install.packages(“WDI”)
install.packages(“wbstats”)
install.packages(“tidyverse”)
library(wbstats)
gdp_data <- wb_data(country = "MX", indicator = "NY.GDP.PCAP.CD", start_date = 1973, end_date = 2022)
summary(gdp_data)
## iso2c iso3c country date
## Length:49 Length:49 Length:49 Min. :1973
## Class :character Class :character Class :character 1st Qu.:1985
## Mode :character Mode :character Mode :character Median :1997
## Mean :1997
## 3rd Qu.:2009
## Max. :2021
## NY.GDP.PCAP.CD unit obs_status footnote
## Min. : 981.5 Length:49 Length:49 Length:49
## 1st Qu.: 2569.2 Class :character Class :character Class :character
## Median : 5650.0 Mode :character Mode :character Mode :character
## Mean : 5751.7
## 3rd Qu.: 9068.3
## Max. :10928.9
## last_updated
## Min. :2022-09-16
## 1st Qu.:2022-09-16
## Median :2022-09-16
## Mean :2022-09-16
## 3rd Qu.:2022-09-16
## Max. :2022-09-16
head(gdp_data)
## # A tibble: 6 × 9
## iso2c iso3c country date NY.GDP.PCAP.CD unit obs_status footnote last_upda…¹
## <chr> <chr> <chr> <dbl> <dbl> <chr> <chr> <chr> <date>
## 1 MX MEX Mexico 1973 981. <NA> <NA> <NA> 2022-09-16
## 2 MX MEX Mexico 1974 1242. <NA> <NA> <NA> 2022-09-16
## 3 MX MEX Mexico 1975 1476. <NA> <NA> <NA> 2022-09-16
## 4 MX MEX Mexico 1976 1454. <NA> <NA> <NA> 2022-09-16
## 5 MX MEX Mexico 1977 1301. <NA> <NA> <NA> 2022-09-16
## 6 MX MEX Mexico 1978 1589. <NA> <NA> <NA> 2022-09-16
## # … with abbreviated variable name ¹last_updated
tail(gdp_data)
## # A tibble: 6 × 9
## iso2c iso3c country date NY.GDP.PCAP.CD unit obs_status footnote last_upda…¹
## <chr> <chr> <chr> <dbl> <dbl> <chr> <chr> <chr> <date>
## 1 MX MEX Mexico 2016 8745. <NA> <NA> <NA> 2022-09-16
## 2 MX MEX Mexico 2017 9288. <NA> <NA> <NA> 2022-09-16
## 3 MX MEX Mexico 2018 9687. <NA> <NA> <NA> 2022-09-16
## 4 MX MEX Mexico 2019 9950. <NA> <NA> <NA> 2022-09-16
## 5 MX MEX Mexico 2020 8432. <NA> <NA> <NA> 2022-09-16
## 6 MX MEX Mexico 2021 9926. <NA> <NA> <NA> 2022-09-16
## # … with abbreviated variable name ¹last_updated
library(ggplot2)
ggplot(gdp_data, aes(x = date, y = NY.GDP.PCAP.CD)) + geom_point()
ggplot(gdp_data, aes(x = date, y = NY.GDP.PCAP.CD)) + geom_col()
ggplot(gdp_data, aes(x = date, y = NY.GDP.PCAP.CD)) + geom_col(fill = "lightblue") + geom_point(color = "blue")
more_gdp_data <- wb_data(country = c("NC","HT", "KE"),
indicator = "NY.GDP.PCAP.CD",
start_date = 1981, end_date = 2015)
ggplot(more_gdp_data, aes(x = date, y = NY.GDP.PCAP.CD, color = country, shape = country)) + geom_point()
Trabajando en esta actividad pudimos descubrir otra herramienta muy útil de R, dentro del programa podemos obtener datos del Banco Mundial para ver distintas variables, en este caso analizamos el Producto Interno Bruto de un país y después de 3 países. Esto nos ayudó para ver el “historial” económico de un país y al momento de comparar varios se puede ver cómo se encuentra su situación y estabilidad económica en comparación de otros.