Comparatif Brochopred

Bonchopred_comparatif <- read.csv2("C:/Users/mallah.s/Desktop/Stats et Theses/Brochopred_Arvin/Bonchopred_comparatif.csv", stringsAsFactors=TRUE)
 BP_C<-Bonchopred_comparatif

Stade à l’inclusion

Stade à l’inclusion/Dyspnée QLQ30 V3-V1

Stade IIIA/Dyspnée V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_IIIA=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_IIIA == "Non"]
## W = 0.87148, p-value = 0.06823
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_IIIA=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_IIIA == "Oui"]
## W = 0.80513, p-value = 0.06533

la normalité: acceptée -> t-test sera realisé

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Stade_IIIA)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Stade_IIIA
## F = 1.4236, num df = 11, denom df = 5, p-value = 0.7334
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.216757 5.757118
## sample estimates:
## ratio of variances 
##            1.42362

test de variance: accepté

t.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Stade_IIIA, var.equal=TRUE)
## 
##  Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Stade_IIIA
## t = 0.44148, df = 16, p-value = 0.6648
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -42.25136  64.47803
## sample estimates:
## mean in group Non mean in group Oui 
##         -27.77667         -38.89000

significativité: Non

Stade IIIB/Dyspnée V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_IIIB=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_IIIB == "Non"]
## W = 0.8723, p-value = 0.06989
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_IIIB=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_IIIB == "Oui"]
## W = 0.63989, p-value = 0.001351

la normalité: non acceptée -> test de wilcoxon sera realisé

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Stade_IIIB)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Stade_IIIB
## F = 11.906, num df = 11, denom df = 5, p-value = 0.01334
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   1.812776 48.147776
## sample estimates:
## ratio of variances 
##           11.90598

test de variance: non accepté

Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon

t.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Stade_IIIB)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Stade_IIIB
## t = -0.74976, df = 14.129, p-value = 0.4657
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -53.59641  25.81308
## sample estimates:
## mean in group Non mean in group Oui 
##         -36.11167         -22.22000

significativité: Non

Stade IV/QLQ30 V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_IV == "Non"]
## W = 0.83977, p-value = 0.02751
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_IV == "Oui"]
## W = 0.88181, p-value = 0.2775

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Stade_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Stade_IV
## F = 0.19086, num df = 11, denom df = 5, p-value = 0.02105
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.02905923 0.77182035
## sample estimates:
## ratio of variances 
##          0.1908558

test de variance: rejetée

t.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Stade_IV,var.test=FALSE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Stade_IV
## t = 0.085543, df = 5.9751, p-value = 0.9346
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -76.77455  82.33122
## sample estimates:
## mean in group Non mean in group Oui 
##         -30.55500         -33.33333

significativité: Non

Stade à l’inclusion/Dyspnée V3-V2

Stade IIIA/Dyspnée V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_IIIA=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_IIIA == "Non"]
## W = 0.8165, p-value = 0.01452
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_IIIA=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_IIIA == "Oui"]
## W = 0.96427, p-value = 0.6368

la normalité: non acceptée -> wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Stade_IIIA)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Stade_IIIA
## F = 0.88311, num df = 11, denom df = 2, p-value = 0.7142
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.02240987 4.64151193
## sample estimates:
## ratio of variances 
##          0.8831069

test de variance: accepté

wilcox.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Stade_IIIA, var.equal=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Stade_IIIA
## W = 20.5, p-value = 0.7534
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade IIIB/Dyspnée V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_IIIB=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_IIIB == "Non"]
## W = 0.87251, p-value = 0.1308
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_IIIB=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_IIIB == "Oui"]
## W = 0.82682, p-value = 0.101

la normalité: acceptée -> t. test

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Stade_IIIB)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Stade_IIIB
## F = 8.1269, num df = 8, denom df = 5, p-value = 0.03366
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   1.202704 39.149398
## sample estimates:
## ratio of variances 
##           8.126875

test de variance: non accepté

t.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Stade_IIIB)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Stade_IIIB
## t = 0.5096, df = 10.645, p-value = 0.6207
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -37.07053  59.29053
## sample estimates:
## mean in group Non mean in group Oui 
##             11.11              0.00

significativité: Non

Stade IV/QLQ30 V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_IV == "Non"]
## W = 0.8463, p-value = 0.06783
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_IV == "Oui"]
## W = 0.85134, p-value = 0.1614

la normalité: acceptée -> t.test ( test de student)

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Stade_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Stade_IV
## F = 0.22269, num df = 8, denom df = 5, p-value = 0.0604
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.03295567 1.07274515
## sample estimates:
## ratio of variances 
##          0.2226871

test de variance: accepté

t.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Stade_IV,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Stade_IV
## t = -0.90407, df = 6.5052, p-value = 0.3982
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -94.79644  42.94422
## sample estimates:
## mean in group Non mean in group Oui 
##         -3.704444         22.221667

significativité: Non

Stade à l’inclusion/Dyspnée V2- V1

Stade IIIA/Dyspnée V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_IIIA=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_IIIA == "Non"]
## W = 0.83906, p-value = 0.009444
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_IIIA=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_IIIA == "Oui"]
## W = 0.99839, p-value = 0.9951

la normalité: rejetée -> wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Stade_IIIA)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Stade_IIIA
## F = 0.32308, num df = 15, denom df = 3, p-value = 0.1176
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.02266786 1.34168179
## sample estimates:
## ratio of variances 
##          0.3230785

test de variance: accepté

wilcox.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Stade_IIIA, var.equal=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Stade_IIIA
## W = 25, p-value = 0.5254
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade IIIB/Dyspnée V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_IIIB=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_IIIB == "Non"]
## W = 0.88535, p-value = 0.1027
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_IIIB=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_IIIB == "Oui"]
## W = 0.78232, p-value = 0.01846

la normalité: non acceptée -> test de wilcoxon sera realisé

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Stade_IIIB)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Stade_IIIB
## F = 3.3167, num df = 11, denom df = 7, p-value = 0.1225
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.704259 12.466224
## sample estimates:
## ratio of variances 
##           3.316687

test de variance: accepté

Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon

wilcox.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Stade_IIIB)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Stade_IIIB
## W = 34, p-value = 0.2815
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade IV/dyspnée V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_IV == "Non"]
## W = 0.92398, p-value = 0.3207
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_IV == "Oui"]
## W = 0.84338, p-value = 0.08157

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Stade_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Stade_IV
## F = 1.033, num df = 11, denom df = 7, p-value = 0.9957
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.2193375 3.8825361
## sample estimates:
## ratio of variances 
##           1.032964

test de variance: acceptée

wilcox.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Stade_IV,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Stade_IV
## W = 69, p-value = 0.102
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade à l’inclusion/Dyspnée LC_13 V3-V1

Stade IIIA/Dyspnée V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_IIIA=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_IIIA == "Non"]
## W = 0.94919, p-value = 0.6251
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_IIIA=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_IIIA == "Oui"]
## W = 0.78254, p-value = 0.04071

la normalité: rejetée -> Wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Stade_IIIA)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Stade_IIIA
## F = 2.4532, num df = 11, denom df = 5, p-value = 0.3323
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.3735237 9.9208811
## sample estimates:
## ratio of variances 
##           2.453236

test de variance: accepté

wilcox.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Stade_IIIA, var.equal=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Stade_IIIA
## W = 47.5, p-value = 0.2989
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade IIIB/Dyspnée V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_IIIB=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_IIIB == "Non"]
## W = 0.88126, p-value = 0.09098
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_IIIB=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_IIIB == "Oui"]
## W = 0.891, p-value = 0.3234

la normalité: acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Stade_IIIB)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Stade_IIIB
## F = 3.0823, num df = 11, denom df = 5, p-value = 0.2241
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.469297 12.464643
## sample estimates:
## ratio of variances 
##           3.082257

test de variance: accepté

Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon

t.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Stade_IIIB)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Stade_IIIB
## t = -1.2867, df = 15.526, p-value = 0.2171
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -56.47701  13.88035
## sample estimates:
## mean in group Non mean in group Oui 
##         -31.48333         -10.18500

significativité: Non

Stade IV/QLQ30 V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_IV == "Non"]
## W = 0.9323, p-value = 0.4052
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_IV == "Oui"]
## W = 0.92139, p-value = 0.5154

la normalité: non acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Stade_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Stade_IV
## F = 0.23512, num df = 11, denom df = 5, p-value = 0.04257
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.03579941 0.95084118
## sample estimates:
## ratio of variances 
##           0.235124

test de variance: rejetée

t.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Stade_IV,var.test=FALSE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Stade_IV
## t = 0.19819, df = 6.2057, p-value = 0.8492
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -57.26856  67.45190
## sample estimates:
## mean in group Non mean in group Oui 
##         -22.68667         -27.77833

significativité: Non

Stade à l’inclusion/Dyspnée V3-V2

Stade IIIA/Dyspnée V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_IIIA=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_IIIA == "Non"]
## W = 0.95517, p-value = 0.7133
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_IIIA=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_IIIA == "Oui"]
## W = 0.85464, p-value = 0.2529

la normalité: acceptée -> t.test

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Stade_IIIA)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Stade_IIIA
## F = 0.73709, num df = 11, denom df = 2, p-value = 0.5948
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.01870455 3.87406870
## sample estimates:
## ratio of variances 
##           0.737091

test de variance: accepté

t.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Stade_IIIA, var.equal=TRUE)
## 
##  Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Stade_IIIA
## t = 1.3729, df = 13, p-value = 0.193
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -18.85601  84.60101
## sample estimates:
## mean in group Non mean in group Oui 
##           14.3525          -18.5200

significativité: Non

Stade IIIB/Dyspnée V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_IIIB=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_IIIB == "Non"]
## W = 0.99037, p-value = 0.9966
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_IIIB=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_IIIB == "Oui"]
## W = 0.96822, p-value = 0.8802

la normalité: acceptée -> t. test

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Stade_IIIB)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Stade_IIIB
## F = 1.6435, num df = 8, denom df = 5, p-value = 0.6059
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.2432267 7.9173104
## sample estimates:
## ratio of variances 
##           1.643524

test de variance: accepté

t.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Stade_IIIB, var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Stade_IIIB
## t = -0.51782, df = 12.546, p-value = 0.6136
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -52.84270  32.46936
## sample estimates:
## mean in group Non mean in group Oui 
##          3.703333         13.890000

significativité: Non

Stade IV/dyspnée V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_IV == "Non"]
## W = 0.96249, p-value = 0.824
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_IV == "Oui"]
## W = 0.96353, p-value = 0.8465

la normalité: acceptée -> t.test ( test de student)

