Indicadores del Banco Mundial

Paquetes Instalados

install.packages(“WDI”)
install.packages(“wbstats”)
install.packages(“tidyverse”)

Información de 1 país

library(wbstats)

gdp_data <- wb_data(country = "MX", indicator = "NY.GDP.PCAP.CD", start_date = 1973, end_date = 2022)

summary(gdp_data)
##     iso2c              iso3c             country               date     
##  Length:49          Length:49          Length:49          Min.   :1973  
##  Class :character   Class :character   Class :character   1st Qu.:1985  
##  Mode  :character   Mode  :character   Mode  :character   Median :1997  
##                                                           Mean   :1997  
##                                                           3rd Qu.:2009  
##                                                           Max.   :2021  
##  NY.GDP.PCAP.CD        unit            obs_status          footnote        
##  Min.   :  981.5   Length:49          Length:49          Length:49         
##  1st Qu.: 2569.2   Class :character   Class :character   Class :character  
##  Median : 5650.0   Mode  :character   Mode  :character   Mode  :character  
##  Mean   : 5751.7                                                           
##  3rd Qu.: 9068.3                                                           
##  Max.   :10928.9                                                           
##   last_updated       
##  Min.   :2022-09-16  
##  1st Qu.:2022-09-16  
##  Median :2022-09-16  
##  Mean   :2022-09-16  
##  3rd Qu.:2022-09-16  
##  Max.   :2022-09-16
head(gdp_data)
## # A tibble: 6 × 9
##   iso2c iso3c country  date NY.GDP.PCAP.CD unit  obs_status footnote last_upda…¹
##   <chr> <chr> <chr>   <dbl>          <dbl> <chr> <chr>      <chr>    <date>     
## 1 MX    MEX   Mexico   1973           981. <NA>  <NA>       <NA>     2022-09-16 
## 2 MX    MEX   Mexico   1974          1242. <NA>  <NA>       <NA>     2022-09-16 
## 3 MX    MEX   Mexico   1975          1476. <NA>  <NA>       <NA>     2022-09-16 
## 4 MX    MEX   Mexico   1976          1454. <NA>  <NA>       <NA>     2022-09-16 
## 5 MX    MEX   Mexico   1977          1301. <NA>  <NA>       <NA>     2022-09-16 
## 6 MX    MEX   Mexico   1978          1589. <NA>  <NA>       <NA>     2022-09-16 
## # … with abbreviated variable name ¹​last_updated
tail(gdp_data)
## # A tibble: 6 × 9
##   iso2c iso3c country  date NY.GDP.PCAP.CD unit  obs_status footnote last_upda…¹
##   <chr> <chr> <chr>   <dbl>          <dbl> <chr> <chr>      <chr>    <date>     
## 1 MX    MEX   Mexico   2016          8745. <NA>  <NA>       <NA>     2022-09-16 
## 2 MX    MEX   Mexico   2017          9288. <NA>  <NA>       <NA>     2022-09-16 
## 3 MX    MEX   Mexico   2018          9687. <NA>  <NA>       <NA>     2022-09-16 
## 4 MX    MEX   Mexico   2019          9950. <NA>  <NA>       <NA>     2022-09-16 
## 5 MX    MEX   Mexico   2020          8432. <NA>  <NA>       <NA>     2022-09-16 
## 6 MX    MEX   Mexico   2021          9926. <NA>  <NA>       <NA>     2022-09-16 
## # … with abbreviated variable name ¹​last_updated
library(ggplot2)

ggplot(gdp_data, aes(x = date, y = NY.GDP.PCAP.CD)) + geom_point()

ggplot(gdp_data, aes(x = date, y = NY.GDP.PCAP.CD)) + geom_col()

ggplot(gdp_data, aes(x = date, y = NY.GDP.PCAP.CD)) + geom_col(fill = "lightblue") + geom_point(color = "blue")

Información de varios países

more_gdp_data <- wb_data(country = c("NC","HT", "KE"),
                         indicator = "NY.GDP.PCAP.CD",
                         start_date = 1981, end_date = 2015)

ggplot(more_gdp_data, aes(x = date, y = NY.GDP.PCAP.CD, color = country, shape = country)) + geom_point()

Conclusiones

Trabajando en esta actividad pudimos descubrir otra herramienta muy útil de R, dentro del programa podemos obtener datos del Banco Mundial para ver distintas variables, en este caso analizamos el Producto Interno Bruto de un país y después de 3 países. Esto nos ayudó para ver el “historial” económico de un país y al momento de comparar varios se puede ver cómo se encuentra su situación y estabilidad económica en comparación de otros.

