This question should be answered using the Weekly data set, which is part of the ISLR2 package. This data is similar in nature to the Smarket data from this chapter’s lab, except that it contains 1, 089 weekly returns for 21 years, from the beginning of 1990 to the end of 2010.
library(ISLR2)
attach(Weekly)
a) Produce some numerical and graphical summaries of the Weekly data. Do there appear to be any patterns?
summary(Weekly)
## Year Lag1 Lag2 Lag3
## Min. :1990 Min. :-18.1950 Min. :-18.1950 Min. :-18.1950
## 1st Qu.:1995 1st Qu.: -1.1540 1st Qu.: -1.1540 1st Qu.: -1.1580
## Median :2000 Median : 0.2410 Median : 0.2410 Median : 0.2410
## Mean :2000 Mean : 0.1506 Mean : 0.1511 Mean : 0.1472
## 3rd Qu.:2005 3rd Qu.: 1.4050 3rd Qu.: 1.4090 3rd Qu.: 1.4090
## Max. :2010 Max. : 12.0260 Max. : 12.0260 Max. : 12.0260
## Lag4 Lag5 Volume Today
## Min. :-18.1950 Min. :-18.1950 Min. :0.08747 Min. :-18.1950
## 1st Qu.: -1.1580 1st Qu.: -1.1660 1st Qu.:0.33202 1st Qu.: -1.1540
## Median : 0.2380 Median : 0.2340 Median :1.00268 Median : 0.2410
## Mean : 0.1458 Mean : 0.1399 Mean :1.57462 Mean : 0.1499
## 3rd Qu.: 1.4090 3rd Qu.: 1.4050 3rd Qu.:2.05373 3rd Qu.: 1.4050
## Max. : 12.0260 Max. : 12.0260 Max. :9.32821 Max. : 12.0260
## Direction
## Down:484
## Up :605
##
##
##
##
cor(Weekly[-9])
## Year Lag1 Lag2 Lag3 Lag4
## Year 1.00000000 -0.032289274 -0.03339001 -0.03000649 -0.031127923
## Lag1 -0.03228927 1.000000000 -0.07485305 0.05863568 -0.071273876
## Lag2 -0.03339001 -0.074853051 1.00000000 -0.07572091 0.058381535
## Lag3 -0.03000649 0.058635682 -0.07572091 1.00000000 -0.075395865
## Lag4 -0.03112792 -0.071273876 0.05838153 -0.07539587 1.000000000
## Lag5 -0.03051910 -0.008183096 -0.07249948 0.06065717 -0.075675027
## Volume 0.84194162 -0.064951313 -0.08551314 -0.06928771 -0.061074617
## Today -0.03245989 -0.075031842 0.05916672 -0.07124364 -0.007825873
## Lag5 Volume Today
## Year -0.030519101 0.84194162 -0.032459894
## Lag1 -0.008183096 -0.06495131 -0.075031842
## Lag2 -0.072499482 -0.08551314 0.059166717
## Lag3 0.060657175 -0.06928771 -0.071243639
## Lag4 -0.075675027 -0.06107462 -0.007825873
## Lag5 1.000000000 -0.05851741 0.011012698
## Volume -0.058517414 1.00000000 -0.033077783
## Today 0.011012698 -0.03307778 1.000000000
pairs(Weekly)
b) Use the full data set to perform a logistic regression with Direction as the response and the five lag variables plus Volume as predictors. Use the summary function to print the results. Do any of the predictors appear to be statistically significant? If so, which ones?
glm.fit=glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume,data=Weekly,family=binomial)
c) Compute the confusion matrix and overall fraction of correct predictions. Explain what the confusion matrix is telling you about the types of mistakes made by logistic regression.
glm.prob=predict(glm.fit,type='response')
glm.pred=rep("Down",1089)
glm.pred[glm.prob>0.5]="Up"
table(glm.pred,Direction)
## Direction
## glm.pred Down Up
## Down 54 48
## Up 430 557
d) Now fit the logistic regression model using a training data period from 1990 to 2008, with Lag2 as the only predictor. Compute the confusion matrix and the overall fraction of correct predictions for the held-out data (that is, the data from 2009 and 2010).
