ASOS - Clima

Información del Automated Surface Observing System (ASOS)

Instalar paquete y llamar librerias

#install.packages("riem")
library(riem)
#install.packages("tidyverse")
#library(tidyverse)
#install.packages("lubridate")
library(lubridate)
## 
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
## 
##     date, intersect, setdiff, union
#install.packages("ggplot2")
library(ggplot2)
#install.packages("plotly")
#library(plotly)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union

Buscar la red (país) - Ejemplo México y copiar CODE

#View(riem_networks())

Buscar la estación (ciudad) - Ejemplo: Monterrey , y copiar ID

#View(riem_stations("MX__ASOS"))

Obtener la información

monterrey <- riem_measures("MMMY")

Entender Información

str(monterrey)
## tibble [77,961 × 32] (S3: tbl_df/tbl/data.frame)
##  $ station          : chr [1:77961] "MMMY" "MMMY" "MMMY" "MMMY" ...
##  $ valid            : POSIXct[1:77961], format: "2014-01-01 00:16:00" "2014-01-01 00:49:00" ...
##  $ lon              : num [1:77961] -100 -100 -100 -100 -100 ...
##  $ lat              : num [1:77961] 25.8 25.8 25.8 25.8 25.8 ...
##  $ tmpf             : num [1:77961] 48.2 48.2 48.2 46.4 46.4 46.4 46.4 46.4 46.4 46.4 ...
##  $ dwpf             : num [1:77961] 46.4 46.4 46.4 46.4 46.4 44.6 44.6 44.6 44.6 44.6 ...
##  $ relh             : num [1:77961] 93.5 93.5 93.5 100 100 ...
##  $ drct             : num [1:77961] 0 120 120 120 110 100 110 130 60 0 ...
##  $ sknt             : num [1:77961] 0 3 5 6 5 5 4 3 3 0 ...
##  $ p01i             : num [1:77961] 0 0 0 0 0 0 0 0 0 0 ...
##  $ alti             : num [1:77961] 30.3 30.3 30.3 30.3 30.3 ...
##  $ mslp             : num [1:77961] NA NA NA NA NA ...
##  $ vsby             : num [1:77961] 4 3 1 0.25 0.12 0.12 0.06 0.06 0.06 0.12 ...
##  $ gust             : num [1:77961] NA NA NA NA NA NA NA NA NA NA ...
##  $ skyc1            : chr [1:77961] "SCT" "SCT" "SCT" "VV " ...
##  $ skyc2            : chr [1:77961] "BKN" "BKN" "BKN" NA ...
##  $ skyc3            : chr [1:77961] "OVC" "OVC" "OVC" NA ...
##  $ skyc4            : chr [1:77961] NA NA NA NA ...
##  $ skyl1            : num [1:77961] 700 300 200 200 100 100 100 100 100 100 ...
##  $ skyl2            : num [1:77961] 1200 400 300 NA NA NA NA NA NA NA ...
##  $ skyl3            : num [1:77961] 4000 900 500 NA NA NA NA NA NA NA ...
##  $ skyl4            : num [1:77961] NA NA NA NA NA NA NA NA NA NA ...
##  $ wxcodes          : chr [1:77961] NA "BR" "BR" "FG" ...
##  $ ice_accretion_1hr: logi [1:77961] NA NA NA NA NA NA ...
##  $ ice_accretion_3hr: logi [1:77961] NA NA NA NA NA NA ...
##  $ ice_accretion_6hr: logi [1:77961] NA NA NA NA NA NA ...
##  $ peak_wind_gust   : logi [1:77961] NA NA NA NA NA NA ...
##  $ peak_wind_drct   : logi [1:77961] NA NA NA NA NA NA ...
##  $ peak_wind_time   : logi [1:77961] NA NA NA NA NA NA ...
##  $ feel             : num [1:77961] 48.2 47.2 45.6 42.9 43.5 ...
##  $ metar            : chr [1:77961] "MMMY 010016Z 00000KT 4SM SCT007 BKN012 OVC040 09/08 A3028 RMK 8/5// BR" "MMMY 010049Z 12003KT 3SM BR SCT003 BKN004 OVC009 09/08 A3028 RMK 8/5// -DZ OCNL" "MMMY 010116Z 12005KT 1SM BR SCT002 BKN003 OVC005 09/08 A3028 RMK 8/6// -DZ OCNL" "MMMY 010120Z 12006KT 1/4SM FG VV002 08/08 A3029 RMK 8//// BC FG MOV SE/NW" ...
##  $ snowdepth        : logi [1:77961] NA NA NA NA NA NA ...
summary(monterrey)
##    station              valid                          lon        
##  Length:77961       Min.   :2014-01-01 00:16:00   Min.   :-100.1  
##  Class :character   1st Qu.:2016-03-11 07:40:00   1st Qu.:-100.1  
##  Mode  :character   Median :2018-05-06 17:40:00   Median :-100.1  
##                     Mean   :2018-05-11 11:21:04   Mean   :-100.1  
##                     3rd Qu.:2020-07-03 16:41:00   3rd Qu.:-100.1  
##                     Max.   :2022-09-19 23:40:00   Max.   :-100.1  
##                                                                   
##       lat             tmpf             dwpf            relh       
##  Min.   :25.78   Min.   : 23.00   Min.   :-5.80   Min.   :  2.32  
##  1st Qu.:25.78   1st Qu.: 64.40   1st Qu.:51.80   1st Qu.: 48.05  
##  Median :25.78   Median : 73.40   Median :62.60   Median : 69.14  
##  Mean   :25.78   Mean   : 72.49   Mean   :57.98   Mean   : 65.06  
##  3rd Qu.:25.78   3rd Qu.: 80.60   3rd Qu.:68.00   3rd Qu.: 83.32  
##  Max.   :25.78   Max.   :111.20   Max.   :86.00   Max.   :163.20  
##                  NA's   :89       NA's   :1686    NA's   :1741    
##       drct            sknt             p01i        alti            mslp       
##  Min.   :  0.0   Min.   : 0.000   Min.   :0   Min.   : 0.04   Min.   : 913.2  
##  1st Qu.: 70.0   1st Qu.: 4.000   1st Qu.:0   1st Qu.:29.88   1st Qu.:1011.4  
##  Median :110.0   Median : 5.000   Median :0   Median :29.97   Median :1014.5  
##  Mean   :130.7   Mean   : 5.819   Mean   :0   Mean   :29.98   Mean   :1015.3  
##  3rd Qu.:160.0   3rd Qu.: 8.000   3rd Qu.:0   3rd Qu.:30.07   3rd Qu.:1018.4  
##  Max.   :360.0   Max.   :98.000   Max.   :0   Max.   :30.81   Max.   :1103.4  
##  NA's   :72      NA's   :72                   NA's   :26      NA's   :66962   
##       vsby             gust           skyc1              skyc2          
##  Min.   : 0.000   Min.   : 13.00   Length:77961       Length:77961      
##  1st Qu.: 6.000   1st Qu.: 20.00   Class :character   Class :character  
##  Median :10.000   Median : 24.00   Mode  :character   Mode  :character  
##  Mean   : 9.124   Mean   : 24.65                                        
##  3rd Qu.:12.000   3rd Qu.: 28.00                                        
##  Max.   :40.000   Max.   :210.00                                        
##  NA's   :31       NA's   :75505                                         
##     skyc3              skyc4               skyl1           skyl2      
##  Length:77961       Length:77961       Min.   :    0   Min.   :    0  
##  Class :character   Class :character   1st Qu.: 1500   1st Qu.: 2000  
##  Mode  :character   Mode  :character   Median : 3000   Median : 6000  
##                                        Mean   : 5388   Mean   : 8015  
##                                        3rd Qu.: 7000   3rd Qu.:10000  
##                                        Max.   :37000   Max.   :30000  
##                                        NA's   :23051   NA's   :51698  
##      skyl3           skyl4         wxcodes          ice_accretion_1hr
##  Min.   :  400   Min.   : 3000   Length:77961       Mode:logical     
##  1st Qu.: 8000   1st Qu.:20000   Class :character   NA's:77961       
##  Median :16000   Median :20000   Mode  :character                    
##  Mean   :14779   Mean   :20656                                       
##  3rd Qu.:20000   3rd Qu.:25000                                       
##  Max.   :30000   Max.   :25000                                       
##  NA's   :73228   NA's   :77766                                       
##  ice_accretion_3hr ice_accretion_6hr peak_wind_gust peak_wind_drct
##  Mode:logical      Mode:logical      Mode:logical   Mode:logical  
##  NA's:77961        NA's:77961        NA's:77961     NA's:77961    
##                                                                   
##                                                                   
##                                                                   
##                                                                   
##                                                                   
##  peak_wind_time      feel           metar           snowdepth     
##  Mode:logical   Min.   :  9.11   Length:77961       Mode:logical  
##  NA's:77961     1st Qu.: 64.40   Class :character   NA's:77961    
##                 Median : 73.40   Mode  :character                 
##                 Mean   : 73.16                                    
##                 3rd Qu.: 83.29                                    
##                 Max.   :131.06                                    
##                 NA's   :1744

