library(WDI)
library(wbstats)
library(tidyverse)
library(ggplot2)
gdp_data <- wb_data(country = "MX",indicator="NY.GDP.PCAP.CD",start_date = 1973,end_date = 2022)
summary(gdp_data)
## iso2c iso3c country date
## Length:49 Length:49 Length:49 Min. :1973
## Class :character Class :character Class :character 1st Qu.:1985
## Mode :character Mode :character Mode :character Median :1997
## Mean :1997
## 3rd Qu.:2009
## Max. :2021
## NY.GDP.PCAP.CD unit obs_status footnote
## Min. : 981.5 Length:49 Length:49 Length:49
## 1st Qu.: 2569.2 Class :character Class :character Class :character
## Median : 5650.0 Mode :character Mode :character Mode :character
## Mean : 5751.7
## 3rd Qu.: 9068.3
## Max. :10928.9
## last_updated
## Min. :2022-09-16
## 1st Qu.:2022-09-16
## Median :2022-09-16
## Mean :2022-09-16
## 3rd Qu.:2022-09-16
## Max. :2022-09-16
head(gdp_data)
## # A tibble: 6 x 9
## iso2c iso3c country date NY.GDP.PCAP.CD unit obs_status footnote
## <chr> <chr> <chr> <dbl> <dbl> <chr> <chr> <chr>
## 1 MX MEX Mexico 1973 981. <NA> <NA> <NA>
## 2 MX MEX Mexico 1974 1242. <NA> <NA> <NA>
## 3 MX MEX Mexico 1975 1476. <NA> <NA> <NA>
## 4 MX MEX Mexico 1976 1454. <NA> <NA> <NA>
## 5 MX MEX Mexico 1977 1301. <NA> <NA> <NA>
## 6 MX MEX Mexico 1978 1589. <NA> <NA> <NA>
## # ... with 1 more variable: last_updated <date>
tail(gdp_data)
## # A tibble: 6 x 9
## iso2c iso3c country date NY.GDP.PCAP.CD unit obs_status footnote
## <chr> <chr> <chr> <dbl> <dbl> <chr> <chr> <chr>
## 1 MX MEX Mexico 2016 8745. <NA> <NA> <NA>
## 2 MX MEX Mexico 2017 9288. <NA> <NA> <NA>
## 3 MX MEX Mexico 2018 9687. <NA> <NA> <NA>
## 4 MX MEX Mexico 2019 9950. <NA> <NA> <NA>
## 5 MX MEX Mexico 2020 8432. <NA> <NA> <NA>
## 6 MX MEX Mexico 2021 9926. <NA> <NA> <NA>
## # ... with 1 more variable: last_updated <date>
ggplot(gdp_data,aes(x=date,y=NY.GDP.PCAP.CD))+geom_point()
ggplot(gdp_data,aes(x=date,y=NY.GDP.PCAP.CD))+geom_col()
ggplot(gdp_data,aes(x=date,y=NY.GDP.PCAP.CD))+geom_col(fill="red") +geom_point(color="blue")
more_gdp_data<-wb_data(country = c("NG","HT","KE"),indicator="NY.GDP.PCAP.CD",start_date = 1981,end_date = 2015)
ggplot(more_gdp_data,aes(x=date, y=NY.GDP.PCAP.CD,color=country,shape=country))+geom_point()
Conocer las bases de datos a las cuales podemos acceder directamente de r agrega valor a nosotros como científicos de datos puesto que tenemos a la mano grandes cantidades de información disponibles. Así mismo, es importante que sepamos como transformarla y sacarle provecho.