Importar base de datos

#file.choose()

base_de_datos <- read.csv("/Users/dannaperez/Desktop/R/bases de datos/titanic.csv")

Entender base de datos

summary(base_de_datos)
##      pclass         survived         name               sex           
##  Min.   :1.000   Min.   :0.000   Length:1309        Length:1309       
##  1st Qu.:2.000   1st Qu.:0.000   Class :character   Class :character  
##  Median :3.000   Median :0.000   Mode  :character   Mode  :character  
##  Mean   :2.295   Mean   :0.382                                        
##  3rd Qu.:3.000   3rd Qu.:1.000                                        
##  Max.   :3.000   Max.   :1.000                                        
##                                                                       
##       age              sibsp            parch          ticket         
##  Min.   : 0.1667   Min.   :0.0000   Min.   :0.000   Length:1309       
##  1st Qu.:21.0000   1st Qu.:0.0000   1st Qu.:0.000   Class :character  
##  Median :28.0000   Median :0.0000   Median :0.000   Mode  :character  
##  Mean   :29.8811   Mean   :0.4989   Mean   :0.385                     
##  3rd Qu.:39.0000   3rd Qu.:1.0000   3rd Qu.:0.000                     
##  Max.   :80.0000   Max.   :8.0000   Max.   :9.000                     
##  NA's   :263                                                          
##       fare            cabin             embarked             boat          
##  Min.   :  0.000   Length:1309        Length:1309        Length:1309       
##  1st Qu.:  7.896   Class :character   Class :character   Class :character  
##  Median : 14.454   Mode  :character   Mode  :character   Mode  :character  
##  Mean   : 33.295                                                           
##  3rd Qu.: 31.275                                                           
##  Max.   :512.329                                                           
##  NA's   :1                                                                 
##       body        home.dest        
##  Min.   :  1.0   Length:1309       
##  1st Qu.: 72.0   Class :character  
##  Median :155.0   Mode  :character  
##  Mean   :160.8                     
##  3rd Qu.:256.0                     
##  Max.   :328.0                     
##  NA's   :1188
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union

Filtrar base de datos

titanic <- base_de_datos[,c("pclass", "age", "sex", "survived")]

titanic$survived <- as.factor (ifelse(titanic$survived==0,"murio","sobrevivio"))
titanic$i_pclass <- as.factor(titanic$pclass)
titanic$sex <- as.factor(titanic$sex)
str(titanic)
## 'data.frame':    1309 obs. of  5 variables:
##  $ pclass  : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ age     : num  29 0.917 2 30 25 ...
##  $ sex     : Factor w/ 2 levels "female","male": 1 2 1 2 1 2 1 2 1 2 ...
##  $ survived: Factor w/ 2 levels "murio","sobrevivio": 2 2 1 1 1 2 2 1 2 1 ...
##  $ i_pclass: Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
sum(is.na(titanic))
## [1] 263
titanic <- na.omit(titanic)

Crear arbol de decision

library(rpart)
arbol <- rpart(formula = survived ~ ., data = titanic)
arbol
## n= 1046 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 1046 427 murio (0.59177820 0.40822180)  
##    2) sex=male 658 135 murio (0.79483283 0.20516717)  
##      4) age>=9.5 615 110 murio (0.82113821 0.17886179) *
##      5) age< 9.5 43  18 sobrevivio (0.41860465 0.58139535)  
##       10) pclass>=2.5 29  11 murio (0.62068966 0.37931034) *
##       11) pclass< 2.5 14   0 sobrevivio (0.00000000 1.00000000) *
##    3) sex=female 388  96 sobrevivio (0.24742268 0.75257732)  
##      6) pclass>=2.5 152  72 murio (0.52631579 0.47368421)  
##       12) age>=1.5 145  66 murio (0.54482759 0.45517241) *
##       13) age< 1.5 7   1 sobrevivio (0.14285714 0.85714286) *
##      7) pclass< 2.5 236  16 sobrevivio (0.06779661 0.93220339) *
#install.packages("rpart.plot")
library(rpart.plot)

rpart.plot(arbol)

prp(arbol,extra=7,prefix="fraccion/n")

Conclusion

El árbol de decisiones es un tipo de modelo de predicción que en este caso nos ayuda a observar las probabilidades que tuvo cada personaje de acuerdo en sus variaciones en sus características como lo son: edas, sexo y en la clase en la que viajaba.
En este ejemplo, se puede observar que las mujeres tienen más probabilidad (75%) de sobrevivir que los hombres (21%) pero entre todas las mujeres dentro del Titanic, aquellas que eran de primera clase tenían un 93% de probabilidad de sobrevivencia. Las mujeres que sean de tercera o segunda clase tenían un 86% de probabilidad de sobrevivir si tenian un año y medio o menos que aquellas que eran mayores.

