base_de_datos <- read.csv("/Users/andreapaolasosa/Desktop/titanic.csv")
summary (base_de_datos)
## pclass survived name sex
## Min. :1.000 Min. :0.000 Length:1310 Length:1310
## 1st Qu.:2.000 1st Qu.:0.000 Class :character Class :character
## Median :3.000 Median :0.000 Mode :character Mode :character
## Mean :2.295 Mean :0.382
## 3rd Qu.:3.000 3rd Qu.:1.000
## Max. :3.000 Max. :1.000
## NA's :1 NA's :1
## age sibsp parch ticket
## Min. : 0.1667 Min. :0.0000 Min. :0.000 Length:1310
## 1st Qu.:21.0000 1st Qu.:0.0000 1st Qu.:0.000 Class :character
## Median :28.0000 Median :0.0000 Median :0.000 Mode :character
## Mean :29.8811 Mean :0.4989 Mean :0.385
## 3rd Qu.:39.0000 3rd Qu.:1.0000 3rd Qu.:0.000
## Max. :80.0000 Max. :8.0000 Max. :9.000
## NA's :264 NA's :1 NA's :1
## fare cabin embarked boat
## Min. : 0.000 Length:1310 Length:1310 Length:1310
## 1st Qu.: 7.896 Class :character Class :character Class :character
## Median : 14.454 Mode :character Mode :character Mode :character
## Mean : 33.295
## 3rd Qu.: 31.275
## Max. :512.329
## NA's :2
## body home.dest
## Min. : 1.0 Length:1310
## 1st Qu.: 72.0 Class :character
## Median :155.0 Mode :character
## Mean :160.8
## 3rd Qu.:256.0
## Max. :328.0
## NA's :1189
Titanic<-base_de_datos[,c("pclass", "age" ,"sex","survived")]
Titanic$survived<-as.factor(ifelse(Titanic$survived==0,"Murio","Sobrevivio"))
Titanic$pclass<-as.factor(Titanic$sex)
Titanic$sex<-as.factor(Titanic$sex)
str (Titanic)
## 'data.frame': 1310 obs. of 4 variables:
## $ pclass : Factor w/ 3 levels "","female","male": 2 3 2 3 2 3 2 3 2 3 ...
## $ age : num 29 0.917 2 30 25 ...
## $ sex : Factor w/ 3 levels "","female","male": 2 3 2 3 2 3 2 3 2 3 ...
## $ survived: Factor w/ 2 levels "Murio","Sobrevivio": 2 2 1 1 1 2 2 1 2 1 ...
sum (is.na(Titanic))
## [1] 265
Titanic<-na.omit(Titanic)
library (rpart)
arbol <-rpart(formula=survived ~., data = Titanic)
arbol
## n= 1046
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 1046 427 Murio (0.5917782 0.4082218)
## 2) pclass=male 658 135 Murio (0.7948328 0.2051672)
## 4) age>=9.5 615 110 Murio (0.8211382 0.1788618) *
## 5) age< 9.5 43 18 Sobrevivio (0.4186047 0.5813953) *
## 3) pclass=female 388 96 Sobrevivio (0.2474227 0.7525773) *
#install.packages("rpart.plot")
#install.packages ("rpart.plot")
library(rpart.plot)
rpart.plot(arbol)
prp(arbol,extra=7,prefix="fraccion\n")
##Conclusiones En este ejercicio se puede obersvar como se utilizaron datos correspondienntes a los sobrevivientes del titanic, de esta manera se pudo crear un arbol de decisiones para visualizacion de que segmentos de personas sobrevivieron.