train=(Year<2009)
Weekly.2009=Weekly[!train,]
Direction.2009=Direction[!train]
glm.fit2=glm(Direction~Lag2,data=Weekly,family=binomial,subset=train)
glm.prob2=predict(glm.fit2,Weekly.2009,type='response')
glm.pred2=rep("Down",104)
glm.pred2[glm.prob2>0.5]="Up"
table(glm.pred2,Direction.2009)
## Direction.2009
## glm.pred2 Down Up
## Down 9 5
## Up 34 56
e) Repeat (d) using LDA.
library(MASS)
##
## Attaching package: 'MASS'
## The following object is masked from 'package:ISLR2':
##
## Boston
lda.fit=lda(Direction~Lag2,data=Weekly,subset=train)
lda.pred=predict(lda.fit,Weekly.2009)
lda.class=lda.pred$class
table(lda.class,Direction.2009)
## Direction.2009
## lda.class Down Up
## Down 9 5
## Up 34 56
f) Repeat (d) using QDA.
qda.fit=qda(Direction~Lag2,data=Weekly,subset=train)
qda.class=predict(qda.fit,Weekly.2009)$class
table(qda.class,Direction.2009)
## Direction.2009
## qda.class Down Up
## Down 0 0
## Up 43 61
mean(qda.class==Direction.2009)
## [1] 0.5865385
g) Repeat (d) using KNN with K = 1.
library(class)
train.x=cbind(Lag1,Lag2)[train,]
test.x=cbind(Lag1,Lag2)[!train,]
train.Direction=Direction[train]
knn.pred=knn(train.x,test.x,train.Direction,k=1)
table(knn.pred,Direction.2009)
## Direction.2009
## knn.pred Down Up
## Down 18 29
## Up 25 32
mean(knn.pred==Direction.2009)
## [1] 0.4807692
h) Repeat (d) using naive Bayes.
library(e1071)
nb.fit=naiveBayes(Direction~Lag2,data=Weekly,subset=train)
nb.pred=predict(nb.fit,Weekly.2009)
table(nb.pred,Direction.2009)
## Direction.2009
## nb.pred Down Up
## Down 0 0
## Up 43 61
mean(nb.pred==Direction.2009)
## [1] 0.5865385
i) Which of these methods appears to provide the best results on this data?
j) Experiment with different combinations of predictors, including possible transformations and interactions, for each of the methods. Report the variables, method, and associated confusion matrix that appears to provide the best results on the held out data. Note that you should also experiment with values for K in the KNN classifier.
knn.pred=knn(train.x,test.x,train.Direction,k=3)
table(knn.pred,Direction.2009)
## Direction.2009
## knn.pred Down Up
## Down 22 29
## Up 21 32
mean(knn.pred==Direction.2009)
## [1] 0.5192308
knn.pred=knn(train.x,test.x,train.Direction,k=5)
table(knn.pred,Direction.2009)
## Direction.2009
## knn.pred Down Up
## Down 22 32
## Up 21 29
mean(knn.pred==Direction.2009)
## [1] 0.4903846
In this problem, you will develop a model to predict whether a given car gets high or low gas mileage based on the Auto data set.
detach(Weekly)
attach(Auto)
a) Create a binary variable, mpg01, that contains a 1 if mpg contains a value above its median, and a 0 if mpg contains a value below its median. You can compute the median using the median() function. Note you may find it helpful to use the data.frame() function to create a single data set containing both mpg01 and the other Auto variables.