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Stade_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Stade_IV
## F = 0.79349, num df = 8, denom df = 5, p-value = 0.7329
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1174291 3.8224536
## sample estimates:
## ratio of variances 
##          0.7934887

test de variance: accepté

t.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Stade_IV,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Stade_IV
## t = -0.55361, df = 9.949, p-value = 0.5921
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -58.96478  35.50812
## sample estimates:
## mean in group Non mean in group Oui 
##          3.086667         14.815000

significativité: Non

Stade à l’inclusion/Dyspnée V2- V1

Stade IIIA/Dyspnée V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_IIIA=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_IIIA == "Non"]
## W = 0.88866, p-value = 0.05304
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_IIIA=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_IIIA == "Oui"]
## W = 0.94562, p-value = 0.6889

la normalité: accepté meme si une des données est = à 0.05 -> on va opter pour un test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Stade_IIIA)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Stade_IIIA
## F = 0.47004, num df = 15, denom df = 3, p-value = 0.2791
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.03297932 1.95200393
## sample estimates:
## ratio of variances 
##          0.4700448

test de variance: accepté

t.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Stade_IIIA, var.equal=TRUE)
## 
##  Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Stade_IIIA
## t = -0.76337, df = 18, p-value = 0.4551
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -70.35049  32.85174
## sample estimates:
## mean in group Non mean in group Oui 
##         -40.97187         -22.22250

significativité: Non

Stade IIIB/Dyspnée V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_IIIB=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_IIIB == "Non"]
## W = 0.9239, p-value = 0.3199
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_IIIB=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_IIIB == "Oui"]
## W = 0.8021, p-value = 0.03014

la normalité: non acceptée -> test de wilcoxon sera realisé

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Stade_IIIB)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Stade_IIIB
## F = 2.8523, num df = 11, denom df = 7, p-value = 0.1745
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.6056531 10.7207811
## sample estimates:
## ratio of variances 
##           2.852305

test de variance: accepté

Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon

wilcox.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Stade_IIIB)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Stade_IIIB
## W = 47, p-value = 0.9689
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade IV/QLQ30 V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_IV == "Non"]
## W = 0.9345, p-value = 0.4302
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_IV == "Oui"]
## W = 0.86904, p-value = 0.1475

la normalité: non acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Stade_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Stade_IV
## F = 0.63984, num df = 11, denom df = 7, p-value = 0.4876
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1358624 2.4049256
## sample estimates:
## ratio of variances 
##          0.6398397

test de variance: acceptée

t.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Stade_IV,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Stade_IV
## t = 0.79574, df = 12.767, p-value = 0.4407
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -28.66716  62.00216
## sample estimates:
## mean in group Non mean in group Oui 
##          -30.5550          -47.2225

significativité: Non

Stade à l’inclusion/ Total QLQ30 V3-V1

Stade IIIA/ Total V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_IIIA=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_IIIA == "Non"]
## W = 0.89374, p-value = 0.1317
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_IIIA=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_IIIA == "Oui"]
## W = 0.86977, p-value = 0.2253

la normalité: acceptée -> t-test sera realisé

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Stade_IIIA)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_3_vs_1 by BP_C$Stade_IIIA
## F = 2.8164, num df = 11, denom df = 5, p-value = 0.2629
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.4288249 11.3896954
## sample estimates:
## ratio of variances 
##           2.816444

test de variance: accepté

t.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Stade_IIIA, var.equal=TRUE)
## 
##  Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1 by BP_C$Stade_IIIA
## t = -0.69761, df = 16, p-value = 0.4954
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -36.32254  18.33587
## sample estimates:
## mean in group Non mean in group Oui 
##          13.37833          22.37167

significativité: Non

Stade IIIB/ total V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_IIIB=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_IIIB == "Non"]
## W = 0.76634, p-value = 0.00398
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_IIIB=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_IIIB == "Oui"]
## W = 0.98413, p-value = 0.9701

la normalité: acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Stade_IIIB)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_3_vs_1 by BP_C$Stade_IIIB
## F = 7.8526, num df = 11, denom df = 5, p-value = 0.03396
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   1.195625 31.756101
## sample estimates:
## ratio of variances 
##            7.85265

test de variance: non accepté

t.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Stade_IIIB,var.test=FALSE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1 by BP_C$Stade_IIIB
## t = 1.5019, df = 15.154, p-value = 0.1537
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -5.990963 34.659296
## sample estimates:
## mean in group Non mean in group Oui 
##          21.15417           6.82000

significativité: Non

Stade IV/ total QLQ30 V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_IV == "Non"]
## W = 0.95912, p-value = 0.7713
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_IV == "Oui"]
## W = 0.734, p-value = 0.01383

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Stade_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_3_vs_1 by BP_C$Stade_IV
## F = 0.15503, num df = 11, denom df = 5, p-value = 0.009832
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.02360428 0.62693546
## sample estimates:
## ratio of variances 
##          0.1550286

test de variance: rejetée

wilcox.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Stade_IV,var.test=FALSE)
## 
##  Wilcoxon rank sum exact test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1 by BP_C$Stade_IV
## W = 19, p-value = 0.1246
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade à l’inclusion/Dyspnée V3-V2

Stade IIIA/totalV3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_IIIA=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_IIIA == "Non"]
## W = 0.90326, p-value = 0.1748
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_IIIA=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_IIIA == "Oui"]
## W = 0.9872, p-value = 0.7835

la normalité: non acceptée -> Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Stade_IIIA)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_3_vs_2 by BP_C$Stade_IIIA
## F = 0.35654, num df = 11, denom df = 2, p-value = 0.2074
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.009047524 1.873914918
## sample estimates:
## ratio of variances 
##          0.3565362

test de variance: accepté

t.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Stade_IIIA, var.equal=TRUE)
## 
##  Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2 by BP_C$Stade_IIIA
## t = -1.4919, df = 13, p-value = 0.1596
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -60.94289  11.15456
## sample estimates:
## mean in group Non mean in group Oui 
##          -6.17750          18.71667

significativité: Non

Stade IIIB/Dyspnée V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_IIIB=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_IIIB == "Non"]
## W = 0.97044, p-value = 0.8985
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_IIIB=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_IIIB == "Oui"]
## W = 0.95146, p-value = 0.7521

la normalité: acceptée -> t. test

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Stade_IIIB)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_3_vs_2 by BP_C$Stade_IIIB
## F = 6.0555, num df = 8, denom df = 5, p-value = 0.0629
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.8961633 29.1711535
## sample estimates:
## ratio of variances 
##           6.055529

test de variance: accepté

t.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Stade_IIIB)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2 by BP_C$Stade_IIIB
## t = -0.0061963, df = 11.341, p-value = 0.9952
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -27.80158  27.64491
## sample estimates:
## mean in group Non mean in group Oui 
##         -1.230000         -1.151667

significativité: Non

Stade IV/ total QLQ30 V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_IV == "Non"]
## W = 0.92545, p-value = 0.4393
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_IV == "Oui"]
## W = 0.92789, p-value = 0.5639

la normalité: acceptée -> t.test ( test de student)

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Stade_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_3_vs_2 by BP_C$Stade_IV
## F = 0.6496, num df = 8, denom df = 5, p-value = 0.559
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.09613426 3.12928178
## sample estimates:
## ratio of variances 
##          0.6495958

test de variance: accepté

t.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Stade_IV,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2 by BP_C$Stade_IV
## t = 1.1375, df = 9.191, p-value = 0.2841
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -16.38105  49.72994
## sample estimates:
## mean in group Non mean in group Oui 
##          5.471111        -11.203333

significativité: Non

Stade à l’inclusion/Dyspnée V2- V1

Stade IIIA/Dyspnée V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_IIIA=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_IIIA == "Non"]
## W = 0.90223, p-value = 0.08725
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_IIIA=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_IIIA == "Oui"]
## W = 0.95772, p-value = 0.7646

la normalité: rejetée -> Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Stade_IIIA)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_2_vs_1 by BP_C$Stade_IIIA
## F = 0.83296, num df = 15, denom df = 3, p-value = 0.6868
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.05844213 3.45911450
## sample estimates:
## ratio of variances 
##          0.8329588

test de variance: accepté

t.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Stade_IIIA, var.equal=TRUE)
## 
##  Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1 by BP_C$Stade_IIIA
## t = 0.48529, df = 18, p-value = 0.6333
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -19.85245  31.77870
## sample estimates:
## mean in group Non mean in group Oui 
##          18.12313          12.16000

significativité: Non

Stade IIIB/total V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_IIIB=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_IIIB == "Non"]
## W = 0.9327, p-value = 0.4096
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_IIIB=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_IIIB == "Oui"]
## W = 0.97024, p-value = 0.8998

la normalité: non acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Stade_IIIB)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_2_vs_1 by BP_C$Stade_IIIB
## F = 4.2678, num df = 11, denom df = 7, p-value = 0.06493
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.9062104 16.0410045
## sample estimates:
## ratio of variances 
##           4.267771

test de variance: accepté

Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon

t.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Stade_IIIB,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1 by BP_C$Stade_IIIB
## t = 2.0216, df = 16.825, p-value = 0.05942
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -0.7345335 33.7862002
## sample estimates:
## mean in group Non mean in group Oui 
##          23.54083           7.01500

significativité: les resultats sont à la limite de la significativité, on peut en deduire ( avec precaution car nombre de patient non suffisant) que l’evolution du score QL30 entre la V2 et la V3 pour les patients inclus au Stade IIIB tend à etre dépendant

Stade IV/total V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_IV == "Non"]
## W = 0.92879, p-value = 0.3674
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_IV == "Oui"]
## W = 0.88648, p-value = 0.217

la normalité: non acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Stade_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_2_vs_1 by BP_C$Stade_IV
## F = 0.42694, num df = 11, denom df = 7, p-value = 0.1999
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.09065611 1.60472122
## sample estimates:
## ratio of variances 
##          0.4269422

test de variance: acceptée

t.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Stade_IV,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1 by BP_C$Stade_IV
## t = -2.1229, df = 10.986, p-value = 0.05732
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -41.7603477   0.7578477
## sample estimates:
## mean in group Non mean in group Oui 
##           8.73000          29.23125

significativité: les resultats sont à la limite de la significativité, on peut en deduire ( avec precaution car nombre de patient non suffisant) que l’evolution du score QL30 entre la V2 et la V1 pour les patients inclus au Stade IIIB tend à etre dépendant

Stade à l’inclusion/total LC_13 V3-V1

Stade IIIA/Dyspnée V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_IIIA=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_IIIA == "Non"]
## W = 0.90942, p-value = 0.2097
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_IIIA=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_IIIA == "Oui"]
## W = 0.75142, p-value = 0.02057

la normalité: rejetée -> Wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Stade_IIIA)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_3_vs_1 by BP_C$Stade_IIIA
## F = 2.5738, num df = 11, denom df = 5, p-value = 0.3068
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.3918771 10.4083523
## sample estimates:
## ratio of variances 
##           2.573778

test de variance: accepté

wilcox.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Stade_IIIA, var.equal=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_total_LC13_3_vs_1 by BP_C$Stade_IIIA
## W = 31.5, p-value = 0.7075
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade IIIB/total LC 13 V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_IIIB=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_IIIB == "Non"]
## W = 0.82399, p-value = 0.01779
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_IIIB=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_IIIB == "Oui"]
## W = 0.86202, p-value = 0.1962

la normalité: acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Stade_IIIB)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_3_vs_1 by BP_C$Stade_IIIB
## F = 0.69522, num df = 11, denom df = 5, p-value = 0.5705
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1058527 2.8114750
## sample estimates:
## ratio of variances 
##          0.6952216

test de variance: accepté

wilcox.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Stade_IIIB)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_total_LC13_3_vs_1 by BP_C$Stade_IIIB
## W = 51.5, p-value = 0.1594
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade IV/total LC 13 V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_IV == "Non"]
## W = 0.88078, p-value = 0.0897
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_IV == "Oui"]
## W = 0.83161, p-value = 0.1109

la normalité: non acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Stade_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_3_vs_1 by BP_C$Stade_IV
## F = 0.60217, num df = 11, denom df = 5, p-value = 0.4486
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.09168531 2.43518435
## sample estimates:
## ratio of variances 
##          0.6021725

test de variance: rejetée

t.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Stade_IV,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_LC13_3_vs_1 by BP_C$Stade_IV
## t = 0.12407, df = 8.1292, p-value = 0.9043
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -25.01698  27.87031
## sample estimates:
## mean in group Non mean in group Oui 
##          11.61333          10.18667

significativité: Non

Stade à l’inclusion/total LC V3-V2

Stade IIIA/total LC V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_IIIA=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_IIIA == "Non"]
## W = 0.92264, p-value = 0.3085
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_IIIA=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_IIIA == "Oui"]
## W = 0.96429, p-value = 0.6369

la normalité: acceptée -> t.test

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Stade_IIIA)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_3_vs_2 by BP_C$Stade_IIIA
## F = 86.405, num df = 11, denom df = 2, p-value = 0.02299
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##    2.192626 454.134790
## sample estimates:
## ratio of variances 
##           86.40494

test de variance: rejeté

t.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Stade_IIIA, var.equal=TRUE)
## 
##  Two Sample t-test
## 
## data:  BP_C$Del_total_LC13_3_vs_2 by BP_C$Stade_IIIA
## t = -0.23473, df = 13, p-value = 0.8181
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -37.39628  30.06628
## sample estimates:
## mean in group Non mean in group Oui 
##          1.581667          5.246667

significativité: Non

Stade IIIB/total LC_13 V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_IIIB=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_IIIB == "Non"]
## W = 0.9042, p-value = 0.2774
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_IIIB=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_IIIB == "Oui"]
## W = 0.90074, p-value = 0.3783

la normalité: acceptée -> t. test

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Stade_IIIB)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_3_vs_2 by BP_C$Stade_IIIB
## F = 0.21759, num df = 8, denom df = 5, p-value = 0.05678
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.03220132 1.04819019
## sample estimates:
## ratio of variances 
##          0.2175898

test de variance: accepté

t.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Stade_IIIB, var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_LC13_3_vs_2 by BP_C$Stade_IIIB
## t = -0.4508, df = 6.4707, p-value = 0.6669
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -41.55956  28.43622
## sample estimates:
## mean in group Non mean in group Oui 
##         -0.310000          6.251667

significativité: Non

Stade IV/total V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_IV == "Non"]
## W = 0.882, p-value = 0.1648
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_IV == "Oui"]
## W = 0.96508, p-value = 0.8579

la normalité: acceptée -> t.test ( test de student)

