreh           0.304
    arith             0.713
    digspan           0.319
    lnseq             0.017
    piccomp           0.423
    block             0.541
    matrixreason      0.243
    digsym            0.043
    symbolsearch      0.476

Modification Indices

The modification indices also show a good place to start to improve the model, but think about the implications of what you are adding to the model. Correlated error terms are normal estimates to add, as the variance of the manifest variables on the same factor can be related to each other. Such is the case with Similarity and information, two subscales on the verbal comprehension factor, so it is logical that they might have correlated error terms.

              lhs op          rhs     mi     epc sepc.lv
66          simil ~~       inform 35.879  -3.757  -3.757
56          vocab ~~       inform 28.377   9.783   9.783
48    performance =~        vocab 21.865  -2.077  -3.151
115         block ~~ matrixreason 16.209  -3.622  -3.622
96          arith ~~        block 15.061   3.679   3.679
117         block ~~ symbolsearch 13.144   5.725   5.725
47  workingmemory =~ symbolsearch 12.272  -0.467  -1.181
81         inform ~~        block 12.269   4.358   4.358
64          vocab ~~       digsym 11.578 -11.261 -11.261
40  workingmemory =~        simil 11.383   0.278   0.703
72          simil ~~        block 10.605  -3.084  -3.084
45  workingmemory =~ matrixreason  9.685   0.267   0.675
95          arith ~~      piccomp  9.463  -0.892  -0.892
60          vocab ~~        lnseq  9.425  -3.486  -3.486
67          simil ~~      compreh  9.356   1.587   1.587
44  workingmemory =~        block  9.258   0.765   1.933
51    performance =~      compreh  9.177   0.601   0.912
62          vocab ~~        block  8.712  -5.377  -5.377
73          simil ~~ matrixreason  8.672   1.065   1.065
106         lnseq ~~      piccomp  8.620   1.298   1.298
91        compreh ~~       digsym  8.155   5.908   5.908
59          vocab ~~      digspan  8.127   2.849   2.849
37     verbalcomp =~       digsym  7.803  -0.464  -2.917
68          simil ~~        arith  7.534   1.064   1.064
99          arith ~~ symbolsearch  7.468  -1.391  -1.391
57          vocab ~~      compreh  7.107  -3.508  -3.508
87        compreh ~~        lnseq  7.001   1.887   1.887
97          arith ~~ matrixreason  6.391   0.848   0.848
107         lnseq ~~        block  5.677   3.289   3.289
34     verbalcomp =~      piccomp  5.507   0.071   0.447
78         inform ~~      digspan  5.435  -1.649  -1.649
33     verbalcomp =~        lnseq  5.250  -0.104  -0.652
54    performance =~        lnseq  4.644   0.512   0.777
39  workingmemory =~        vocab  4.638  -0.406  -1.025
102       digspan ~~        block  4.564  -2.689  -2.689
35     verbalcomp =~        block  4.551  -0.218  -1.371
88        compreh ~~      piccomp  4.455   0.728   0.728
112       piccomp ~~ matrixreason  4.306   0.568   0.568
101       digspan ~~      piccomp  4.218   0.808   0.808
46  workingmemory =~       digsym  4.139  -0.852  -2.152
71          simil ~~      piccomp  4.029   0.607   0.607
76         inform ~~      compreh  3.789  -1.367  -1.367
70          simil ~~        lnseq  3.693  -1.200  -1.200
50    performance =~       inform  3.487   0.444   0.673
58          vocab ~~        arith  3.451  -1.457  -1.457
55          vocab ~~        simil  3.393   2.239   2.239
113       piccomp ~~       digsym  3.375   2.419   2.419
93          arith ~~      digspan  3.274   7.960   7.960
86        compreh ~~      digspan  3.234  -1.110  -1.110
80         inform ~~      piccomp  2.871  -0.672  -0.672
104       digspan ~~       digsym  2.754  -3.822  -3.822
114       piccomp ~~ symbolsearch  2.677  -0.731  -0.731
89        compreh ~~        block  2.551   1.725   1.725
90        compreh ~~ matrixreason  2.342  -0.632  -0.632
74          simil ~~       digsym  2.021  -2.575  -2.575
43  workingmemory =~      piccomp  1.899  -0.104  -0.262
49    performance =~        simil  1.675   0.227   0.345
92        compreh ~~ symbolsearch  1.646   0.764   0.764
111       piccomp ~~        block  1.591  -1.084  -1.084
85        compreh ~~        arith  1.350  -0.514  -0.514