mpg01=rep(0,length(mpg))
mpg01[mpg>median(mpg)]=1
Auto=data.frame(Auto,mpg01)
summary(Auto)
## mpg cylinders displacement horsepower weight
## Min. : 9.00 Min. :3.000 Min. : 68.0 Min. : 46.0 Min. :1613
## 1st Qu.:17.00 1st Qu.:4.000 1st Qu.:105.0 1st Qu.: 75.0 1st Qu.:2225
## Median :22.75 Median :4.000 Median :151.0 Median : 93.5 Median :2804
## Mean :23.45 Mean :5.472 Mean :194.4 Mean :104.5 Mean :2978
## 3rd Qu.:29.00 3rd Qu.:8.000 3rd Qu.:275.8 3rd Qu.:126.0 3rd Qu.:3615
## Max. :46.60 Max. :8.000 Max. :455.0 Max. :230.0 Max. :5140
##
## acceleration year origin name
## Min. : 8.00 Min. :70.00 Min. :1.000 amc matador : 5
## 1st Qu.:13.78 1st Qu.:73.00 1st Qu.:1.000 ford pinto : 5
## Median :15.50 Median :76.00 Median :1.000 toyota corolla : 5
## Mean :15.54 Mean :75.98 Mean :1.577 amc gremlin : 4
## 3rd Qu.:17.02 3rd Qu.:79.00 3rd Qu.:2.000 amc hornet : 4
## Max. :24.80 Max. :82.00 Max. :3.000 chevrolet chevette: 4
## (Other) :365
## mpg01
## Min. :0.0
## 1st Qu.:0.0
## Median :0.5
## Mean :0.5
## 3rd Qu.:1.0
## Max. :1.0
##
b) Explore the data graphically in order to investigate the association between mpg01 and the other features. Which of the other features seem most likely to be useful in predicting mpg01? Scatterplots and boxplots may be useful tools to answer this question. Describe your findings.
cor(Auto[,-9])
## mpg cylinders displacement horsepower weight
## mpg 1.0000000 -0.7776175 -0.8051269 -0.7784268 -0.8322442
## cylinders -0.7776175 1.0000000 0.9508233 0.8429834 0.8975273
## displacement -0.8051269 0.9508233 1.0000000 0.8972570 0.9329944
## horsepower -0.7784268 0.8429834 0.8972570 1.0000000 0.8645377
## weight -0.8322442 0.8975273 0.9329944 0.8645377 1.0000000
## acceleration 0.4233285 -0.5046834 -0.5438005 -0.6891955 -0.4168392
## year 0.5805410 -0.3456474 -0.3698552 -0.4163615 -0.3091199
## origin 0.5652088 -0.5689316 -0.6145351 -0.4551715 -0.5850054
## mpg01 0.8369392 -0.7591939 -0.7534766 -0.6670526 -0.7577566
## acceleration year origin mpg01
## mpg 0.4233285 0.5805410 0.5652088 0.8369392
## cylinders -0.5046834 -0.3456474 -0.5689316 -0.7591939
## displacement -0.5438005 -0.3698552 -0.6145351 -0.7534766
## horsepower -0.6891955 -0.4163615 -0.4551715 -0.6670526
## weight -0.4168392 -0.3091199 -0.5850054 -0.7577566
## acceleration 1.0000000 0.2903161 0.2127458 0.3468215
## year 0.2903161 1.0000000 0.1815277 0.4299042
## origin 0.2127458 0.1815277 1.0000000 0.5136984
## mpg01 0.3468215 0.4299042 0.5136984 1.0000000
par(mfrow=c(2,2))
boxplot(cylinders~mpg01,main="Cylinders vs mpg01")
boxplot(displacement~mpg01,main="displacement vs mpg01")
boxplot(horsepower~mpg01,main="horsepower vs mpg01")
boxplot(weight~mpg01,main= "Weight vs mpg01")
c) Split the data into a training set and a test set.
train=(year<76)
training=Auto[!train,]
test=Auto[train,]
mpg01.test=mpg01[!train]
d) Perform LDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?
lda.fit=lda(mpg01~cylinders+displacement+horsepower+weight,data=Auto,subset=train)
lda.pred=predict(lda.fit,training)
lda.class=lda.pred$class
table(lda.class,mpg01.test)
## mpg01.test
## lda.class 0 1
## 0 66 15
## 1 8 123
mean(lda.class==mpg01.test)
## [1] 0.8915094
e) Perform QDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?
qda.fit=qda(mpg01~cylinders+displacement+horsepower+weight,data=Auto,subset=train)
qda.class=predict(qda.fit,training)$class
table(qda.class,mpg01.test)
## mpg01.test
## qda.class 0 1
## 0 70 21
## 1 4 117
mean(qda.class==mpg01.test)
## [1] 0.8820755
f) Perform logistic regression on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?
