Importar la base de datos

#file.choose()
base_de_datos <- read.csv("/Users/emilioolvera/Downloads/titanic.csv")

Entender base de datos

summary(base_de_datos)
##      pclass         survived         name               sex           
##  Min.   :1.000   Min.   :0.000   Length:1310        Length:1310       
##  1st Qu.:2.000   1st Qu.:0.000   Class :character   Class :character  
##  Median :3.000   Median :0.000   Mode  :character   Mode  :character  
##  Mean   :2.295   Mean   :0.382                                        
##  3rd Qu.:3.000   3rd Qu.:1.000                                        
##  Max.   :3.000   Max.   :1.000                                        
##  NA's   :1       NA's   :1                                            
##       age              sibsp            parch          ticket         
##  Min.   : 0.1667   Min.   :0.0000   Min.   :0.000   Length:1310       
##  1st Qu.:21.0000   1st Qu.:0.0000   1st Qu.:0.000   Class :character  
##  Median :28.0000   Median :0.0000   Median :0.000   Mode  :character  
##  Mean   :29.8811   Mean   :0.4989   Mean   :0.385                     
##  3rd Qu.:39.0000   3rd Qu.:1.0000   3rd Qu.:0.000                     
##  Max.   :80.0000   Max.   :8.0000   Max.   :9.000                     
##  NA's   :264       NA's   :1        NA's   :1                         
##       fare            cabin             embarked             boat          
##  Min.   :  0.000   Length:1310        Length:1310        Length:1310       
##  1st Qu.:  7.896   Class :character   Class :character   Class :character  
##  Median : 14.454   Mode  :character   Mode  :character   Mode  :character  
##  Mean   : 33.295                                                           
##  3rd Qu.: 31.275                                                           
##  Max.   :512.329                                                           
##  NA's   :2                                                                 
##       body        home.dest        
##  Min.   :  1.0   Length:1310       
##  1st Qu.: 72.0   Class :character  
##  Median :155.0   Mode  :character  
##  Mean   :160.8                     
##  3rd Qu.:256.0                     
##  Max.   :328.0                     
##  NA's   :1189

Filtrar base de datos

Titanic <- base_de_datos[,c("pclass","age","sex","survived")]
Titanic$survived<-as.factor(ifelse(Titanic$survived==0,"Murio","Sobrevivio"))
Titanic$pclass <-as.factor(Titanic$pclass )
Titanic$sex<-as.factor(Titanic$sex)
sum(is.na(Titanic))
## [1] 266
Titanic <- na.omit(Titanic)

Crear árbol de decisión

library(rpart)
arbol<-rpart(formula = survived~., data=Titanic)
arbol
## n= 1046 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 1046 427 Murio (0.59177820 0.40822180)  
##    2) sex=male 658 135 Murio (0.79483283 0.20516717)  
##      4) age>=9.5 615 110 Murio (0.82113821 0.17886179) *
##      5) age< 9.5 43  18 Sobrevivio (0.41860465 0.58139535)  
##       10) pclass=3 29  11 Murio (0.62068966 0.37931034) *
##       11) pclass=1,2 14   0 Sobrevivio (0.00000000 1.00000000) *
##    3) sex=female 388  96 Sobrevivio (0.24742268 0.75257732)  
##      6) pclass=3 152  72 Murio (0.52631579 0.47368421)  
##       12) age>=1.5 145  66 Murio (0.54482759 0.45517241) *
##       13) age< 1.5 7   1 Sobrevivio (0.14285714 0.85714286) *
##      7) pclass=1,2 236  16 Sobrevivio (0.06779661 0.93220339) *
#install.packages("rpart.plot")
library(rpart.plot)

rpart.plot(arbol)

prp(arbol, extra =7, prefix = "fraccion\n")