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Stade_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_3_vs_2 by BP_C$Stade_IV
## F = 1.958, num df = 8, denom df = 5, p-value = 0.4762
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.2897685 9.4323008
## sample estimates:
## ratio of variances 
##           1.958016

test de variance: accepté

t.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Stade_IV,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_LC13_3_vs_2 by BP_C$Stade_IV
## t = 0.77048, df = 12.869, p-value = 0.4549
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -16.2706  34.2806
## sample estimates:
## mean in group Non mean in group Oui 
##          5.916667         -3.088333

significativité: Non

Stade à l’inclusion/total LC 13 V2- V1

Stade IIIA/Dyspnée V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_IIIA=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_IIIA == "Non"]
## W = 0.86131, p-value = 0.02007
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_IIIA=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_IIIA == "Oui"]
## W = 0.8732, p-value = 0.3104

la normalité: rejetée

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Stade_IIIA)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_2_vs_1 by BP_C$Stade_IIIA
## F = 1.9071, num df = 15, denom df = 3, p-value = 0.6557
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1338032 7.9196390
## sample estimates:
## ratio of variances 
##           1.907058

test de variance: accepté

wilcox.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Stade_IIIA, var.equal=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_total_LC13_2_vs_1 by BP_C$Stade_IIIA
## W = 33, p-value = 0.9623
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade IIIB/total LC V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_IIIB=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_IIIB == "Non"]
## W = 0.87031, p-value = 0.06594
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_IIIB=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_IIIB == "Oui"]
## W = 0.87213, p-value = 0.1581

la normalité: non acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Stade_IIIB)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_2_vs_1 by BP_C$Stade_IIIB
## F = 0.28998, num df = 11, denom df = 7, p-value = 0.06607
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.06157395 1.08993222
## sample estimates:
## ratio of variances 
##          0.2899806

test de variance: accepté

Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon

t.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Stade_IIIB,test.var=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_LC13_2_vs_1 by BP_C$Stade_IIIB
## t = 0.83446, df = 9.7365, p-value = 0.424
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -19.12184  41.88600
## sample estimates:
## mean in group Non mean in group Oui 
##          11.72833           0.34625

significativité: Non

Stade IV/Total LC13 V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_IV == "Non"]
## W = 0.87837, p-value = 0.08355
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_IV == "Oui"]
## W = 0.82008, p-value = 0.04675

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Stade_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_2_vs_1 by BP_C$Stade_IV
## F = 2.4209, num df = 11, denom df = 7, p-value = 0.2501
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.5140428 9.0991703
## sample estimates:
## ratio of variances 
##           2.420869

test de variance: acceptée

wilcox.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Stade_IV,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_total_LC13_2_vs_1 by BP_C$Stade_IV
## W = 30, p-value = 0.1765
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade NYHA à l’inclusion

Stade à l’inclusion/Dyspnée QLQ30 V3-V1

Stade dyspnée II/Dyspnée V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_.dyspnee_II=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.75817, p-value = 0.002658
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_.dyspnee_II=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.7832, p-value = 0.02783

la normalité: acceptée -> t-test sera realisé

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Stade_.dyspnee_II)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Stade_.dyspnee_II
## F = 0.46028, num df = 10, denom df = 6, p-value = 0.2662
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.08428048 1.87433264
## sample estimates:
## ratio of variances 
##           0.460283

test de variance: accepté

t.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
## 
##  Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Stade_.dyspnee_II
## t = -0.19474, df = 16, p-value = 0.848
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -56.61856  47.09128
## sample estimates:
## mean in group Non mean in group Oui 
##         -33.33364         -28.57000

significativité: Non

Stade dys III/Dyspnée V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_.dyspnee_III=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.87148, p-value = 0.06823
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_.dyspnee_III=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.80513, p-value = 0.06533

la normalité: non acceptée -> test de wilcoxon sera realisé

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Stade_.dyspnee_III)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Stade_.dyspnee_III
## F = 1.4236, num df = 11, denom df = 5, p-value = 0.7334
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.216757 5.757118
## sample estimates:
## ratio of variances 
##            1.42362

test de variance: non accepté

Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon

t.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Stade_.dyspnee_III)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Stade_.dyspnee_III
## t = 0.4696, df = 11.909, p-value = 0.6471
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -40.49328  62.71995
## sample estimates:
## mean in group Non mean in group Oui 
##         -27.77667         -38.89000

significativité: Non

Stade dyspnée IV/QLQ30 V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_.dyspnee_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.88284, p-value = 0.07793
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_.dyspnee_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.73476, p-value = 0.02138

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Stade_.dyspnee_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Stade_.dyspnee_IV
## F = 1.4706, num df = 12, denom df = 4, p-value = 0.7621
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1680493 6.0607578
## sample estimates:
## ratio of variances 
##           1.470626

test de variance: acceptée

wilcox.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Stade_.dyspnee_IV)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Stade_.dyspnee_IV
## W = 25.5, p-value = 0.5076
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade Dyspnée NYHA l’inclusion/QLQ30 _Dyspnée V3-V2

Stade dys II /Dyspnée V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_.dyspnee_II=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.82713, p-value = 0.05542
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_.dyspnee_II=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.93222, p-value = 0.5699

la normalité: acceptée -> Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Stade_.dyspnee_II)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Stade_.dyspnee_II
## F = 0.77886, num df = 7, denom df = 6, p-value = 0.7438
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1367511 3.9866802
## sample estimates:
## ratio of variances 
##           0.778862

test de variance: accepté

t.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
## 
##  Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Stade_.dyspnee_II
## t = 0.14015, df = 13, p-value = 0.8907
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -51.47424  58.61638
## sample estimates:
## mean in group Non mean in group Oui 
##          8.332500          4.761429

significativité: Non

Stade dys III /Dyspnée V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_.dyspnee_III=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.85694, p-value = 0.04476
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_.dyspnee_III=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.75, p-value < 2.2e-16

la normalité: acceptée -> t. test

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Stade_.dyspnee_III)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Stade_.dyspnee_III
## F = 7.5471, num df = 11, denom df = 2, p-value = 0.2454
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.1915163 39.6666758
## sample estimates:
## ratio of variances 
##           7.547091

test de variance: non accepté

t.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Stade_.dyspnee_III)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Stade_.dyspnee_III
## t = -0.29428, df = 10.118, p-value = 0.7745
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -47.54797  36.43797
## sample estimates:
## mean in group Non mean in group Oui 
##             5.555            11.110

significativité: Non

Stade dys IV/QLQ30 V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_.dyspnee_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.89705, p-value = 0.2033
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_.dyspnee_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.86279, p-value = 0.2384

la normalité: acceptée -> t.test ( test de student)

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Stade_.dyspnee_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Stade_.dyspnee_IV
## F = 0.54164, num df = 9, denom df = 4, p-value = 0.4086
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.06082687 2.55551833
## sample estimates:
## ratio of variances 
##          0.5416439

test de variance: accepté

t.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Stade_.dyspnee_IV,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Stade_.dyspnee_IV
## t = 0, df = 6.256, p-value = 1
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -72.83559  72.83559
## sample estimates:
## mean in group Non mean in group Oui 
##             6.666             6.666

significativité: Non

Stade dyspnée NYHA à l’inclusion/Dyspnée V2- V1

Stade dys II Dyspnée V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_.dyspnee_II=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.89331, p-value = 0.13
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_.dyspnee_II=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.85994, p-value = 0.1199

la normalité: accepté -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Stade_.dyspnee_II)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Stade_.dyspnee_II
## F = 2.2008, num df = 11, denom df = 7, p-value = 0.3044
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.4673128 8.2719929
## sample estimates:
## ratio of variances 
##           2.200795

test de variance: accepté

t.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
## 
##  Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Stade_.dyspnee_II
## t = -0.25945, df = 18, p-value = 0.7982
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -50.55241  39.43907
## sample estimates:
## mean in group Non mean in group Oui 
##         -38.88917         -33.33250

significativité: Non

Stade dys III /Dyspnée V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_.dyspnee_III=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.91634, p-value = 0.1472
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_.dyspnee_III=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.8494, p-value = 0.2242

la normalité: acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Stade_.dyspnee_III)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Stade_.dyspnee_III
## F = 0.85742, num df = 15, denom df = 3, p-value = 0.7107
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.0601587 3.5607165
## sample estimates:
## ratio of variances 
##          0.8574247

test de variance: accepté

Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon

t.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Stade_.dyspnee_III)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Stade_.dyspnee_III
## t = 0.22691, df = 4.3837, p-value = 0.8307
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -67.66974  80.17224
## sample estimates:
## mean in group Non mean in group Oui 
##         -35.41625         -41.66750

significativité: Non

Stade dys IV/dyspnée V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_.dyspnee_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.83028, p-value = 0.02113
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_.dyspnee_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.91939, p-value = 0.4249

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Stade_.dyspnee_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Stade_.dyspnee_IV
## F = 0.45472, num df = 11, denom df = 7, p-value = 0.2338
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.09655393 1.70911968
## sample estimates:
## ratio of variances 
##          0.4547178

test de variance: acceptée

wilcox.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Stade_.dyspnee_IV,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Stade_.dyspnee_IV
## W = 51.5, p-value = 0.8109
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade dyspnée NYHA à l’inclusion/Dyspnée LC_13 V3-V1

Stade dys II Dyspnée V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_.dyspnee_II=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.93874, p-value = 0.5058
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_.dyspnee_II=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.85391, p-value = 0.1334

la normalité:acceptée -> Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Stade_.dyspnee_II)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Stade_.dyspnee_II
## F = 0.4806, num df = 10, denom df = 6, p-value = 0.2924
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.08799985 1.95704864
## sample estimates:
## ratio of variances 
##          0.4805957

test de variance: accepté

t.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
## 
##  Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Stade_.dyspnee_II
## t = -1.4408, df = 16, p-value = 0.1689
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -66.51755  12.68716
## sample estimates:
## mean in group Non mean in group Oui 
##        -34.850909         -7.935714

significativité: Non

Stade dys III /Dyspnée V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_.dyspnee_III=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.9495, p-value = 0.6296
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_.dyspnee_III=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.90669, p-value = 0.415

la normalité: acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Stade_.dyspnee_III)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Stade_.dyspnee_III
## F = 2.9009, num df = 11, denom df = 5, p-value = 0.2496
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.4416783 11.7310841
## sample estimates:
## ratio of variances 
##           2.900863

test de variance: accepté

Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon

t.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Stade_.dyspnee_III,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Stade_.dyspnee_III
## t = 0.45765, df = 15.347, p-value = 0.6536
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -28.71773  44.46107
## sample estimates:
## mean in group Non mean in group Oui 
##         -21.76000         -29.63167

significativité: Non

Stade dys IV/QLQ30 V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_.dyspnee_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.86004, p-value = 0.03857
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_.dyspnee_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.92855, p-value = 0.5865

la normalité: non acceptée -> test de Wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Stade_.dyspnee_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Stade_.dyspnee_IV
## F = 0.92372, num df = 12, denom df = 4, p-value = 0.8159
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1055541 3.8068469
## sample estimates:
## ratio of variances 
##           0.923721

test de variance: acceptée

wilcox.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Stade_.dyspnee_IV,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Stade_.dyspnee_IV
## W = 40, p-value = 0.4866
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade NYHA à l’inclusion/ LC_13 Dyspnée V3-V2

