## # A tibble: 548 × 5
## # Groups: symbol [4]
## symbol date price change text
## <chr> <date> <dbl> <dbl> <glue>
## 1 GDPC1 1947-01-01 2034. NA 1947.1,
## Growth: NA
## 2 GDPC1 1947-04-01 2029. -0.00267 1947.2,
## Growth: -0.3%
## 3 GDPC1 1947-07-01 2025. -0.00207 1947.3,
## Growth: -0.2%
## 4 GDPC1 1947-10-01 2057. 0.0156 1947.4,
## Growth: 1.6%
## 5 GDPC1 1948-01-01 2087. 0.0150 1948.1,
## Growth: 1.5%
## 6 GDPC1 1948-04-01 2122. 0.0165 1948.2,
## Growth: 1.7%
## 7 GDPC1 1948-07-01 2134. 0.00573 1948.3,
## Growth: 0.6%
## 8 GDPC1 1948-10-01 2136. 0.00112 1948.4,
## Growth: 0.1%
## 9 GDPC1 1949-01-01 2107. -0.0138 1949.1,
## Growth: -1.4%
## 10 GDPC1 1949-04-01 2100. -0.00341 1949.2,
## Growth: -0.3%
## # … with 538 more rows
Analyze your client company’s data. Consider the following:
Timing Depth *Duration
of downturns in sale
Timing The same increases and decreases in sales follow just after those of the overall economy.
Depth In most cases, the downturns are the same, if not even deeper than the overall economy.
Duration The increases in services is very similar in length compared to the overall economy, however the length of the decreases is significantly longer in most cases.