Filtrar información - Ejemplo: Septiembre 2022

este_mes <- subset(monterrey, valid>= as.POSIXct("2022-09-01 00:00")& valid <= as.POSIXct("2022-09-07 23:59"))

Graficar - Ejemplo Humedad Relativa durante Septiembre 2022

plot(este_mes$valid,este_mes$relh)

Promediar Información por día

promedio <- monterrey %>%
  mutate(date = ymd_hms(valid), date = as.Date(date)) %>%
  group_by(date) %>%
  summarize_if(is.numeric, ~mean(.,na.rm=TRUE))
tibble(promedio)
## # A tibble: 3,151 × 18
##    date         lon   lat  tmpf  dwpf  relh  drct  sknt  p01i  alti  mslp  vsby
##    <date>     <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1 2014-01-01 -100.  25.8  50.7  47.5  90.2  90.3  2.42     0  30.2 1023.  2.29
##  2 2014-01-02 -100.  25.8  53.9  47.4  81.3 238.   8.13     0  30.2 1024.  8.48
##  3 2014-01-03 -100.  25.8  45.5  34.4  69.0  97.2  4.16     0  30.4 1030. 15   
##  4 2014-01-04 -100.  25.8  44.8  36    71.7  78.9  2.22     0  30.1 1022. 15   
##  5 2014-02-07 -100.  25.8  37.6  36.3  95.3  82.6  2.96     0  30.2 1026.  1.78
##  6 2014-02-08 -100.  25.8  44.8  41.5  90.0 100    2.74     0  30.2 1023.  1.81
##  7 2014-02-09 -100.  25.8  53.8  44.7  77.1 212.   5.38     0  30.1 1019.  6.46
##  8 2014-02-10 -100.  25.8  62.5  54.0  77.8 158.   7.68     0  29.9 1014.  7.27
##  9 2014-02-11 -100.  25.8  50.5  45.6  83.9 228.   7.58     0  30.0 1019.  6.81
## 10 2014-02-12 -100.  25.8  45.5  35.1  69.0 229.   8.85     0  30.2 1023.  9.56
## # … with 3,141 more rows, and 6 more variables: gust <dbl>, skyl1 <dbl>,
## #   skyl2 <dbl>, skyl3 <dbl>, skyl4 <dbl>, feel <dbl>