Stade dys II/Dyspnée V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_.dyspnee_II=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.89398, p-value = 0.2547
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_.dyspnee_II=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.90428, p-value = 0.3577

la normalité: acceptée -> t.test

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Stade_.dyspnee_II)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Stade_.dyspnee_II
## F = 0.64484, num df = 7, denom df = 6, p-value = 0.5768
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1132203 3.3006898
## sample estimates:
## ratio of variances 
##          0.6448427

test de variance: accepté

t.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
## 
##  Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Stade_.dyspnee_II
## t = -0.30547, df = 13, p-value = 0.7648
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -50.47438  37.96866
## sample estimates:
## mean in group Non mean in group Oui 
##           4.86000          11.11286

significativité: Non

Stade dys III /Dyspnée V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_.dyspnee_III=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.97532, p-value = 0.9578
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_.dyspnee_III=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 1, p-value = 1

la normalité: acceptée -> t. test

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Stade_.dyspnee_III)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Stade_.dyspnee_III
## F = 14.736, num df = 11, denom df = 2, p-value = 0.1304
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.3739384 77.4497782
## sample estimates:
## ratio of variances 
##           14.73581

test de variance: accepté

t.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Stade_.dyspnee_III, var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Stade_.dyspnee_III
## t = 0.70036, df = 12.654, p-value = 0.4964
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -20.3518  39.7968
## sample estimates:
## mean in group Non mean in group Oui 
##            9.7225            0.0000

significativité: Non

Stade dys IV/dyspnée V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_.dyspnee_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.92228, p-value = 0.3763
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_.dyspnee_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.85455, p-value = 0.2093

la normalité: acceptée -> t.test ( test de student)

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Stade_.dyspnee_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Stade_.dyspnee_IV
## F = 0.64307, num df = 9, denom df = 4, p-value = 0.5338
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.07221726 3.03406275
## sample estimates:
## ratio of variances 
##          0.6430717

test de variance: accepté

t.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Stade_.dyspnee_IV,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Stade_.dyspnee_IV
## t = 0.00012756, df = 6.6789, p-value = 0.9999
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -56.15399  56.15999
## sample estimates:
## mean in group Non mean in group Oui 
##             7.779             7.776

significativité: Non

Stade NYHA à l’inclusion/LC Dyspnée V2- V1

Stade II/Dyspnée V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_.dyspnee_II=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.93909, p-value = 0.4864
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_.dyspnee_II=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.92215, p-value = 0.4476

la normalité: accepté

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Stade_.dyspnee_II)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Stade_.dyspnee_II
## F = 1.3196, num df = 11, denom df = 7, p-value = 0.7351
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.280201 4.959891
## sample estimates:
## ratio of variances 
##           1.319598

test de variance: accepté

t.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
## 
##  Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Stade_.dyspnee_II
## t = -0.31894, df = 18, p-value = 0.7534
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -49.16868  36.20784
## sample estimates:
## mean in group Non mean in group Oui 
##         -39.81417         -33.33375

significativité: Non

Stade dys III /Dyspnée V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_.dyspnee_III=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.93707, p-value = 0.3146
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_.dyspnee_III=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.75264, p-value = 0.04088

la normalité: non acceptée -> test de wilcoxon sera realisé

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Stade_.dyspnee_III)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Stade_.dyspnee_III
## F = 1.6504, num df = 15, denom df = 3, p-value = 0.7574
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1157927 6.8536229
## sample estimates:
## ratio of variances 
##            1.65036

test de variance: accepté

Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon

wilcox.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Stade_.dyspnee_III, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Stade_.dyspnee_III
## W = 20.5, p-value = 0.2935
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade dys IV/QLQ30 V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_.dyspnee_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.87074, p-value = 0.06678
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_.dyspnee_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.88775, p-value = 0.223

la normalité: non acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Stade_.dyspnee_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Stade_.dyspnee_IV
## F = 0.52338, num df = 11, denom df = 7, p-value = 0.324
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.111133 1.967187
## sample estimates:
## ratio of variances 
##          0.5233777

test de variance: acceptée

t.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Stade_.dyspnee_IV,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Stade_.dyspnee_IV
## t = 0.77999, df = 11.821, p-value = 0.4507
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -29.96563  63.29646
## sample estimates:
## mean in group Non mean in group Oui 
##         -30.55583         -47.22125

significativité: Non

Stade NYHA à l’inclusion/ total QLQ30 V3-V1

Stade dys II/total V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_.dyspnee_II=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.92886, p-value = 0.3994
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_.dyspnee_II=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.83341, p-value = 0.08619

la normalité: acceptée -> t-test sera realisé

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Stade_.dyspnee_II)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_3_vs_1 by BP_C$Stade_.dyspnee_II
## F = 0.32355, num df = 10, denom df = 6, p-value = 0.1117
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.05924476 1.31755770
## sample estimates:
## ratio of variances 
##          0.3235548

test de variance: accepté

t.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
## 
##  Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1 by BP_C$Stade_.dyspnee_II
## t = 0.81742, df = 16, p-value = 0.4257
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -16.14829  36.41712
## sample estimates:
## mean in group Non mean in group Oui 
##          20.31727          10.18286

significativité: Non

Stade dys III/total V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_.dyspnee_III=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.86898, p-value = 0.06344
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_.dyspnee_III=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.88102, p-value = 0.2738

la normalité: acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Stade_.dyspnee_III)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_3_vs_1 by BP_C$Stade_.dyspnee_III
## F = 3.2534, num df = 11, denom df = 5, p-value = 0.2032
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.4953526 13.1566872
## sample estimates:
## ratio of variances 
##           3.253386

test de variance: non accepté

t.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Stade_.dyspnee_III,var.test=FALSE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1 by BP_C$Stade_.dyspnee_III
## t = 0.064238, df = 15.661, p-value = 0.9496
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -22.33453  23.72786
## sample estimates:
## mean in group Non mean in group Oui 
##          16.60833          15.91167

significativité: Non

Stade dys IV/ total QLQ30 V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_.dyspnee_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.84284, p-value = 0.02304
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_.dyspnee_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.89762, p-value = 0.3969

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Stade_.dyspnee_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_3_vs_1 by BP_C$Stade_.dyspnee_IV
## F = 1.3236, num df = 12, denom df = 4, p-value = 0.853
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1512517 5.4549464
## sample estimates:
## ratio of variances 
##           1.323628

test de variance: rejetée

wilcox.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Stade_.dyspnee_IV,var.test=TRUE)
## 
##  Wilcoxon rank sum exact test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1 by BP_C$Stade_.dyspnee_IV
## W = 23, p-value = 0.3873
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade à l’inclusion/Dyspnée V3-V2

Stade dys II /totalV3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_.dyspnee_II=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.82239, p-value = 0.04944
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_.dyspnee_II=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.87655, p-value = 0.2116

la normalité: non acceptée -> wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Stade_.dyspnee_II)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_3_vs_2 by BP_C$Stade_.dyspnee_II
## F = 0.78588, num df = 7, denom df = 6, p-value = 0.7521
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.137983 4.022593
## sample estimates:
## ratio of variances 
##           0.785878

test de variance: accepté

t.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
## 
##  Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2 by BP_C$Stade_.dyspnee_II
## t = 0.24456, df = 13, p-value = 0.8106
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -27.67527  34.74098
## sample estimates:
## mean in group Non mean in group Oui 
##          0.450000         -3.082857

significativité: Non

Stade dys III/ Dyspnée V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_.dyspnee_III=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.94657, p-value = 0.5874
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_.dyspnee_III=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.90167, p-value = 0.3908

la normalité: acceptée -> t. test

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Stade_.dyspnee_III)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_3_vs_2 by BP_C$Stade_.dyspnee_III
## F = 1.4225, num df = 11, denom df = 2, p-value = 0.9679
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.0360966 7.4762960
## sample estimates:
## ratio of variances 
##           1.422461

test de variance: accepté

t.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Stade_.dyspnee_III)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2 by BP_C$Stade_.dyspnee_III
## t = 0.17089, df = 3.5928, p-value = 0.8735
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -44.09261  49.60428
## sample estimates:
## mean in group Non mean in group Oui 
##         -0.647500         -3.403333

significativité: Non

Stade dys IV/ total QLQ30 V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_.dyspnee_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.91897, p-value = 0.3484
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_.dyspnee_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.78064, p-value = 0.05582

la normalité: acceptée -> t.test ( test de student)

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Stade_.dyspnee_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_3_vs_2 by BP_C$Stade_.dyspnee_IV
## F = 0.7896, num df = 9, denom df = 4, p-value = 0.7027
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.08867281 3.72540968
## sample estimates:
## ratio of variances 
##          0.7896032

test de variance: accepté

t.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Stade_.dyspnee_IV,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2 by BP_C$Stade_.dyspnee_IV
## t = -0.3738, df = 7.2777, p-value = 0.7192
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -43.23398  31.35198
## sample estimates:
## mean in group Non mean in group Oui 
##            -3.179             2.762

significativité: Non

Stade à l’inclusion/Dyspnée V2- V1

Stade dys II /Dyspnée V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_.dyspnee_II=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.91294, p-value = 0.2327
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_.dyspnee_II=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.91909, p-value = 0.4225

la normalité: rejetée -> Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Stade_.dyspnee_II)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_2_vs_1 by BP_C$Stade_.dyspnee_II
## F = 0.90097, num df = 11, denom df = 7, p-value = 0.8413
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1913092 3.3864017
## sample estimates:
## ratio of variances 
##          0.9009651

test de variance: accepté

t.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
## 
##  Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1 by BP_C$Stade_.dyspnee_II
## t = 0.6451, df = 18, p-value = 0.527
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -14.53428  27.41511
## sample estimates:
## mean in group Non mean in group Oui 
##          19.50667          13.06625

significativité: Non

Stade dys III/total V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_.dyspnee_III=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.89345, p-value = 0.06318
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_.dyspnee_III=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.93975, p-value = 0.6528

la normalité: non acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Stade_.dyspnee_III)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_2_vs_1 by BP_C$Stade_.dyspnee_III
## F = 2.1341, num df = 15, denom df = 3, p-value = 0.5828
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1497324 8.8624714
## sample estimates:
## ratio of variances 
##           2.134093

test de variance: accepté

Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon

t.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Stade_.dyspnee_III,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1 by BP_C$Stade_.dyspnee_III
## t = -0.6792, df = 6.6751, p-value = 0.5199
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -29.88818  16.65193
## sample estimates:
## mean in group Non mean in group Oui 
##          15.60688          22.22500

significativité: les resultats sont à la limite de la significativité, on peut en deduire ( avec precaution car nombre de patient non suffisant) que l’evolution du score QL30 entre la V2 et la V3 pour les patients inclus au Stade IIIB tend à etre dépendant

Stade dys IV/total V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_.dyspnee_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.95938, p-value = 0.775
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_.dyspnee_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.87996, p-value = 0.1882

la normalité: non acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Stade_.dyspnee_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_2_vs_1 by BP_C$Stade_.dyspnee_IV
## F = 0.67696, num df = 11, denom df = 7, p-value = 0.5403
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1437434 2.5444298
## sample estimates:
## ratio of variances 
##          0.6769553

test de variance: acceptée

t.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Stade_.dyspnee_IV,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1 by BP_C$Stade_.dyspnee_IV
## t = -0.19305, df = 13.052, p-value = 0.8499
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -24.71770  20.66103
## sample estimates:
## mean in group Non mean in group Oui 
##          16.11917          18.14750

significativité: les resultats sont à la limite de la significativité, on peut en deduire ( avec precaution car nombre de patient non suffisant) que l’evolution du score QL30 entre la V2 et la V1 pour les patients inclus au Stade IIIB tend à etre dépendant