32     verbalcomp =~      digspan  1.224   0.058   0.365
79         inform ~~        lnseq  0.998  -0.815  -0.815
69          simil ~~      digspan  0.996   0.540   0.540
53    performance =~      digspan  0.942  -0.710  -1.077
77         inform ~~        arith  0.890   0.480   0.480
116         block ~~       digsym  0.805   3.770   3.770
120        digsym ~~ symbolsearch  0.724   1.948   1.948
100       digspan ~~        lnseq  0.703  -0.688  -0.688
83         inform ~~       digsym  0.667   1.935   1.935
36     verbalcomp =~ matrixreason  0.543   0.025   0.159
61          vocab ~~      piccomp  0.529   0.414   0.414
105       digspan ~~ symbolsearch  0.481  -0.475  -0.475
52    performance =~        arith  0.478  -0.694  -1.052
98          arith ~~       digsym  0.474  -1.135  -1.135
94          arith ~~        lnseq  0.430  -0.496  -0.496
31     verbalcomp =~        arith  0.237  -0.029  -0.182
103       digspan ~~ matrixreason  0.226   0.221   0.221
42  workingmemory =~      compreh  0.190  -0.041  -0.103
75          simil ~~ symbolsearch  0.188  -0.227  -0.227
63          vocab ~~ matrixreason  0.143  -0.253  -0.253
109         lnseq ~~       digsym  0.128  -0.951  -0.951
38     verbalcomp =~ symbolsearch  0.077   0.015   0.094
118  matrixreason ~~       digsym  0.060  -0.380  -0.380
41  workingmemory =~       inform  0.037   0.021   0.053
119  matrixreason ~~ symbolsearch  0.031  -0.085  -0.085
108         lnseq ~~ matrixreason  0.017   0.069   0.069
110         lnseq ~~ symbolsearch  0.009   0.072   0.072
65          vocab ~~ symbolsearch  0.005  -0.068  -0.068
84         inform ~~ symbolsearch  0.004  -0.045  -0.045
82         inform ~~ matrixreason  0.004   0.029   0.029
    sepc.all sepc.nox
66    -0.431   -0.431
56     0.858    0.858
48    -0.441   -0.441
115   -0.311   -0.311
96     0.439    0.439
117    0.366    0.366
47    -0.286   -0.286
81     0.249    0.249
64    -0.288   -0.288
40     0.220    0.220
72    -0.226   -0.226
45     0.264    0.264
95    -0.314   -0.314
60    -0.258   -0.258
67     0.203    0.203
44     0.251    0.251
51     0.254    0.254
62    -0.302   -0.302
73     0.184    0.184
106    0.184    0.184
91     0.172    0.172
59     0.257    0.257
37    -0.248   -0.248
68     0.255    0.255
99    -0.290   -0.290
57    -0.344   -0.344
87     0.159    0.159
97     0.237    0.237
107    0.158    0.158
34     0.192    0.192
78    -0.151   -0.151
33    -0.163   -0.163
54     0.194    0.194
39    -0.143   -0.143
102   -0.158   -0.158
35    -0.178   -0.178
88     0.137    0.137
112    0.144    0.144
101    0.140    0.140
46    -0.183   -0.183
71     0.132    0.132
76    -0.136   -0.136
70    -0.116   -0.116
50     0.154    0.154
58    -0.267   -0.267
55     0.253    0.253
113    0.119    0.119
93     1.526    1.526
86    -0.114   -0.114
80    -0.113   -0.113
104   -0.102   -0.102
114   -0.138   -0.138
89     0.110    0.110
90    -0.095   -0.095
74    -0.086   -0.086
43    -0.113   -0.113
49     0.108    0.108
92     0.085    0.085
111   -0.117   -0.117
85    -0.107   -0.107
32     0.092    0.092
79    -0.061   -0.061
69     0.064    0.064
53    -0.273   -0.273
77     0.089    0.089
116    0.063    0.063
120    0.057    0.057
100   -0.053   -0.053
83     0.050    0.050
36     0.062    0.062
61     0.069    0.069
105   -0.049   -0.049
52    -0.352   -0.352
98    -0.062   -0.062
94    -0.078   -0.078
31    -0.061   -0.061
103    0.030    0.030
42    -0.029   -0.029
75    -0.029   -0.029
63    -0.033   -0.033
109   -0.021   -0.021
38     0.023    0.023
118   -0.015   -0.015
41     0.012    0.012
119   -0.013   -0.013
108    0.008    0.008
110    0.006    0.006
65    -0.007   -0.007
84    -0.004   -0.004
82     0.004    0.004

Model Update III

Fit Statistics

lavaan 0.6-12 ended normally after 114 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        28

  Number of observations                           300

Model Test User Model:
                                                      
  Test statistic                               212.813
  Degrees of freedom                                50
  P-value (Chi-square)                           0.000