Agregar columnas de grados centigrados

centigrados <- promedio
centigrados$tmpc <- (centigrados$tmpf-32)/1.8
tibble(centigrados)
## # A tibble: 3,151 × 19
##    date         lon   lat  tmpf  dwpf  relh  drct  sknt  p01i  alti  mslp  vsby
##    <date>     <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1 2014-01-01 -100.  25.8  50.7  47.5  90.2  90.3  2.42     0  30.2 1023.  2.29
##  2 2014-01-02 -100.  25.8  53.9  47.4  81.3 238.   8.13     0  30.2 1024.  8.48
##  3 2014-01-03 -100.  25.8  45.5  34.4  69.0  97.2  4.16     0  30.4 1030. 15   
##  4 2014-01-04 -100.  25.8  44.8  36    71.7  78.9  2.22     0  30.1 1022. 15   
##  5 2014-02-07 -100.  25.8  37.6  36.3  95.3  82.6  2.96     0  30.2 1026.  1.78
##  6 2014-02-08 -100.  25.8  44.8  41.5  90.0 100    2.74     0  30.2 1023.  1.81
##  7 2014-02-09 -100.  25.8  53.8  44.7  77.1 212.   5.38     0  30.1 1019.  6.46
##  8 2014-02-10 -100.  25.8  62.5  54.0  77.8 158.   7.68     0  29.9 1014.  7.27
##  9 2014-02-11 -100.  25.8  50.5  45.6  83.9 228.   7.58     0  30.0 1019.  6.81
## 10 2014-02-12 -100.  25.8  45.5  35.1  69.0 229.   8.85     0  30.2 1023.  9.56
## # … with 3,141 more rows, and 7 more variables: gust <dbl>, skyl1 <dbl>,
## #   skyl2 <dbl>, skyl3 <dbl>, skyl4 <dbl>, feel <dbl>, tmpc <dbl>
centigrados$feelc <-(centigrados$feel-32)/1.8
tibble(centigrados)
## # A tibble: 3,151 × 20
##    date         lon   lat  tmpf  dwpf  relh  drct  sknt  p01i  alti  mslp  vsby
##    <date>     <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1 2014-01-01 -100.  25.8  50.7  47.5  90.2  90.3  2.42     0  30.2 1023.  2.29
##  2 2014-01-02 -100.  25.8  53.9  47.4  81.3 238.   8.13     0  30.2 1024.  8.48
##  3 2014-01-03 -100.  25.8  45.5  34.4  69.0  97.2  4.16     0  30.4 1030. 15   
##  4 2014-01-04 -100.  25.8  44.8  36    71.7  78.9  2.22     0  30.1 1022. 15   
##  5 2014-02-07 -100.  25.8  37.6  36.3  95.3  82.6  2.96     0  30.2 1026.  1.78
##  6 2014-02-08 -100.  25.8  44.8  41.5  90.0 100    2.74     0  30.2 1023.  1.81
##  7 2014-02-09 -100.  25.8  53.8  44.7  77.1 212.   5.38     0  30.1 1019.  6.46
##  8 2014-02-10 -100.  25.8  62.5  54.0  77.8 158.   7.68     0  29.9 1014.  7.27
##  9 2014-02-11 -100.  25.8  50.5  45.6  83.9 228.   7.58     0  30.0 1019.  6.81
## 10 2014-02-12 -100.  25.8  45.5  35.1  69.0 229.   8.85     0  30.2 1023.  9.56
## # … with 3,141 more rows, and 8 more variables: gust <dbl>, skyl1 <dbl>,
## #   skyl2 <dbl>, skyl3 <dbl>, skyl4 <dbl>, feel <dbl>, tmpc <dbl>, feelc <dbl>

Filtrar información - Ejemplo: 2022

este_año <- centigrados[centigrados$date >= "2022-01-01" & centigrados$date <= "2022-09-07", ]

Graficar - Ejemplo Temperatura promedio Septiembre 2022

plot(este_año$date,este_año$tmpc, type = "l", main = "Temperatura promedio de Monterrey durante 2022", xlab = "Fecha", ylab = "Cº")

Conclusiones

Obtuvimos la información por medio de Automated Surface Observing System, para poder obtener la información y graficarla, llamamos e instalamos varías paqueterías. Este ejercicio se hizo con el fin de obtener información relevante para agregarla a nuestra base de datos. Esto ayuda mucho en el modelo predictivo, ya que para las ventas es un factor importante el clima, debido a que gracias a esto será que aumentan o disminuyen. Continuando con el proceso, se realizo la búsqueda seleccionando el país, buscando la estación (Ciudad) y filtrando la información para obtener la predicción, por ejemplo Septiembre 2022. También promediamos la información por día, así como cambiamos los factores a centígrados, procedimos a filtrar nuevamente la información a la fecha que queremos y graficamos para tener un mejor panorama de visión sobre los resultados. De esta manera podemos tener un mejor control sobre las ventas, obteniendo información relevante incluso saber en qué fechas, dependiendo el clima, lanzar alguna oferta para obtener mejores resultados.