Stade dys NYHAà l’inclusion/total LC_13 V3-V1

Stade dys II /Dyspnée V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_.dyspnee_II=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.88724, p-value = 0.1284
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_.dyspnee_II=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.90828, p-value = 0.3841

la normalité: acceptée -> Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Stade_.dyspnee_II)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_3_vs_1 by BP_C$Stade_.dyspnee_II
## F = 0.3164, num df = 10, denom df = 6, p-value = 0.105
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.05793548 1.28844031
## sample estimates:
## ratio of variances 
##          0.3164044

test de variance: accepté

t.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
## 
##  Two Sample t-test
## 
## data:  BP_C$Del_total_LC13_3_vs_1 by BP_C$Stade_.dyspnee_II
## t = -0.48838, df = 16, p-value = 0.6319
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -26.36220  16.48999
## sample estimates:
## mean in group Non mean in group Oui 
##          9.218182         14.154286

significativité: Non

Stade dys III /total LC 13 V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_.dyspnee_III=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.90942, p-value = 0.2097
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_.dyspnee_III=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.75142, p-value = 0.02057

la normalité: acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Stade_.dyspnee_III)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_3_vs_1 by BP_C$Stade_.dyspnee_III
## F = 2.5738, num df = 11, denom df = 5, p-value = 0.3068
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.3918771 10.4083523
## sample estimates:
## ratio of variances 
##           2.573778

test de variance: accepté

wilcox.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Stade_.dyspnee_III)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_total_LC13_3_vs_1 by BP_C$Stade_.dyspnee_III
## W = 31.5, p-value = 0.7075
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade dys IV/total LC 13 V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_.dyspnee_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.87006, p-value = 0.05239
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_.dyspnee_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.83105, p-value = 0.1417

la normalité: non acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Stade_.dyspnee_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_3_vs_1 by BP_C$Stade_.dyspnee_IV
## F = 2.63, num df = 12, denom df = 4, p-value = 0.3629
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.3005335 10.8388463
## sample estimates:
## ratio of variances 
##           2.630016

test de variance: rejetée

t.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Stade_.dyspnee_IV,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_LC13_3_vs_1 by BP_C$Stade_.dyspnee_IV
## t = 1.7157, df = 12.069, p-value = 0.1117
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -3.908504 32.957120
## sample estimates:
## mean in group Non mean in group Oui 
##          15.17231           0.64800

significativité: Non

Stade dys NYHA à l’inclusion/total LC V3-V2

Stade dys II /total LC_13 V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_.dyspnee_II=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.84505, p-value = 0.08484
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_.dyspnee_II=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.95908, p-value = 0.8108

la normalité: acceptée -> t.test

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Stade_.dyspnee_II)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_3_vs_2 by BP_C$Stade_.dyspnee_II
## F = 0.11218, num df = 7, denom df = 6, p-value = 0.01081
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.01969602 0.57419446
## sample estimates:
## ratio of variances 
##          0.1121781

test de variance: rejeté

t.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Stade_.dyspnee_II, var.equal=FALSE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_LC13_3_vs_2 by BP_C$Stade_.dyspnee_II
## t = -0.79541, df = 7.1764, p-value = 0.4519
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -40.74089  20.15481
## sample estimates:
## mean in group Non mean in group Oui 
##         -2.488750          7.804286

significativité: Non

Stade dys III/total LC_13 V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_.dyspnee_III=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.92863, p-value = 0.3658
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_.dyspnee_III=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.99999, p-value = 0.994

la normalité: acceptée -> t. test

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Stade_.dyspnee_III)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_3_vs_2 by BP_C$Stade_.dyspnee_III
## F = 810.61, num df = 11, denom df = 2, p-value = 0.002465
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##    20.57009 4260.45799
## sample estimates:
## ratio of variances 
##           810.6065

test de variance: rejetée

t.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Stade_.dyspnee_III, var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_LC13_3_vs_2 by BP_C$Stade_.dyspnee_III
## t = -0.22831, df = 11.107, p-value = 0.8236
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -18.49454  15.01454
## sample estimates:
## mean in group Non mean in group Oui 
##          1.966667          3.706667

significativité: Non

Stade dys IV/total V3-V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_.dyspnee_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.93223, p-value = 0.4702
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_.dyspnee_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.94996, p-value = 0.7369

la normalité: acceptée -> t.test ( test de student)

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Stade_.dyspnee_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_3_vs_2 by BP_C$Stade_.dyspnee_IV
## F = 4.3893, num df = 9, denom df = 4, p-value = 0.1681
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.4929211 20.7090855
## sample estimates:
## ratio of variances 
##           4.389305

test de variance: accepté

t.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Stade_.dyspnee_IV,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_LC13_3_vs_2 by BP_C$Stade_.dyspnee_IV
## t = 1.2522, df = 12.998, p-value = 0.2326
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -9.27053 34.83253
## sample estimates:
## mean in group Non mean in group Oui 
##             6.575            -6.206

significativité: Non

Stade dys NYHA à l’inclusion/total LC 13 V2- V1

Stade dys II /Dyspnée V2-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_.dyspnee_II=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.84331, p-value = 0.03038
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_.dyspnee_II=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.91421, p-value = 0.3847

la normalité: rejetée

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Stade_.dyspnee_II)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_2_vs_1 by BP_C$Stade_.dyspnee_II
## F = 0.075733, num df = 11, denom df = 7, p-value = 0.0002956
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.01608106 0.28465400
## sample estimates:
## ratio of variances 
##         0.07573329

test de variance: accepté

wilcox.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_total_LC13_2_vs_1 by BP_C$Stade_.dyspnee_II
## W = 63.5, p-value = 0.2466
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade dys III /total LC V2-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_.dyspnee_III=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.85607, p-value = 0.01676
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_.dyspnee_III=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.87373, p-value = 0.3125

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Stade_.dyspnee_III)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_2_vs_1 by BP_C$Stade_.dyspnee_III
## F = 3.2484, num df = 15, denom df = 3, p-value = 0.3613
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.2279132 13.4898927
## sample estimates:
## ratio of variances 
##           3.248382

test de variance: accepté

Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon

t.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Stade_.dyspnee_III,test.var=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_LC13_2_vs_1 by BP_C$Stade_.dyspnee_III
## t = -1.0888, df = 8.7031, p-value = 0.3055
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -35.74764  12.59889
## sample estimates:
## mean in group Non mean in group Oui 
##          4.860625         16.435000

significativité: Non

Stade dys IV/Total LC13 V2-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_.dyspnee_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.93778, p-value = 0.4698
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_.dyspnee_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.91986, p-value = 0.4287

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Stade_.dyspnee_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_2_vs_1 by BP_C$Stade_.dyspnee_IV
## F = 25.991, num df = 11, denom df = 7, p-value = 0.0002569
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   5.518815 97.689596
## sample estimates:
## ratio of variances 
##           25.99069

test de variance: acceptée

wilcox.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Stade_.dyspnee_IV,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_total_LC13_2_vs_1 by BP_C$Stade_.dyspnee_IV
## W = 48, p-value = 1
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Histo à l’inclusion à l’inclusion

Histo l’inclusion/Dyspnée QLQ30 V3-V1

Histo ADK /Dyspnée V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Hist_ADK=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Hist_ADK == "Non"]
## W = 0.84545, p-value = 0.03227
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Hist_ADK=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Hist_ADK == "Oui"]
## W = 0.86588, p-value = 0.2103

la normalité: non acceptée -> test de wilcoxon sera realisé

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Hist_ADK)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Hist_ADK
## F = 0.51074, num df = 11, denom df = 5, p-value = 0.328
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.07776378 2.06542511
## sample estimates:
## ratio of variances 
##          0.5107384

test de variance: accepté

wilcox.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Hist_ADK,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Hist_ADK
## W = 23, p-value = 0.226
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Hist Epidermoide /QLQ30 V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Hist_Epiderm=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Hist_Epiderm == "Non"]
## W = 0.86913, p-value = 0.09765
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Hist_Epiderm=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Hist_Epiderm == "Oui"]
## W = 0.78088, p-value = 0.01781

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Hist_Epiderm)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Hist_Epiderm
## F = 1.4257, num df = 9, denom df = 7, p-value = 0.6546
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.2955852 5.9836094
## sample estimates:
## ratio of variances 
##           1.425671

test de variance: acceptée

t.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Hist_Epiderm,var.test=FALSE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Hist_Epiderm
## t = 0.4633, df = 15.943, p-value = 0.6494
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -38.75277  60.42077
## sample estimates:
## mean in group Non mean in group Oui 
##           -26.666           -37.500

significativité: Non

Histo à l’inclusion/QLQ30 _Dyspnée V3-V2

ADK /Dyspnée V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Hist_ADK=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Hist_ADK == "Non"]
## W = 0.83021, p-value = 0.0449
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Hist_ADK=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Hist_ADK == "Oui"]
## W = 0.75467, p-value = 0.02212

la normalité: rejetée -> wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Hist_ADK)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Hist_ADK
## F = 0.47437, num df = 8, denom df = 5, p-value = 0.3329
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.0702025 2.2851726
## sample estimates:
## ratio of variances 
##          0.4743703

test de variance: non accepté

wilcox.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Hist_ADK, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Hist_ADK
## W = 11, p-value = 0.04686
## alternative hypothesis: true location shift is not equal to 0

significativité: Oui D’apres les resultats le delta des dyspnée QLO30 entre la V3 et V2 est fortement relié au type histologique ADK

Pour verifier si le type histologique ADK et les la données initiales de la question dysppnée, à V3 ensuite à V2 sont independants j’ai realisé un X² test qui a montré l’independance de ces resulats , donc c’est la difference entre v3 et V2 qui est statistqument significative

chisq.test(BP_C$symp_QLC30_dyspnée_2_.,BP_C$Hist_ADK)
## Warning in chisq.test(BP_C$symp_QLC30_dyspnée_2_., BP_C$Hist_ADK):
## L’approximation du Chi-2 est peut-être incorrecte
## 
##  Pearson's Chi-squared test
## 
## data:  BP_C$symp_QLC30_dyspnée_2_. and BP_C$Hist_ADK
## X-squared = 3.4857, df = 3, p-value = 0.3226
chisq.test(BP_C$symp_QLC30_dyspnée_3_.,BP_C$Hist_ADK)
## Warning in chisq.test(BP_C$symp_QLC30_dyspnée_3_., BP_C$Hist_ADK):
## L’approximation du Chi-2 est peut-être incorrecte
## 
##  Pearson's Chi-squared test
## 
## data:  BP_C$symp_QLC30_dyspnée_3_. and BP_C$Hist_ADK
## X-squared = 2.025, df = 3, p-value = 0.5672

Epidermoide /QLQ30 V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Hist_Epiderm=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Hist_Epiderm == "Non"]
## W = 0.90865, p-value = 0.2719
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Hist_Epiderm=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Hist_Epiderm == "Oui"]
## W = 0.55218, p-value = 0.000131

la normalité: rejetée -> wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Hist_Epiderm)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Hist_Epiderm
## F = 3.1247, num df = 9, denom df = 4, p-value = 0.2846
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.3509039 14.7425209
## sample estimates:
## ratio of variances 
##           3.124688

test de variance: accepté

wilcox.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Hist_Epiderm,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Hist_Epiderm
## W = 33.5, p-value = 0.2864
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Histo à l’inclusion/Dyspnée V2- V1

ADK /Dyspnée V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Hist_ADK=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Hist_ADK == "Non"]
## W = 0.91557, p-value = 0.3215
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Hist_ADK=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Hist_ADK == "Oui"]
## W = 0.87802, p-value = 0.1238

la normalité: acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Hist_ADK)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Hist_ADK
## F = 1.7419, num df = 9, denom df = 9, p-value = 0.421
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.4326684 7.0129617
## sample estimates:
## ratio of variances 
##            1.74192

test de variance: accepté

t.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Hist_ADK)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Hist_ADK
## t = 0.97622, df = 16.772, p-value = 0.3428
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -23.27023  63.27223
## sample estimates:
## mean in group Non mean in group Oui 
##           -26.666           -46.667

significativité: Non

Epidermoide /dyspnée V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Hist_Epiderm=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Hist_Epiderm == "Non"]
## W = 0.83841, p-value = 0.01552
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Hist_Epiderm=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Hist_Epiderm == "Oui"]
## W = 0.95138, p-value = 0.7515