glm.fit=glm(mpg01~cylinders+displacement+horsepower+weight,data=Auto,family=binomial)
glm.pred=predict(glm.fit,training,type='response')
glm.prob=rep("Down",212)
glm.prob[glm.pred>0.5]="Up"
table(glm.prob,mpg01.test)
## mpg01.test
## glm.prob 0 1
## Down 67 15
## Up 7 123
(67+123)/212
## [1] 0.8962264
g) Perform naive Bayes on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?
library(e1071)
nb.fit=naiveBayes(mpg01~cylinders+displacement+horsepower+weight,data=Auto,subset=train)
nb.pred=predict(nb.fit,training)
table(nb.pred,mpg01.test)
## mpg01.test
## nb.pred 0 1
## 0 68 15
## 1 6 123
mean(nb.pred==mpg01.test)
## [1] 0.9009434
h) Perform KNN on the training data, with several values of K, in order to predict mpg01. Use only the variables that seemed most associated with mpg01 in (b). What test errors do you obtain? Which value of K seems to perform the best on this data set?
train.x=cbind(cylinders,displacement,horsepower,weight)[train,]
test.x=cbind(cylinders,displacement,horsepower,weight)[!train,]
train.mpg=mpg01[train]
set.seed(1)
knn.pred=knn(train.x,test.x,train.mpg,k=1)
table(knn.pred,mpg01.test)
## mpg01.test
## knn.pred 0 1
## 0 72 29
## 1 2 109
mean(knn.pred==mpg01.test)
## [1] 0.8537736
Using the Boston data set, fit classification models in order to predict whether a given census tract has a crime rate above or below the median. Explore logistic regression, LDA, naive Bayes, and KNN models using various subsets of the predictors. Describe your findings. Hint: You will have to create the response variable yourself, using the variables that are contained in the Boston data set.
detach(Auto)
library(MASS)
attach(Boston)
#Create a binary variable for “crim”
crim01=rep(0,length(crim))
crim01[crim>median(crim)]=1
Boston=data.frame(Boston,crim01)
#Split the first half of data set to train
train=1:(length(crim)/2)
test=(length(crim) / 2 + 1):length(crim)
Boston.train=Boston[train, ]
Boston.test=Boston[test, ]
crim01.test=crim01[test]
#Logistic Regression and Summary, based on crime data
glm.fit=glm(crim01~.-crim01-crim,data=Boston,family=binomial,subset = train)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(glm.fit)
##
## Call:
## glm(formula = crim01 ~ . - crim01 - crim, family = binomial,
## data = Boston, subset = train)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.83229 -0.06593 0.00000 0.06181 2.61513
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -91.319906 19.490273 -4.685 2.79e-06 ***
## zn -0.815573 0.193373 -4.218 2.47e-05 ***
## indus 0.354172 0.173862 2.037 0.04164 *
## chas 0.167396 0.991922 0.169 0.86599
## nox 93.706326 21.202008 4.420 9.88e-06 ***
## rm -4.719108 1.788765 -2.638 0.00833 **
## age 0.048634 0.024199 2.010 0.04446 *
## dis 4.301493 0.979996 4.389 1.14e-05 ***
## rad 3.039983 0.719592 4.225 2.39e-05 ***
## tax -0.006546 0.007855 -0.833 0.40461
## ptratio 1.430877 0.359572 3.979 6.91e-05 ***
## black -0.017552 0.006734 -2.606 0.00915 **
## lstat 0.190439 0.086722 2.196 0.02809 *
## medv 0.598533 0.185514 3.226 0.00125 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 329.367 on 252 degrees of freedom
## Residual deviance: 69.568 on 239 degrees of freedom
## AIC: 97.568
##
## Number of Fisher Scoring iterations: 10
glm.probs=predict(glm.fit,Boston.test,type = "response")
