library(readxl) library(dplyr)
movie_rating<-read_excel("F:\\CUNY masters\\extra credit assignment 607\\607 2nd extra credit\\movie_rating.xlsx",sheet=1,range="A1:G6",
col_name=TRUE,col_types=NULL)
movie_rating
## # A tibble: 5 × 7
## Critic Barbarian Funnypage Holdmetight Nope Prey Theterritory
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Monir 3 5 4 1 2 NA
## 2 Karim 2 3 4 5 NA 1
## 3 Joseph 4 5 3 2 NA NA
## 4 Arony 3 4 5 1 3 2
## 5 Prakash 5 3 2 4 NA 1
movie_rating1<-movie_rating[c("Barbarian","Funnypage","Holdmetight","Nope","Prey","Theterritory")]
movie_rating1
## # A tibble: 5 × 6
## Barbarian Funnypage Holdmetight Nope Prey Theterritory
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 3 5 4 1 2 NA
## 2 2 3 4 5 NA 1
## 3 4 5 3 2 NA NA
## 4 3 4 5 1 3 2
## 5 5 3 2 4 NA 1
movie_rating1<-movie_rating1 %>% mutate(user_avg=rowMeans(movie_rating1,na.rm=TRUE,dims=1))
movie_rating1
## # A tibble: 5 × 7
## Barbarian Funnypage Holdmetight Nope Prey Theterritory user_avg
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 3 5 4 1 2 NA 3
## 2 2 3 4 5 NA 1 3
## 3 4 5 3 2 NA NA 3.5
## 4 3 4 5 1 3 2 3
## 5 5 3 2 4 NA 1 3
movie_avg<-colMeans(movie_rating[sapply(movie_rating, is.numeric)],na.rm=TRUE)
movie_avg
## Barbarian Funnypage Holdmetight Nope Prey Theterritory
## 3.400000 4.000000 3.600000 2.600000 2.500000 1.333333
mean_movie<-mean(movie_avg)
mean_movie
## [1] 2.905556
movie_avg_minus_mean_movie<-movie_avg-mean_movie
movie_avg_minus_mean_movie
## Barbarian Funnypage Holdmetight Nope Prey Theterritory
## 0.4944444 1.0944444 0.6944444 -0.3055556 -0.4055556 -1.5722222
user_avg_minus_mean_movie<-movie_rating1$user_avg-mean_movie
user_avg_minus_mean_movie
## [1] 0.09444444 0.09444444 0.59444444 0.09444444 0.09444444
movie<-c("Barbarian","Funnypage","Holdmetight","Nope","Prey","Theterritory")
user_avg<-movie_rating1$user_avg
movie_avg
## Barbarian Funnypage Holdmetight Nope Prey Theterritory
## 3.400000 4.000000 3.600000 2.600000 2.500000 1.333333
df_new <- cbind(movie_rating,user_avg,user_avg_minus_mean_movie)
df_new
## Critic Barbarian Funnypage Holdmetight Nope Prey Theterritory user_avg
## 1 Monir 3 5 4 1 2 NA 3.0
## 2 Karim 2 3 4 5 NA 1 3.0
## 3 Joseph 4 5 3 2 NA NA 3.5
## 4 Arony 3 4 5 1 3 2 3.0
## 5 Prakash 5 3 2 4 NA 1 3.0
## user_avg_minus_mean_movie
## 1 0.09444444
## 2 0.09444444
## 3 0.59444444
## 4 0.09444444
## 5 0.09444444
df1<-data.frame(movie_avg,movie_avg_minus_mean_movie)
df1
## movie_avg movie_avg_minus_mean_movie
## Barbarian 3.400000 0.4944444
## Funnypage 4.000000 1.0944444
## Holdmetight 3.600000 0.6944444
## Nope 2.600000 -0.3055556
## Prey 2.500000 -0.4055556
## Theterritory 1.333333 -1.5722222
Question1: How would Monir rate Theterritory? Question2: How would Karim rate Prey? Question3: How would Joseph rate Prey and Theterritory? Question4: How would Prakash rate Prey?
**General Formula: Global Baseline Estimate = Mean Movie Rating + movie rating relative to average + Critic’s rating relative to average.
Monir_rating_for_Theterritory<-2.905556 -1.5722222+0.09444444
Monir_rating_for_Theterritory
## [1] 1.427778
Karim_rating_for_Prey<-2.905556 -0.4055556+0.09444444
Karim_rating_for_Prey
## [1] 2.594445
Joseph_rating_for_Prey<-2.905556 -0.4055556+0.59444444
Joseph_rating_for_Prey
## [1] 3.094445
Joseph_rating_for_Theterritory<-2.905556-1.5722222+0.59444444
Joseph_rating_for_Theterritory
## [1] 1.927778
Prakash_rating_for_Prey<-2.905556-0.4055556+0.09444444
Prakash_rating_for_Prey
## [1] 2.594445
#Above 4 questions answers are presented below in tabular form
unseen_movie_rating<-data.frame(Monir_rating_for_Theterritory,Karim_rating_for_Prey,Joseph_rating_for_Prey,Joseph_rating_for_Theterritory,Prakash_rating_for_Prey)
unseen_movie_rating
## Monir_rating_for_Theterritory Karim_rating_for_Prey Joseph_rating_for_Prey
## 1 1.427778 2.594445 3.094445
## Joseph_rating_for_Theterritory Prakash_rating_for_Prey
## 1 1.927778 2.594445
**Recommending Prey for Karim