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Hist_Epiderm)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Hist_Epiderm
## F = 0.54742, num df = 13, denom df = 5, p-value = 0.3534
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.08438002 2.06196064
## sample estimates:
## ratio of variances 
##          0.5474221

test de variance: acceptée

wilcox.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Hist_Epiderm,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Hist_Epiderm
## W = 29.5, p-value = 0.3061
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Histo à l’inclusion/Dyspnée LC_13 V3-V1

ADK /Dyspnée V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Hist_ADK=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Hist_ADK == "Non"]
## W = 0.95702, p-value = 0.7406
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Hist_ADK=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Hist_ADK == "Oui"]
## W = 0.88446, p-value = 0.2902

la normalité: acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Hist_ADK)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Hist_ADK
## F = 0.54006, num df = 11, denom df = 5, p-value = 0.3664
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.08222763 2.18398606
## sample estimates:
## ratio of variances 
##          0.5400561

test de variance: accepté

t.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Hist_ADK,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Hist_ADK
## t = -1.2434, df = 7.8061, p-value = 0.2497
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -76.86243  23.16077
## sample estimates:
## mean in group Non mean in group Oui 
##        -33.334167         -6.483333

significativité: Non

Epidermoide /QLQ30 V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Hist_Epiderm=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Hist_Epiderm == "Non"]
## W = 0.89059, p-value = 0.1722
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Hist_Epiderm=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Hist_Epiderm == "Oui"]
## W = 0.97458, p-value = 0.9313

la normalité: non acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Hist_Epiderm)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Hist_Epiderm
## F = 1.5802, num df = 9, denom df = 7, p-value = 0.5594
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.3276168 6.6320342
## sample estimates:
## ratio of variances 
##           1.580167

test de variance: acceptée

t.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Hist_Epiderm,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Hist_Epiderm
## t = 1.4609, df = 15.999, p-value = 0.1634
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -11.7799  64.0019
## sample estimates:
## mean in group Non mean in group Oui 
##           -12.779           -38.890

significativité: Non

Histo à l’inclusion/ LC_13 Dyspnée V3-V2

ADK /Dyspnée V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Hist_ADK=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Hist_ADK == "Non"]
## W = 0.98173, p-value = 0.9726
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Hist_ADK=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Hist_ADK == "Oui"]
## W = 0.9732, p-value = 0.9132

la normalité: acceptée -> t. test

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Hist_ADK)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Hist_ADK
## F = 1.0661, num df = 8, denom df = 5, p-value = 0.9897
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1577698 5.1355900
## sample estimates:
## ratio of variances 
##           1.066078

test de variance: accepté

t.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Hist_ADK, var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Hist_ADK
## t = -1.8932, df = 11.122, p-value = 0.08464
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -75.36790   5.61679
## sample estimates:
## mean in group Non mean in group Oui 
##         -6.172222         28.703333

significativité: Non mais à la limoté de la significativité

Epidermoide /dyspnée V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Hist_Epiderm=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Hist_Epiderm == "Non"]
## W = 0.93762, p-value = 0.5268
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Hist_Epiderm=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Hist_Epiderm == "Oui"]
## W = 0.932, p-value = 0.6101

la normalité: acceptée -> t.test ( test de student)

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Hist_Epiderm)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Hist_Epiderm
## F = 0.6943, num df = 9, denom df = 4, p-value = 0.5948
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.07796984 3.27574578
## sample estimates:
## ratio of variances 
##          0.6942966

test de variance: accepté

t.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Hist_Epiderm,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Hist_Epiderm
## t = 0.81261, df = 6.8902, p-value = 0.4436
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -35.18744  71.85344
## sample estimates:
## mean in group Non mean in group Oui 
##            13.889            -4.444

significativité: Non

Histo à l’inclusion/LC Dyspnée V2- V1

ADK /Dyspnée V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Hist_ADK=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Hist_ADK == "Non"]
## W = 0.90097, p-value = 0.2245
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Hist_ADK=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Hist_ADK == "Oui"]
## W = 0.96475, p-value = 0.8383

la normalité: acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Hist_ADK)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Hist_ADK
## F = 1.4855, num df = 9, denom df = 9, p-value = 0.5649
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.3689666 5.9804422
## sample estimates:
## ratio of variances 
##           1.485457

test de variance: accepté

t.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Hist_ADK,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Hist_ADK
## t = 0.2789, df = 17.339, p-value = 0.7836
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -36.41221  47.52421
## sample estimates:
## mean in group Non mean in group Oui 
##           -34.444           -40.000

significativité: Non

Epidermoide /QLQ30 V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Hist_Epiderm=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Hist_Epiderm == "Non"]
## W = 0.93636, p-value = 0.3736
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Hist_Epiderm=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Hist_Epiderm == "Oui"]
## W = 0.91335, p-value = 0.4588

la normalité: non acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Hist_Epiderm)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Hist_Epiderm
## F = 0.37386, num df = 13, denom df = 5, p-value = 0.142
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.05762633 1.40819147
## sample estimates:
## ratio of variances 
##          0.3738554

test de variance: acceptée

t.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Hist_Epiderm,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Hist_Epiderm
## t = -0.0099821, df = 6.6648, p-value = 0.9923
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -63.62812  63.09860
## sample estimates:
## mean in group Non mean in group Oui 
##         -37.30143         -37.03667

significativité: Non

Histo/ total QLQ30 V3-V1

ADK/total V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Hist_ADK=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1[BP_C$Hist_ADK == "Non"]
## W = 0.96714, p-value = 0.8787
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Hist_ADK=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1[BP_C$Hist_ADK == "Oui"]
## W = 0.83486, p-value = 0.1181

la normalité: acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Hist_ADK)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_3_vs_1 by BP_C$Hist_ADK
## F = 0.28329, num df = 11, denom df = 5, p-value = 0.0757
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.04313308 1.14562536
## sample estimates:
## ratio of variances 
##          0.2832903

test de variance: accepté

t.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Hist_ADK,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1 by BP_C$Hist_ADK
## t = 1.1821, df = 6.4579, p-value = 0.2789
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -18.43956  54.07289
## sample estimates:
## mean in group Non mean in group Oui 
##         22.315000          4.498333

significativité: Non

Epidermoide / total QLQ30 V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Hist_Epiderm=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1[BP_C$Hist_Epiderm == "Non"]
## W = 0.83638, p-value = 0.03992
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Hist_Epiderm=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1[BP_C$Hist_Epiderm == "Oui"]
## W = 0.94645, p-value = 0.6755

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Hist_Epiderm)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_3_vs_1 by BP_C$Hist_Epiderm
## F = 2.21, num df = 9, denom df = 7, p-value = 0.3084
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.4581917 9.2752975
## sample estimates:
## ratio of variances 
##           2.209958

test de variance: acceptée

wilcox.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Hist_Epiderm,var.test=FALSE)
## 
##  Wilcoxon rank sum exact test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1 by BP_C$Hist_Epiderm
## W = 36, p-value = 0.7618
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade à l’inclusion/Dyspnée V3-V2

ADK/ Dyspnée V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Hist_ADK=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2[BP_C$Hist_ADK == "Non"]
## W = 0.88473, p-value = 0.176
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Hist_ADK=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2[BP_C$Hist_ADK == "Oui"]
## W = 0.85574, p-value = 0.175

la normalité: acceptée -> t. test

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Hist_ADK)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_3_vs_2 by BP_C$Hist_ADK
## F = 0.92976, num df = 8, denom df = 5, p-value = 0.8805
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1375955 4.4788940
## sample estimates:
## ratio of variances 
##          0.9297567

test de variance: accepté

t.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Hist_ADK,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2 by BP_C$Hist_ADK
## t = 2.4346, df = 10.579, p-value = 0.03394
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##   2.738381 57.082730
## sample estimates:
## mean in group Non mean in group Oui 
##          10.76556         -19.14500

significativité: Oui significativité de del total QLC entre V3 et V2 en fonction dype histo ADK

Epidermoide / total QLQ30 V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Hist_Epiderm=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2[BP_C$Hist_Epiderm == "Non"]
## W = 0.93885, p-value = 0.5403
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Hist_Epiderm=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2[BP_C$Hist_Epiderm == "Oui"]
## W = 0.91043, p-value = 0.4702

la normalité: acceptée -> t.test ( test de student)

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Hist_Epiderm)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_3_vs_2 by BP_C$Hist_Epiderm
## F = 0.86065, num df = 9, denom df = 4, p-value = 0.7779
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.09665132 4.06061078
## sample estimates:
## ratio of variances 
##          0.8606493

test de variance: accepté

t.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Hist_Epiderm,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2 by BP_C$Hist_Epiderm
## t = -1.4335, df = 7.561, p-value = 0.1917
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -54.83774  13.05774
## sample estimates:
## mean in group Non mean in group Oui 
##            -8.162            12.728

significativité: Non

Histo à l’inclusion/Dyspnée V2- V1

ADK/total V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Hist_ADK=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1[BP_C$Hist_ADK == "Non"]
## W = 0.883, p-value = 0.1412
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Hist_ADK=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1[BP_C$Hist_ADK == "Oui"]
## W = 0.86422, p-value = 0.08555

la normalité: non acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Hist_ADK)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_2_vs_1 by BP_C$Hist_ADK
## F = 2.1781, num df = 9, denom df = 9, p-value = 0.2617
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.5410134 8.7690849
## sample estimates:
## ratio of variances 
##           2.178117

test de variance: accepté

Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon

t.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Hist_ADK,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1 by BP_C$Hist_ADK
## t = -0.56787, df = 15.825, p-value = 0.5781
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -26.37722  15.23922
## sample estimates:
## mean in group Non mean in group Oui 
##            14.146            19.715

significativité: Non

Epidermoide /total V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Hist_Epiderm=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1[BP_C$Hist_Epiderm == "Non"]
## W = 0.93973, p-value = 0.4149
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Hist_Epiderm=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1[BP_C$Hist_Epiderm == "Oui"]
## W = 0.87633, p-value = 0.2526

la normalité: non acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Hist_Epiderm)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_2_vs_1 by BP_C$Hist_Epiderm
## F = 0.80302, num df = 13, denom df = 5, p-value = 0.6874
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1237775 3.0247008
## sample estimates:
## ratio of variances 
##          0.8030163

test de variance: acceptée

t.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Hist_Epiderm,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1 by BP_C$Hist_Epiderm
## t = 0.61889, df = 8.6401, p-value = 0.552
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -18.52854  32.36330
## sample estimates:
## mean in group Non mean in group Oui 
##          19.00571          12.08833

significativité: non

Histo à l’inclusion/total LC_13 V3-V1

ADK /total LC 13 V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Hist_ADK=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_1[BP_C$Hist_ADK == "Non"]
## W = 0.69171, p-value = 0.000702
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Hist_ADK=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_1[BP_C$Hist_ADK == "Oui"]
## W = 0.95604, p-value = 0.7887

la normalité: acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Hist_ADK)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_3_vs_1 by BP_C$Hist_ADK
## F = 0.34551, num df = 11, denom df = 5, p-value = 0.1318
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.05260719 1.39726000
## sample estimates:
## ratio of variances 
##          0.3455145

test de variance: accepté

wilcox.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Hist_ADK)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_total_LC13_3_vs_1 by BP_C$Hist_ADK
## W = 44, p-value = 0.4817
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Epidermoide /total LC 13 V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Hist_Epiderm=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_1[BP_C$Hist_Epiderm == "Non"]
## W = 0.92396, p-value = 0.3912
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Hist_Epiderm=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_1[BP_C$Hist_Epiderm == "Oui"]
## W = 0.8563, p-value = 0.1103

la normalité: non acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Hist_Epiderm)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_3_vs_1 by BP_C$Hist_Epiderm
## F = 25.947, num df = 9, denom df = 7, p-value = 0.0002892
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##    5.379706 108.902815
## sample estimates:
## ratio of variances 
##           25.94749

test de variance: rejetée

t.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Hist_Epiderm,var.test=FALSE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_LC13_3_vs_1 by BP_C$Hist_Epiderm
## t = 0.33153, df = 9.8586, p-value = 0.7472
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -16.98111  22.90411
## sample estimates:
## mean in group Non mean in group Oui 
##           12.4540            9.4925

significativité: Non

Histo à l’inclusion/total LC V3-V2

ADK/total LC_13 V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Hist_ADK=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_2[BP_C$Hist_ADK == "Non"]
## W = 0.8798, p-value = 0.1563
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Hist_ADK=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_2[BP_C$Hist_ADK == "Oui"]
## W = 0.90638, p-value = 0.413

la normalité: acceptée -> t. test

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Hist_ADK)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_3_vs_2 by BP_C$Hist_ADK
## F = 2.0504, num df = 8, denom df = 5, p-value = 0.4452
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.3034357 9.8771840
## sample estimates:
## ratio of variances 
##           2.050367

test de variance: accepté

t.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Hist_ADK, var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_LC13_3_vs_2 by BP_C$Hist_ADK
## t = 1.8933, df = 12.922, p-value = 0.08093
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -2.862682 43.244904
## sample estimates:
## mean in group Non mean in group Oui 
##          10.39111          -9.80000

significativité: Non, mais à la limote de la significativité

Epidermoide /total V3-V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Hist_Epiderm=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_2[BP_C$Hist_Epiderm == "Non"]
## W = 0.95984, p-value = 0.784
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Hist_Epiderm=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_2[BP_C$Hist_Epiderm == "Oui"]
## W = 0.68644, p-value = 0.006871

la normalité: non acceptée -> test de Wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Hist_Epiderm)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_3_vs_2 by BP_C$Hist_Epiderm
## F = 0.46186, num df = 9, denom df = 4, p-value = 0.3088
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.05186654 2.17906841
## sample estimates:
## ratio of variances 
##          0.4618551

test de variance: accepté

wilcox.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Hist_Epiderm,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_total_LC13_3_vs_2 by BP_C$Hist_Epiderm
## W = 15, p-value = 0.2442
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Histo à l’inclusion/total LC 13 V2- V1

