What do you call a belt made out of watches?
A waist of time.
The balance law yields two word equations:
\[ \small{ \begin{aligned} \begin{Bmatrix} \mathrm{rate \, of \, change \, of } \\ \mathrm{alcohol \, in \, GI \, tract } \\ \end{Bmatrix} & = \begin{Bmatrix} \mathrm{rate \, of } \\ \mathrm{alcohol \, intake} \\ \end{Bmatrix} - \begin{Bmatrix} \mathrm{rate \, alcohol } \\ \mathrm{\, leaves \, GI \, tract} \\ \end{Bmatrix} \\ \\ \begin{Bmatrix} \mathrm{rate \, of \, change \, of } \\ \mathrm{alcohol \, in \, bloodstream } \\ \end{Bmatrix} &= \begin{Bmatrix} \mathrm{rate \, alcohol } \\ \mathrm{enters \, bloodstream} \\ \end{Bmatrix} - \begin{Bmatrix} \mathrm{rate \, alcohol } \\ \mathrm{leaves \, bloodstream} \\ \end{Bmatrix} \end{aligned} } \]
\[ \small{ \frac{dy}{dt} \sim \frac{- k_3 y}{y+M} \propto \left\{ \begin{align*} -k_3, &\,\,\, y \, \gg M \\ - \frac{k_3}{M}y, &\,\,\, y \, \ll M \end{align*} \right.} \]
Our system of IVPs is
\[ \begin{aligned} \frac{dx}{dt} & = I - k_1x, \,\,\, x(0)= x_0 \\ \frac{dy}{dt} & = k_2x - \frac{k_3 y}{y+M}, \,\,\, y(0)= 0 \end{aligned} \]
Compartment diagram
\[ \small{ \begin{aligned} x_0 = 3x_s & = \frac{3(14g)}{(0.82 L/kg)(68 kg)} \\ & = \frac{3(14g)}{(0.82L)(68)(10*100 ml/L)} = \frac{3(14) g}{(0.82)(68)(10)100 ml} \cong 0.0753 \, \mathrm{BAL} \end{aligned} } \]
3*14/(0.82*68*10)
[1] 0.07532281
\[ \small{ \frac{dy}{dt} = k_2x - \frac{k_3 y}{y+M} } \]
\[ \small{ \begin{aligned} k_3 & = \frac{8 g/hr}{(0.82 L/kg)(68 kg)} = \frac{8 g/hr}{(0.82)(68)(10)100 ml} \cong 0.0143 \, \mathrm{BAL/hr} \end{aligned} } \]
8/(0.82*68*10)
[1] 0.0143472
DrinksModel1 <- function(W,n,P,kfactor) {
# W = Weight (lbs), n = Number drinks at start
# P = percent of blood fluids in body.
# P = 0.87 for males, P = 0.67 for females
Wkg <- W/2.205 #Weight in kg from pounds
xs <- 14/(P*Wkg*10) #Effective BAL for one drink
k3 <- 8/(P*Wkg*10) #k3 value for bloodstream
k2 <- kfactor*k1 #k2 value for bloodstream
I <- 0 #Zero drinks after initial amount
#System of ODEs
f1 <- function(x) {I - k1*x}
f2 <- function(x,y) {k2*x - k3*y/(y + M)}
For 170 lb male with three drinks on empty stomach:
DrinksModel1(170,3,0.87,1)
For 170 lb male with four drinks on empty stomach:
DrinksModel1(170,4,0.87,1)
For 120 lb female with two drinks on empty stomach:
DrinksModel1(120,2,0.67,1)
For 120 lb female with three drinks on empty stomach:
DrinksModel1(120,3,0.67,1)
DrinksModel2 <- function(W,n,P,kfactor) {
# W = Weight (lbs), n = Ave # drinks/hour
# P = percent of blood fluids in body
# P = 0.87 for males, P = 0.67 for females
Wkg <- W/2.205 #Weight in kg from pounds
xs <- 14/(P*Wkg*10) #Effective BAL for one drink
k3 <- 8/(P*Wkg*10) #k3 value for bloodstream
k2 <- kfactor*k1 #k2 value for bloodstream
I <- 0.025*n #BAL input continuously drinking
#System of ODEs
f1 <- function(x) {I - k1*x}
f2 <- function(x,y) {k2*x - k3*y/(y + M)}
For 170 lb male, 3 drinks/hour continuously on empty stomach:
DrinksModel2(170,3,0.87,1)
For a 170 lb male with three drinks on a full stomach:
DrinksModel1(170,3,0.87,0.5)
For a 170 lb male with six drinks on a full stomach:
DrinksModel1(170,6,0.87,0.5)
For a 120 lb female with two drinks on a full stomach:
DrinksModel1(120,2,0.67,0.5)
For a 120 lb female with four drinks on a full stomach:
DrinksModel1(120,4,0.67,0.5)
For 170 lb male, 3 drinks/hour continuously on a full stomach:
DrinksModel2(170,3,0.87,0.5)
Mathematical Modeling with Case Studies, Barnes and Fulford, CRC Press, 2015.
History of alcoholic drinks, https://en.wikipedia.org/wiki/History_of_alcoholic_drinks, retrieved on 9/16/2022.