glm.pred=rep(0,length(glm.probs))
glm.pred[glm.probs>0.5]=1
table(glm.pred,crim01.test)
## crim01.test
## glm.pred 0 1
## 0 68 24
## 1 22 139
mean(glm.pred==crim01.test)
## [1] 0.8181818
#Logistic Regression and Summary, based on crime, chas, nox, and tax
glm.fit=glm(crim01~.-crim01-crim-chas-nox-tax,data=Boston, family=binomial,subset=train)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(glm.fit)
##
## Call:
## glm(formula = crim01 ~ . - crim01 - crim - chas - nox - tax,
## family = binomial, data = Boston, subset = train)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.04443 -0.24461 -0.00114 0.38919 2.72999
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -17.291707 6.019497 -2.873 0.004071 **
## zn -0.478891 0.104276 -4.593 4.38e-06 ***
## indus 0.362719 0.082969 4.372 1.23e-05 ***
## rm -2.364642 0.967625 -2.444 0.014535 *
## age 0.063371 0.015457 4.100 4.14e-05 ***
## dis 1.494535 0.397249 3.762 0.000168 ***
## rad 1.756498 0.357330 4.916 8.85e-07 ***
## ptratio 0.575045 0.161917 3.551 0.000383 ***
## black -0.018916 0.006754 -2.801 0.005102 **
## lstat 0.057632 0.053051 1.086 0.277326
## medv 0.237282 0.081326 2.918 0.003527 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 329.37 on 252 degrees of freedom
## Residual deviance: 139.59 on 242 degrees of freedom
## AIC: 161.59
##
## Number of Fisher Scoring iterations: 9
glm.probs=predict(glm.fit,Boston.test,type="response")
glm.pred=rep(0,length(glm.probs))
glm.pred[glm.probs>0.5]=1
table(glm.pred, crim01.test)
## crim01.test
## glm.pred 0 1
## 0 78 28
## 1 12 135
mean(glm.pred==crim01.test)
## [1] 0.8418972
#LDA
lda.fit=lda(crim01~.-crim01-crim,data=Boston,subset=train)
lda.pred=predict(lda.fit,Boston.test)
table(lda.pred$class,crim01.test)
## crim01.test
## 0 1
## 0 80 24
## 1 10 139
mean(lda.pred$class==crim01.test)
## [1] 0.8656126
#LDA on chas, non, and tax
lda.fit=lda(crim01~.-crim01-crim-chas-nox- tax,data=Boston,subset=train)
lda.pred=predict(lda.fit,Boston.test)
table(lda.pred$class,crim01.test)
## crim01.test
## 0 1
## 0 83 28
## 1 7 135
mean(lda.pred$class==crim01.test)
## [1] 0.8616601
#Next we will do a few KNN models across different K values
train.X=cbind(zn,indus,chas,nox,rm,age,dis,rad,tax, ptratio,black,lstat,medv)[train,]
test.X=cbind(zn,indus,chas,nox,rm,age,dis,rad,tax, ptratio,black,lstat,medv)[test,]
train.crim01=crim01[train]
set.seed(1)
knn.pred=knn(train.X,test.X,train.crim01,k=1)
table(knn.pred,crim01.test)
## crim01.test
## knn.pred 0 1
## 0 85 111
## 1 5 52
mean(knn.pred==crim01.test)
## [1] 0.541502
knn.pred=knn(train.X,test.X,train.crim01,k=10)
table(knn.pred,crim01.test)
## crim01.test
## knn.pred 0 1
## 0 83 23
## 1 7 140
mean(knn.pred==crim01.test)
## [1] 0.8814229
knn.pred=knn(train.X,test.X,train.crim01,k=10)
table(knn.pred,crim01.test)
## crim01.test
## knn.pred 0 1
## 0 83 22
## 1 7 141
mean(knn.pred==crim01.test)
## [1] 0.8853755
knn.pred=knn(train.X,test.X,train.crim01,k=100)
table(knn.pred,crim01.test)
## crim01.test
## knn.pred 0 1
## 0 86 119
## 1 4 44
mean(knn.pred==crim01.test)
## [1] 0.513834
After comparing our crime rates against multiple logistic regression and LDA models, naive Bayes, and KNN models where K = 1, 10, and 100, we can conclude that our most effective model is KNN where K=10.