ADK /total LC V2-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Hist_ADK=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_2_vs_1[BP_C$Hist_ADK == "Non"]
## W = 0.92035, p-value = 0.3599
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Hist_ADK=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_2_vs_1[BP_C$Hist_ADK == "Oui"]
## W = 0.82948, p-value = 0.03298

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Hist_ADK)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_2_vs_1 by BP_C$Hist_ADK
## F = 9.1001, num df = 9, denom df = 9, p-value = 0.002983
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   2.260326 36.636781
## sample estimates:
## ratio of variances 
##           9.100058

test de variance: rejetée

Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon

wilcox.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Hist_ADK,test.var=FALSE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_total_LC13_2_vs_1 by BP_C$Hist_ADK
## W = 39, p-value = 0.4268
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Epidermoide /Total LC13 V2-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Hist_Epiderm=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_2_vs_1[BP_C$Hist_Epiderm == "Non"]
## W = 0.8472, p-value = 0.02035
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Hist_Epiderm=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_2_vs_1[BP_C$Hist_Epiderm == "Oui"]
## W = 0.7456, p-value = 0.01803

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Hist_Epiderm)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_2_vs_1 by BP_C$Hist_Epiderm
## F = 0.76927, num df = 13, denom df = 5, p-value = 0.6454
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1185759 2.8975916
## sample estimates:
## ratio of variances 
##          0.7692706

test de variance: acceptée

wilcox.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Hist_Epiderm,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_total_LC13_2_vs_1 by BP_C$Hist_Epiderm
## W = 55, p-value = 0.302
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

ligne de traitement à l’inclusion à l’inclusion

ligne de ttt l’inclusion/Dyspnée QLQ30 V3-V1

Ligne de traitement : jamais /Dyspnée V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$lignes_ttt_jamais=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.88746, p-value = 0.2617
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$lignes_ttt_jamais=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.85537, p-value = 0.05014

la normalité: non acceptée -> test de wilcoxon sera realisé

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$lignes_ttt_jamais)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$lignes_ttt_jamais
## F = 2.3167, num df = 6, denom df = 10, p-value = 0.2303
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.5689209 12.6523601
## sample estimates:
## ratio of variances 
##            2.31672

test de variance: accepté

wilcox.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$lignes_ttt_jamais)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$lignes_ttt_jamais
## W = 48, p-value = 0.3992
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Ligne de traitement : une /QLQ30 V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$lignes_ttt_une=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$lignes_ttt_une == "Non"]
## W = 0.86912, p-value = 0.0637
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$lignes_ttt_une=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$lignes_ttt_une == "Oui"]
## W = 0.92409, p-value = 0.5353

la normalité: acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$lignes_ttt_une)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$lignes_ttt_une
## F = 0.33505, num df = 11, denom df = 5, p-value = 0.1215
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.05101391 1.35494192
## sample estimates:
## ratio of variances 
##          0.3350501

test de variance: acceptée

t.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$lignes_ttt_une,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$lignes_ttt_une
## t = -1.0568, df = 6.7297, p-value = 0.327
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -99.48696  38.37363
## sample estimates:
## mean in group Non mean in group Oui 
##         -41.66667         -11.11000

significativité: Non

ligne de traitement à l’inclusion/QLQ30 _Dyspnée V3-V2

Ligne de traitement : jamais /Dyspnée V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$lignes_ttt_jamais=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.89318, p-value = 0.2917
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$lignes_ttt_jamais=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.82602, p-value = 0.05397

la normalité: acceptée -> t. test

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$lignes_ttt_jamais)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$lignes_ttt_jamais
## F = 4.1214, num df = 6, denom df = 7, p-value = 0.08586
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.8051724 23.4730420
## sample estimates:
## ratio of variances 
##           4.121353

test de variance: accepté

t.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$lignes_ttt_jamais,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$lignes_ttt_jamais
## t = 1.2876, df = 8.4901, p-value = 0.2319
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -24.84777  89.13242
## sample estimates:
## mean in group Non mean in group Oui 
##          23.80857          -8.33375

significativité: Non

Ligne de traitement : une /QLQ30 V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$lignes_ttt_une=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$lignes_ttt_une == "Non"]
## W = 0.78645, p-value = 0.01429
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$lignes_ttt_une=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$lignes_ttt_une == "Oui"]
## W = 0.91237, p-value = 0.4522

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$lignes_ttt_une)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$lignes_ttt_une
## F = 0.18436, num df = 8, denom df = 5, p-value = 0.03596
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.02728347 0.88810852
## sample estimates:
## ratio of variances 
##          0.1843591

test de variance: non accepté

t.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$lignes_ttt_une,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$lignes_ttt_une
## t = -1.2572, df = 6.2456, p-value = 0.2537
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -103.01910   32.65021
## sample estimates:
## mean in group Non mean in group Oui 
##         -7.407778         27.776667

significativité: Non

ligne de ttt à l’inclusion/Dyspnée V2- V1

Ligne de traitement : jamais Dyspnée V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$lignes_ttt_jamais=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.93001, p-value = 0.4815
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$lignes_ttt_jamais=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.81365, p-value = 0.01423

la normalité: non acceptée -> test de wilcoxon sera realisé

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$lignes_ttt_jamais)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$lignes_ttt_jamais
## F = 1.7514, num df = 8, denom df = 10, p-value = 0.4004
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.4543303 7.5224584
## sample estimates:
## ratio of variances 
##           1.751394

test de variance: accepté

Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon

wilcox.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$lignes_ttt_jamais,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$lignes_ttt_jamais
## W = 46, p-value = 0.8137
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Ligne de traitement :une /dyspnée V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$lignes_ttt_une=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$lignes_ttt_une == "Non"]
## W = 0.80685, p-value = 0.00823
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$lignes_ttt_une=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$lignes_ttt_une == "Oui"]
## W = 0.89317, p-value = 0.2916

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$lignes_ttt_une)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$lignes_ttt_une
## F = 0.41175, num df = 12, denom df = 6, p-value = 0.1799
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.07673036 1.53513847
## sample estimates:
## ratio of variances 
##          0.4117538

test de variance: acceptée

wilcox.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$lignes_ttt_une,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$lignes_ttt_une
## W = 54.5, p-value = 0.4861
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

ligne de ttt à l’inclusion/Dyspnée LC_13 V3-V1

Ligne de traitement : jamais /Dyspnée V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$lignes_ttt_jamais=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.85381, p-value = 0.1331
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$lignes_ttt_jamais=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.94997, p-value = 0.6436

la normalité: acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$lignes_ttt_jamais)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$lignes_ttt_jamais
## F = 2.5677, num df = 6, denom df = 10, p-value = 0.1804
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.6305636 14.0232476
## sample estimates:
## ratio of variances 
##           2.567738

test de variance: accepté

Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon

t.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$lignes_ttt_jamais,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$lignes_ttt_jamais
## t = 0.89338, df = 9.0104, p-value = 0.3949
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -29.28462  67.52280
## sample estimates:
## mean in group Non mean in group Oui 
##         -12.70000         -31.81909

significativité: Non

Ligne de traitement : une /QLQ30 V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$lignes_ttt_une=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$lignes_ttt_une == "Non"]
## W = 0.94701, p-value = 0.5938
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$lignes_ttt_une=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$lignes_ttt_une == "Oui"]
## W = 0.86544, p-value = 0.2086

la normalité: non acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$lignes_ttt_une)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$lignes_ttt_une
## F = 0.30492, num df = 11, denom df = 5, p-value = 0.09364
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.04642627 1.23309316
## sample estimates:
## ratio of variances 
##          0.3049193

test de variance: acceptée

t.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$lignes_ttt_une,var.test=FALSE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$lignes_ttt_une
## t = -0.94751, df = 6.5714, p-value = 0.3769
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -80.04935  34.68268
## sample estimates:
## mean in group Non mean in group Oui 
##        -31.945000         -9.261667

significativité: Non

Ligne de ttt à l’inclusion/ LC_13 Dyspnée V3-V2

Ligne de traitement : jamais /Dyspnée V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$lignes_ttt_jamais=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.96263, p-value = 0.841
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$lignes_ttt_jamais=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.94479, p-value = 0.6587

la normalité: acceptée -> t. test

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$lignes_ttt_jamais)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$lignes_ttt_jamais
## F = 3.5941, num df = 6, denom df = 7, p-value = 0.1185
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.7021691 20.4702059
## sample estimates:
## ratio of variances 
##            3.59412

test de variance: accepté

t.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$lignes_ttt_jamais, var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$lignes_ttt_jamais
## t = 0.87517, df = 8.8285, p-value = 0.4047
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -28.90964  65.21714
## sample estimates:
## mean in group Non mean in group Oui 
##          17.46000          -0.69375

significativité: Non

Ligne de traitement :une /dyspnée V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$lignes_ttt_une=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$lignes_ttt_une == "Non"]
## W = 0.9394, p-value = 0.5756
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$lignes_ttt_une=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$lignes_ttt_une == "Oui"]
## W = 0.98693, p-value = 0.9804

la normalité: acceptée -> t.test ( test de student)