LS0tCnRpdGxlOiAiSW5kaWNhZG9yZXMgZGVsIEJhbmNvIE11bmRpYWwiCmF1dGhvcjogIkVyaWNrYSBNYXJ0w61uZXogLSBBMDExNzcwMTciCmRhdGU6ICIyMDIyLTA5LTA2IgpvdXRwdXQ6IAogIGh0bWxfZG9jdW1lbnQ6CiAgICB0b2M6IHRydWUKICAgIHRvY19mbG9hdDogdHJ1ZQogICAgY29kZV9kb3dubG9hZDogdHJ1ZQotLS0KIyMgPGltZyBzcmM9ICIvVXNlcnMvRXJpY2thTXR6L0Rlc2t0b3AvRDNDNzVCQzctN0JDNC00ODIxLUE5MzAtOERFRDg3MTlCNzg3LndlYnAiPgoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiAjOEI2NTA4IiA+ICoqSW5kaWNhZG9yZXMgZGVsIEJhbmNvIE11bmRpYWwqKiA8L3NwYW4+CgojIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiAjQ0Q5NTBDIiA+IFBhcXVldGVzIEluc3RhbGFkb3MgPC9zcGFuPgppbnN0YWxsLnBhY2thZ2VzKCJXREkiKSAgCmluc3RhbGwucGFja2FnZXMoIndic3RhdHMiKSAgCmluc3RhbGwucGFja2FnZXMoInRpZHl2ZXJzZSIpICAKCiMjIyA8c3BhbiBzdHlsZT0iY29sb3I6ICNDRDk1MEMiID4gSW5mb3JtYWNpw7NuIGRlIDEgcGHDrXMgPC9zcGFuPgpgYGB7cn0KbGlicmFyeSh3YnN0YXRzKQoKZ2RwX2RhdGEgPC0gd2JfZGF0YShjb3VudHJ5ID0gIk1YIiwgaW5kaWNhdG9yID0gIk5ZLkdEUC5QQ0FQLkNEIiwgc3RhcnRfZGF0ZSA9IDE5NzMsIGVuZF9kYXRlID0gMjAyMikKCnN1bW1hcnkoZ2RwX2RhdGEpCgpoZWFkKGdkcF9kYXRhKQp0YWlsKGdkcF9kYXRhKQoKbGlicmFyeShnZ3Bsb3QyKQoKZ2dwbG90KGdkcF9kYXRhLCBhZXMoeCA9IGRhdGUsIHkgPSBOWS5HRFAuUENBUC5DRCkpICsgZ2VvbV9wb2ludCgpCgpnZ3Bsb3QoZ2RwX2RhdGEsIGFlcyh4ID0gZGF0ZSwgeSA9IE5ZLkdEUC5QQ0FQLkNEKSkgKyBnZW9tX2NvbCgpCgpnZ3Bsb3QoZ2RwX2RhdGEsIGFlcyh4ID0gZGF0ZSwgeSA9IE5ZLkdEUC5QQ0FQLkNEKSkgKyBnZW9tX2NvbChmaWxsID0gImxpZ2h0Ymx1ZSIpICsgZ2VvbV9wb2ludChjb2xvciA9ICJibHVlIikKYGBgCgojIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiAjQ0Q5NTBDIiA+IEluZm9ybWFjacOzbiBkZSB2YXJpb3MgcGHDrXNlcyA8L3NwYW4+CmBgYHtyfQptb3JlX2dkcF9kYXRhIDwtIHdiX2RhdGEoY291bnRyeSA9IGMoIk5DIiwiSFQiLCAiS0UiKSwKICAgICAgICAgICAgICAgICAgICAgICAgIGluZGljYXRvciA9ICJOWS5HRFAuUENBUC5DRCIsCiAgICAgICAgICAgICAgICAgICAgICAgICBzdGFydF9kYXRlID0gMTk4MSwgZW5kX2RhdGUgPSAyMDE1KQoKZ2dwbG90KG1vcmVfZ2RwX2RhdGEsIGFlcyh4ID0gZGF0ZSwgeSA9IE5ZLkdEUC5QQ0FQLkNELCBjb2xvciA9IGNvdW50cnksIHNoYXBlID0gY291bnRyeSkpICsgZ2VvbV9wb2ludCgpCmBgYAoKIyMjIDxzcGFuIHN0eWxlPSJjb2xvcjogI0NEOTUwQyIgPiBDb25jbHVzaW9uZXMgPC9zcGFuPgo8cCBzdHlsZT0ndGV4dC1hbGlnbjpqdXN0aWZ5Oyc+ICoqVHJhYmFqYW5kbyBlbiBlc3RhIGFjdGl2aWRhZCBwdWRpbW9zIGRlc2N1YnJpciBvdHJhIGhlcnJhbWllbnRhIG11eSDDunRpbCBkZSAqUiosIGRlbnRybyBkZWwgcHJvZ3JhbWEgcG9kZW1vcyBvYnRlbmVyIGRhdG9zIGRlbCBCYW5jbyBNdW5kaWFsIHBhcmEgdmVyIGRpc3RpbnRhcyB2YXJpYWJsZXMsIGVuIGVzdGUgY2FzbyBhbmFsaXphbW9zIGVsIFByb2R1Y3RvIEludGVybm8gQnJ1dG8gZGUgdW4gcGHDrXMgeSBkZXNwdcOpcyBkZSAzIHBhw61zZXMuIEVzdG8gbm9zIGF5dWTDsyBwYXJhIHZlciBlbCAiaGlzdG9yaWFsIiBlY29uw7NtaWNvIGRlIHVuIHBhw61zIHkgYWwgbW9tZW50byBkZSBjb21wYXJhciB2YXJpb3Mgc2UgcHVlZGUgdmVyIGPDs21vIHNlIGVuY3VlbnRyYSBzdSBzaXR1YWNpw7NuIHkgZXN0YWJpbGlkYWQgZWNvbsOzbWljYSBlbiBjb21wYXJhY2nDs24gZGUgb3Ryb3MuKiogPC9wPgoKCgo=