LS0tCnRpdGxlOjxzcGFuIHN0eWxlPSJDb2xvcjogTWludCBHcmVlbiI+ICJBU09TIgphdXRob3I6ICJSaWNhcmRvIEdhbGljaWEgLSBBMDE2NTMyNzkiCmRhdGU6ICcyMDIyLTA5LTIwJwpvdXRwdXQ6IAogIGh0bWxfZG9jdW1lbnQ6IAogICAgdG9jOiB0cnVlCiAgICB0b2NfZmxvYXQ6IHRydWUKICAgIGNvZGVfZG93bmxvYWQ6IHRydWUgCi0tLQojIyAqKkFTT1MgLSBDbGltYSoqCgohW10oL1VzZXJzL3JpY2FyZG9nYy9EZXNrdG9wL2NsaW1hLXRpcG9zLTEwMjR4NDIzLlBORykKCiMjICoqSW5mb3JtYWNpw7NuIGRlbCBBdXRvbWF0ZWQgU3VyZmFjZSBPYnNlcnZpbmcgU3lzdGVtIChBU09TKSoqCgojIyAqSW5zdGFsYXIgcGFxdWV0ZSB5IGxsYW1hciBsaWJyZXJpYXMqCmBgYHtyfQojaW5zdGFsbC5wYWNrYWdlcygicmllbSIpCmxpYnJhcnkocmllbSkKI2luc3RhbGwucGFja2FnZXMoInRpZHl2ZXJzZSIpCiNsaWJyYXJ5KHRpZHl2ZXJzZSkKI2luc3RhbGwucGFja2FnZXMoImx1YnJpZGF0ZSIpCmxpYnJhcnkobHVicmlkYXRlKQojaW5zdGFsbC5wYWNrYWdlcygiZ2dwbG90MiIpCmxpYnJhcnkoZ2dwbG90MikKI2luc3RhbGwucGFja2FnZXMoInBsb3RseSIpCiNsaWJyYXJ5KHBsb3RseSkKbGlicmFyeShkcGx5cikKYGBgCgojIyAqQnVzY2FyIGxhIHJlZCAocGHDrXMpIC0gRWplbXBsbyBNw6l4aWNvIHkgY29waWFyIENPREUqIApgYGB7cn0KI1ZpZXcocmllbV9uZXR3b3JrcygpKQpgYGAKCiMjICpCdXNjYXIgbGEgZXN0YWNpw7NuIChjaXVkYWQpIC0gRWplbXBsbzogTW9udGVycmV5ICwgeSBjb3BpYXIgSUQqCmBgYHtyfQojVmlldyhyaWVtX3N0YXRpb25zKCJNWF9fQVNPUyIpKQpgYGAKCiMjICpPYnRlbmVyIGxhIGluZm9ybWFjacOzbioKYGBge3J9Cm1vbnRlcnJleSA8LSByaWVtX21lYXN1cmVzKCJNTU1ZIikKYGBgCgojIyAqRW50ZW5kZXIgSW5mb3JtYWNpw7NuKgpgYGB7cn0Kc3RyKG1vbnRlcnJleSkKc3VtbWFyeShtb250ZXJyZXkpCmBgYAoKIyMgKkZpbHRyYXIgaW5mb3JtYWNpw7NuIC0gRWplbXBsbzogU2VwdGllbWJyZSAyMDIyKgpgYGB7cn0KZXN0ZV9tZXMgPC0gc3Vic2V0KG1vbnRlcnJleSwgdmFsaWQ+PSBhcy5QT1NJWGN0KCIyMDIyLTA5LTAxIDAwOjAwIikmIHZhbGlkIDw9IGFzLlBPU0lYY3QoIjIwMjItMDktMDcgMjM6NTkiKSkKYGBgCgojIyAqKkdyYWZpY2FyIC0gRWplbXBsbyBIdW1lZGFkIFJlbGF0aXZhIGR1cmFudGUgU2VwdGllbWJyZSAyMDIyKioKYGBge3J9CnBsb3QoZXN0ZV9tZXMkdmFsaWQsZXN0ZV9tZXMkcmVsaCkKYGBgCgojIyBQcm9tZWRpYXIgSW5mb3JtYWNpw7NuIHBvciBkw61hCmBgYHtyfQpwcm9tZWRpbyA8LSBtb250ZXJyZXkgJT4lCiAgbXV0YXRlKGRhdGUgPSB5bWRfaG1zKHZhbGlkKSwgZGF0ZSA9IGFzLkRhdGUoZGF0ZSkpICU+JQogIGdyb3VwX2J5KGRhdGUpICU+JQogIHN1bW1hcml6ZV9pZihpcy5udW1lcmljLCB+bWVhbiguLG5hLnJtPVRSVUUpKQp0aWJibGUocHJvbWVkaW8pCmBgYAoKIyMgQWdyZWdhciBjb2x1bW5hcyBkZSBncmFkb3MgY2VudGlncmFkb3MKYGBge3J9CmNlbnRpZ3JhZG9zIDwtIHByb21lZGlvCmNlbnRpZ3JhZG9zJHRtcGMgPC0gKGNlbnRpZ3JhZG9zJHRtcGYtMzIpLzEuOAp0aWJibGUoY2VudGlncmFkb3MpCgpjZW50aWdyYWRvcyRmZWVsYyA8LShjZW50aWdyYWRvcyRmZWVsLTMyKS8xLjgKdGliYmxlKGNlbnRpZ3JhZG9zKQpgYGAKCiMjIEZpbHRyYXIgaW5mb3JtYWNpw7NuIC0gRWplbXBsbzogMjAyMgpgYGB7cn0KZXN0ZV9hw7FvIDwtIGNlbnRpZ3JhZG9zW2NlbnRpZ3JhZG9zJGRhdGUgPj0gIjIwMjItMDEtMDEiICYgY2VudGlncmFkb3MkZGF0ZSA8PSAiMjAyMi0wOS0wNyIsIF0KYGBgCgojIyBHcmFmaWNhciAtIEVqZW1wbG8gVGVtcGVyYXR1cmEgcHJvbWVkaW8gU2VwdGllbWJyZSAyMDIyCmBgYHtyfQpwbG90KGVzdGVfYcOxbyRkYXRlLGVzdGVfYcOxbyR0bXBjLCB0eXBlID0gImwiLCBtYWluID0gIlRlbXBlcmF0dXJhIHByb21lZGlvIGRlIE1vbnRlcnJleSBkdXJhbnRlIDIwMjIiLCB4bGFiID0gIkZlY2hhIiwgeWxhYiA9ICJDwroiKQpgYGAKCiMjIENvbmNsdXNpb25lcwoKT2J0dXZpbW9zIGxhIGluZm9ybWFjacOzbiBwb3IgbWVkaW8gZGUgQXV0b21hdGVkIFN1cmZhY2UgT2JzZXJ2aW5nIFN5c3RlbSwgcGFyYSBwb2RlciBvYnRlbmVyIGxhIGluZm9ybWFjacOzbiB5IGdyYWZpY2FybGEsIGxsYW1hbW9zIGUgaW5zdGFsYW1vcyB2YXLDrWFzIHBhcXVldGVyw61hcy4gRXN0ZSBlamVyY2ljaW8gc2UgaGl6byBjb24gZWwgZmluIGRlIG9idGVuZXIgaW5mb3JtYWNpw7NuIHJlbGV2YW50ZSBwYXJhIGFncmVnYXJsYSBhIG51ZXN0cmEgYmFzZSBkZSBkYXRvcy4gRXN0byBheXVkYSBtdWNobyBlbiBlbCBtb2RlbG8gcHJlZGljdGl2bywgeWEgcXVlIHBhcmEgbGFzIHZlbnRhcyBlcyB1biBmYWN0b3IgaW1wb3J0YW50ZSBlbCBjbGltYSwgZGViaWRvIGEgcXVlIGdyYWNpYXMgYSBlc3RvIHNlcsOhIHF1ZSBhdW1lbnRhbiBvIGRpc21pbnV5ZW4uIApDb250aW51YW5kbyBjb24gZWwgcHJvY2Vzbywgc2UgcmVhbGl6byBsYSBiw7pzcXVlZGEgc2VsZWNjaW9uYW5kbyBlbCBwYcOtcywgYnVzY2FuZG8gbGEgZXN0YWNpw7NuIChDaXVkYWQpIHkgZmlsdHJhbmRvIGxhIGluZm9ybWFjacOzbiBwYXJhIG9idGVuZXIgbGEgcHJlZGljY2nDs24sIHBvciBlamVtcGxvIFNlcHRpZW1icmUgMjAyMi4gVGFtYmnDqW4gcHJvbWVkaWFtb3MgbGEgaW5mb3JtYWNpw7NuIHBvciBkw61hLCBhc8OtIGNvbW8gY2FtYmlhbW9zIGxvcyBmYWN0b3JlcyBhIGNlbnTDrWdyYWRvcywgcHJvY2VkaW1vcyBhIGZpbHRyYXIgbnVldmFtZW50ZSBsYSBpbmZvcm1hY2nDs24gYSBsYSBmZWNoYSBxdWUgcXVlcmVtb3MgeSBncmFmaWNhbW9zIHBhcmEgdGVuZXIgdW4gbWVqb3IgcGFub3JhbWEgZGUgdmlzacOzbiBzb2JyZSBsb3MgcmVzdWx0YWRvcy4gRGUgZXN0YSBtYW5lcmEgcG9kZW1vcyB0ZW5lciB1biBtZWpvciBjb250cm9sIHNvYnJlIGxhcyB2ZW50YXMsIG9idGVuaWVuZG8gaW5mb3JtYWNpw7NuIHJlbGV2YW50ZSBpbmNsdXNvIHNhYmVyIGVuIHF1w6kgZmVjaGFzLCBkZXBlbmRpZW5kbyBlbCBjbGltYSwgbGFuemFyIGFsZ3VuYSBvZmVydGEgcGFyYSBvYnRlbmVyIG1lam9yZXMgcmVzdWx0YWRvcy4gCgoK