Model Test Baseline Model:

  Test statistic                              1042.916
  Degrees of freedom                                66
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.833
  Tucker-Lewis Index (TLI)                       0.780

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -9929.572
  Loglikelihood unrestricted model (H1)      -9823.166
                                                      
  Akaike (AIC)                               19915.144
  Bayesian (BIC)                             20018.850
  Sample-size adjusted Bayesian (BIC)        19930.051

Root Mean Square Error of Approximation:

  RMSEA                                          0.104
  90 Percent confidence interval - lower         0.090
  90 Percent confidence interval - upper         0.119
  P-value RMSEA <= 0.05                          0.000

Standardized Root Mean Square Residual:

  SRMR                                           0.071

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model          Structured

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)
  verbalcomp =~                                       
    vocab             1.000                           
    simil             0.361    0.035   10.184    0.000
    inform            0.525    0.048   10.857    0.000
    compreh           0.334    0.036    9.349    0.000
  workingmemory =~                                    
    arith             1.000                           
    digspan           0.857    0.149    5.768    0.000
    lnseq             0.193    0.104    1.850    0.064
  performance =~                                      
    piccomp           1.000                           
    block             3.737    0.390    9.581    0.000
    matrixreason      0.843    0.118    7.176    0.000
    digsym            1.615    0.508    3.181    0.001
    symbolsearch      1.875    0.203    9.218    0.000
   Std.lv  Std.all
                  
    5.888    0.824
    2.125    0.664
    3.090    0.706
    1.965    0.547
                  
    2.565    0.857
    2.199    0.558
    0.495    0.123
                  
    1.515    0.650
    5.662    0.734
    1.278    0.499
    2.446    0.208
    2.841    0.688

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)
 .simil ~~                                            
   .inform           -3.738    0.606   -6.169    0.000
  verbalcomp ~~                                       
    workingmemory     6.278    1.181    5.315    0.000
    performance       5.654    0.859    6.583    0.000
  workingmemory ~~                                    
    performance       2.237    0.363    6.172    0.000
   Std.lv  Std.all
                  
   -3.738   -0.503
                  
    0.416    0.416
    0.634    0.634
                  
    0.576    0.576

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .vocab            16.365    2.375    6.892    0.000
   .simil             5.734    0.610    9.399    0.000
   .inform            9.635    1.095    8.801    0.000
   .compreh           9.026    0.791   11.413    0.000
   .arith             2.380    1.037    2.294    0.022
   .digspan          10.715    1.154    9.282    0.000
   .lnseq            15.830    1.298   12.193    0.000
   .piccomp           3.143    0.316    9.937    0.000
   .block            27.457    3.220    8.527    0.000
   .matrixreason      4.921    0.439   11.216    0.000
   .digsym          132.218   10.920   12.108    0.000
   .symbolsearch      8.996    0.958    9.393    0.000
    verbalcomp       34.667    4.408    7.865    0.000
    workingmemory     6.579    1.239    5.309    0.000
    performance       2.296    0.407    5.643    0.000
   Std.lv  Std.all
   16.365    0.321
    5.734    0.560
    9.635    0.502
    9.026    0.700
    2.380    0.266
   10.715    0.689
   15.830    0.985
    3.143    0.578
   27.457    0.461
    4.921    0.751
  132.218    0.957
    8.996    0.527
    1.000    1.000
    1.000    1.000
    1.000    1.000

R-Square:
                   Estimate
    vocab             0.679
    simil             0.440
    inform            0.498
    compreh           0.300
    arith             0.734
    digspan           0.311
    lnseq             0.015
    piccomp           0.422
    block             0.539
    matrixreason      0.249
    digsym            0.043
    symbolsearch      0.473

Comparing Models

You can conduct a likelihood ratio test to see whether the models fit significantly differently. The significant result indicates that the three-factor model with the added correlated error term fits significantly better than the original model.

Chi-Squared Difference Test

            Df   AIC   BIC  Chisq Chisq diff Df diff
wais.fit1.1 50 19915 20019 212.81                   
wais.fit1   51 19953 20053 252.81     39.996       1
            Pr(>Chisq)    
wais.fit1.1               
wais.fit1    2.545e-10 ***
---
Signif. codes:  
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Moreover, you can compare fit statistics for both models. both AIC and ECVI are smaller. The revised model’s AIC is lower, indicating a better fit.

      aic      ecvi 
19953.141     1.023 

ECVI, or Expected Cross Validation Index, indicates the likelihood this model will replicate with the same sample size and population. The revised model’s ECVI is also lower, indicating a better fit.

      aic      ecvi 
19915.144     0.896 

Path Diagram III

Path Diagram of the Final Model