LS0tCnRpdGxlOiAiQXJib2xfZGVfZGVjaXNpb24tVGl0YW5pYyIKYXV0aG9yOiAiRGFuYSBQZXJleiAtIEEwMDIyNzA0MSIKZGF0ZTogIjkvNy8yMDIyIgpvdXRwdXQ6IAogIGh0bWxfZG9jdW1lbnQ6IAogICAgdG9jOiB0cnVlCiAgICB0b2NfZmxvYXQ6IHRydWUKICAgIGNvZGVfZG93bmxvYWQ6IHRydWUKLS0tCjxpbWcgc3JjPSIvVXNlcnMvZGFubmFwZXJlei9EZXNrdG9wL2ltYWdlbmVzIHBhcmEgSFRNTC90aXRhbmljX1BORzE2LnBuZyI+CgojIEltcG9ydGFyIGJhc2UgZGUgZGF0b3MKYGBge3J9CiNmaWxlLmNob29zZSgpCgpiYXNlX2RlX2RhdG9zIDwtIHJlYWQuY3N2KCIvVXNlcnMvZGFubmFwZXJlei9EZXNrdG9wL1IvYmFzZXMgZGUgZGF0b3MvdGl0YW5pYy5jc3YiKQpgYGAKCiMgRW50ZW5kZXIgYmFzZSBkZSBkYXRvcwpgYGB7cn0Kc3VtbWFyeShiYXNlX2RlX2RhdG9zKQoKbGlicmFyeShkcGx5cikKYGBgCgojIEZpbHRyYXIgYmFzZSBkZSBkYXRvcwpgYGB7cn0KdGl0YW5pYyA8LSBiYXNlX2RlX2RhdG9zWyxjKCJwY2xhc3MiLCAiYWdlIiwgInNleCIsICJzdXJ2aXZlZCIpXQoKdGl0YW5pYyRzdXJ2aXZlZCA8LSBhcy5mYWN0b3IgKGlmZWxzZSh0aXRhbmljJHN1cnZpdmVkPT0wLCJtdXJpbyIsInNvYnJldml2aW8iKSkKdGl0YW5pYyRpX3BjbGFzcyA8LSBhcy5mYWN0b3IodGl0YW5pYyRwY2xhc3MpCnRpdGFuaWMkc2V4IDwtIGFzLmZhY3Rvcih0aXRhbmljJHNleCkKc3RyKHRpdGFuaWMpCgpzdW0oaXMubmEodGl0YW5pYykpCgp0aXRhbmljIDwtIG5hLm9taXQodGl0YW5pYykKYGBgCgojIENyZWFyIGFyYm9sIGRlIGRlY2lzaW9uCmBgYHtyfQpsaWJyYXJ5KHJwYXJ0KQphcmJvbCA8LSBycGFydChmb3JtdWxhID0gc3Vydml2ZWQgfiAuLCBkYXRhID0gdGl0YW5pYykKYXJib2wKCiNpbnN0YWxsLnBhY2thZ2VzKCJycGFydC5wbG90IikKbGlicmFyeShycGFydC5wbG90KQoKcnBhcnQucGxvdChhcmJvbCkKCnBycChhcmJvbCxleHRyYT03LHByZWZpeD0iZnJhY2Npb24vbiIpCmBgYAoKIyBDb25jbHVzaW9uCkVsIMOhcmJvbCBkZSBkZWNpc2lvbmVzIGVzIHVuIHRpcG8gZGUgbW9kZWxvIGRlIHByZWRpY2Npw7NuIHF1ZSBlbiBlc3RlIGNhc28gbm9zIGF5dWRhIGEgb2JzZXJ2YXIgbGFzIHByb2JhYmlsaWRhZGVzIHF1ZSB0dXZvIGNhZGEgcGVyc29uYWplIGRlIGFjdWVyZG8gZW4gc3VzIHZhcmlhY2lvbmVzIGVuIHN1cyBjYXJhY3RlcsOtc3RpY2FzIGNvbW8gbG8gc29uOiBlZGFzLCBzZXhvIHkgZW4gbGEgY2xhc2UgZW4gbGEgcXVlIHZpYWphYmEuICAKRW4gZXN0ZSBlamVtcGxvLCBzZSBwdWVkZSBvYnNlcnZhciBxdWUgbGFzIG11amVyZXMgdGllbmVuIG3DoXMgcHJvYmFiaWxpZGFkICg3NSUpIGRlIHNvYnJldml2aXIgcXVlIGxvcyBob21icmVzICgyMSUpIHBlcm8gZW50cmUgdG9kYXMgbGFzIG11amVyZXMgZGVudHJvIGRlbCBUaXRhbmljLCBhcXVlbGxhcyBxdWUgZXJhbiBkZSBwcmltZXJhIGNsYXNlIHRlbsOtYW4gdW4gOTMlIGRlIHByb2JhYmlsaWRhZCBkZSBzb2JyZXZpdmVuY2lhLiBMYXMgbXVqZXJlcyBxdWUgc2VhbiBkZSB0ZXJjZXJhIG8gc2VndW5kYSBjbGFzZSB0ZW7DrWFuIHVuIDg2JSBkZSBwcm9iYWJpbGlkYWQgZGUgc29icmV2aXZpciBzaSB0ZW5pYW4gdW4gYcOxbyB5IG1lZGlvIG8gbWVub3MgcXVlIGFxdWVsbGFzIHF1ZSBlcmFuIG1heW9yZXMuIA==