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$lignes_ttt_une)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$lignes_ttt_une
## F = 0.36656, num df = 8, denom df = 5, p-value = 0.1997
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.05424727 1.76581160
## sample estimates:
## ratio of variances 
##          0.3665581

test de variance: accepté

t.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$lignes_ttt_une,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$lignes_ttt_une
## t = -0.24064, df = 7.4637, p-value = 0.8163
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -59.44376  48.33709
## sample estimates:
## mean in group Non mean in group Oui 
##          5.556667         11.110000

significativité: Non

Ligne de ttt à l’inclusion/LC Dyspnée V2- V1

Ligne de traitement : jamais /Dyspnée V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$lignes_ttt_jamais=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.90242, p-value = 0.2664
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$lignes_ttt_jamais=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.91315, p-value = 0.2656

la normalité: acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$lignes_ttt_jamais)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$lignes_ttt_jamais
## F = 3.2589, num df = 8, denom df = 10, p-value = 0.08406
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.845393 13.997380
## sample estimates:
## ratio of variances 
##           3.258898

test de variance: rejetée

Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon

t.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$lignes_ttt_jamais)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$lignes_ttt_jamais
## t = 0.015876, df = 11.92, p-value = 0.9876
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -45.94283  46.61677
## sample estimates:
## mean in group Non mean in group Oui 
##         -37.03667         -37.37364

significativité: Non

Ligne de traitement : une /QLQ30 V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$lignes_ttt_une=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$lignes_ttt_une == "Non"]
## W = 0.88613, p-value = 0.08639
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$lignes_ttt_une=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$lignes_ttt_une == "Oui"]
## W = 0.91548, p-value = 0.4351

la normalité: non acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$lignes_ttt_une)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$lignes_ttt_une
## F = 0.32512, num df = 12, denom df = 6, p-value = 0.09242
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.06058679 1.21215542
## sample estimates:
## ratio of variances 
##          0.3251235

test de variance: acceptée

t.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$lignes_ttt_une,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$lignes_ttt_une
## t = -0.44398, df = 8.1596, p-value = 0.6686
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -67.11610  45.38248
## sample estimates:
## mean in group Non mean in group Oui 
##         -41.02538         -30.15857

significativité: Non

Ligne de ttt à l’inclusion/ total QLQ30 V3-V1

Ligne de traitement : jamais /total V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$lignes_ttt_jamais=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.81479, p-value = 0.05719
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$lignes_ttt_jamais=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.95976, p-value = 0.7687

la normalité: acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$lignes_ttt_jamais)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_3_vs_1 by BP_C$lignes_ttt_jamais
## F = 4.315, num df = 6, denom df = 10, p-value = 0.04169
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   1.05964 23.56557
## sample estimates:
## ratio of variances 
##           4.314992

test de variance: non accepté

t.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$lignes_ttt_jamais,var.test=FALSE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1 by BP_C$lignes_ttt_jamais
## t = -0.0068836, df = 7.7985, p-value = 0.9947
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -34.14588  33.94354
## sample estimates:
## mean in group Non mean in group Oui 
##          16.31429          16.41545

significativité: Non

Ligne de traitement :une / total QLQ30 V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$lignes_ttt_une=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1[BP_C$lignes_ttt_une == "Non"]
## W = 0.9681, p-value = 0.8899
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$lignes_ttt_une=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1[BP_C$lignes_ttt_une == "Oui"]
## W = 0.74886, p-value = 0.01942

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$lignes_ttt_une)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_3_vs_1 by BP_C$lignes_ttt_une
## F = 0.18619, num df = 11, denom df = 5, p-value = 0.01929
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.02834909 0.75295871
## sample estimates:
## ratio of variances 
##          0.1861917

test de variance: rejetée

wilcox.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$lignes_ttt_une,var.test=FALSE)
## 
##  Wilcoxon rank sum exact test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1 by BP_C$lignes_ttt_une
## W = 23, p-value = 0.2496
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Ligne de ttt à l’inclusion /Dyspnée V3-V2

Ligne de traitement : jamais / Dyspnée V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$lignes_ttt_jamais=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.9266, p-value = 0.5224
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$lignes_ttt_jamais=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.90327, p-value = 0.3091

la normalité: acceptée -> t. test

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$lignes_ttt_jamais)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_3_vs_2 by BP_C$lignes_ttt_jamais
## F = 2.9661, num df = 6, denom df = 7, p-value = 0.1809
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.5794834 16.8935725
## sample estimates:
## ratio of variances 
##           2.966142

test de variance: accepté

t.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$lignes_ttt_jamais, var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2 by BP_C$lignes_ttt_jamais
## t = -0.48445, df = 9.3636, p-value = 0.6392
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -40.62142  26.22177
## sample estimates:
## mean in group Non mean in group Oui 
##         -5.038571          2.161250

significativité: Non

Ligne de traitement : une / total QLQ30 V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$lignes_ttt_une=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2[BP_C$lignes_ttt_une == "Non"]
## W = 0.93304, p-value = 0.5108
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$lignes_ttt_une=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2[BP_C$lignes_ttt_une == "Oui"]
## W = 0.92067, p-value = 0.5102

la normalité: acceptée -> t.test ( test de student)

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$lignes_ttt_une)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_3_vs_2 by BP_C$lignes_ttt_une
## F = 0.25312, num df = 8, denom df = 5, p-value = 0.08421
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.03746019 1.21937274
## sample estimates:
## ratio of variances 
##           0.253125

test de variance: accepté

t.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$lignes_ttt_une,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2 by BP_C$lignes_ttt_une
## t = 0.58507, df = 6.7105, p-value = 0.5776
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -29.73665  49.06332
## sample estimates:
## mean in group Non mean in group Oui 
##          2.666667         -6.996667

significativité: Non

Ligne de ttt à l’inclusion/Dyspnée V2- V1

Ligne de traitement : jamais /total V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$lignes_ttt_jamais=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.9337, p-value = 0.5174
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$lignes_ttt_jamais=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.90439, p-value = 0.209

la normalité: non acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$lignes_ttt_jamais)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_2_vs_1 by BP_C$lignes_ttt_jamais
## F = 1.5232, num df = 8, denom df = 10, p-value = 0.5236
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.3951425 6.5424710
## sample estimates:
## ratio of variances 
##           1.523231

test de variance: accepté

Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon

t.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$lignes_ttt_jamais,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1 by BP_C$lignes_ttt_jamais
## t = 0.47989, df = 15.358, p-value = 0.6381
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -16.63261  26.32372
## sample estimates:
## mean in group Non mean in group Oui 
##          19.59556          14.75000

significativité: les resultats sont à la limite de la significativité, on peut en deduire ( avec precaution car nombre de patient non suffisant) que l’evolution du score QL30 entre la V2 et la V3 pour les patients inclus au Stade IIIB tend à etre dépendant

Ligne de traitement : une /total V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$lignes_ttt_une=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1[BP_C$lignes_ttt_une == "Non"]
## W = 0.88149, p-value = 0.0747
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$lignes_ttt_une=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1[BP_C$lignes_ttt_une == "Oui"]
## W = 0.94439, p-value = 0.6785

la normalité: non acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$lignes_ttt_une)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_2_vs_1 by BP_C$lignes_ttt_une
## F = 0.54655, num df = 12, denom df = 6, p-value = 0.3514
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1018488 2.0376823
## sample estimates:
## ratio of variances 
##          0.5465458

test de variance: acceptée

t.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$lignes_ttt_une,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1 by BP_C$lignes_ttt_une
## t = -1.1137, df = 9.634, p-value = 0.2924
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -36.69888  12.32240
## sample estimates:
## mean in group Non mean in group Oui 
##          12.66462          24.85286

significativité: Non

Ligne de ttt à l’inclusion/total LC_13 V3-V1

Ligne de traitement : jamais /total LC 13 V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$lignes_ttt_jamais=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_1[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.91059, p-value = 0.4
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$lignes_ttt_jamais=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_1[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.87925, p-value = 0.1018

la normalité: acceptée -> test de Student Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_3_vs_1~BP_C$lignes_ttt_jamais)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_3_vs_1 by BP_C$lignes_ttt_jamais
## F = 3.1742, num df = 6, denom df = 10, p-value = 0.1038
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.7794957 17.3353830
## sample estimates:
## ratio of variances 
##           3.174209

test de variance: accepté

t.test(BP_C$Del_total_LC13_3_vs_1~BP_C$lignes_ttt_jamais)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_LC13_3_vs_1 by BP_C$lignes_ttt_jamais
## t = 0.43141, df = 8.4433, p-value = 0.677
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -21.21965  31.09654
## sample estimates:
## mean in group Non mean in group Oui 
##         14.155714          9.217273

significativité: Non

Ligne de traitement : une /total LC 13 V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$lignes_ttt_une=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_1[BP_C$lignes_ttt_une == "Non"]
## W = 0.88621, p-value = 0.1053
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$lignes_ttt_une=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_1[BP_C$lignes_ttt_une == "Oui"]
## W = 0.90394, p-value = 0.3977

la normalité: non acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_3_vs_1~BP_C$lignes_ttt_une)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_3_vs_1 by BP_C$lignes_ttt_une
## F = 0.25069, num df = 11, denom df = 5, p-value = 0.0522
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.03816908 1.01378009
## sample estimates:
## ratio of variances 
##          0.2506876

test de variance: rejetée

t.test(BP_C$Del_total_LC13_3_vs_1~BP_C$lignes_ttt_une,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_LC13_3_vs_1 by BP_C$lignes_ttt_une
## t = -0.57155, df = 6.2871, p-value = 0.5875
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -38.58048  23.83881
## sample estimates:
## mean in group Non mean in group Oui 
##          8.680833         16.051667

significativité: Non

Ligne de ttt à l’inclusion/total LC V3-V2

Ligne de traitement : jamais /total LC_13 V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$lignes_ttt_jamais=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_2[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.88505, p-value = 0.2498
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$lignes_ttt_jamais=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_2[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.93156, p-value = 0.5304

la normalité: acceptée -> t. test

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_3_vs_2~BP_C$lignes_ttt_jamais)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_3_vs_2 by BP_C$lignes_ttt_jamais
## F = 3.8726, num df = 6, denom df = 7, p-value = 0.0996
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.7565762 22.0563260
## sample estimates:
## ratio of variances 
##           3.872608

test de variance: accepté

t.test(BP_C$Del_total_LC13_3_vs_2~BP_C$lignes_ttt_jamais, var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_LC13_3_vs_2 by BP_C$lignes_ttt_jamais
## t = 0.02839, df = 8.6396, p-value = 0.978
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -29.42769  30.17090
## sample estimates:
## mean in group Non mean in group Oui 
##          2.512857          2.141250

significativité: Non

Ligne de traitement : une /total V3-V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$lignes_ttt_une=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_2[BP_C$lignes_ttt_une == "Non"]
## W = 0.90268, p-value = 0.2679
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$lignes_ttt_une=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_2[BP_C$lignes_ttt_une == "Oui"]
## W = 0.92541, p-value = 0.5451

la normalité: acceptée -> t.test ( test de student)

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_3_vs_2~BP_C$lignes_ttt_une)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_3_vs_2 by BP_C$lignes_ttt_une
## F = 2.4529, num df = 8, denom df = 5, p-value = 0.3379
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.3630001 11.8160731
## sample estimates:
## ratio of variances 
##           2.452854

test de variance: accepté

t.test(BP_C$Del_total_LC13_3_vs_2~BP_C$lignes_ttt_une,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_LC13_3_vs_2 by BP_C$lignes_ttt_une
## t = 1.5646, df = 12.999, p-value = 0.1417
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -6.46480 40.41924
## sample estimates:
## mean in group Non mean in group Oui 
##          9.105556         -7.871667

significativité: Non

Stade dys NYHA à l’inclusion/total LC 13 V2- V1

Ligne de traitement : jamais /total LC V2-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$lignes_ttt_jamais=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_2_vs_1[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.86731, p-value = 0.115
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$lignes_ttt_jamais=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_2_vs_1[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.92916, p-value = 0.4024

la normalité: non acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_2_vs_1~BP_C$lignes_ttt_jamais)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_2_vs_1 by BP_C$lignes_ttt_jamais
## F = 6.0777, num df = 8, denom df = 10, p-value = 0.01024
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   1.576628 26.104624
## sample estimates:
## ratio of variances 
##           6.077731

test de variance: non accepté

Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon

t.test(BP_C$Del_total_LC13_2_vs_1~BP_C$lignes_ttt_jamais,test.var=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_LC13_2_vs_1 by BP_C$lignes_ttt_jamais
## t = 0.41677, df = 10.152, p-value = 0.6855
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -23.71833  34.65994
## sample estimates:
## mean in group Non mean in group Oui 
##         10.184444          4.713636

significativité: Non

Ligne de traitement : une/Total LC13 V2-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$lignes_ttt_une=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_2_vs_1[BP_C$lignes_ttt_une == "Non"]
## W = 0.86945, p-value = 0.05142
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$lignes_ttt_une=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_2_vs_1[BP_C$lignes_ttt_une == "Oui"]
## W = 0.76032, p-value = 0.01624

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_2_vs_1~BP_C$lignes_ttt_une)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_2_vs_1 by BP_C$lignes_ttt_une
## F = 0.66693, num df = 12, denom df = 6, p-value = 0.5176
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1242817 2.4864946
## sample estimates:
## ratio of variances 
##          0.6669259

test de variance: acceptée

wilcox.test(BP_C$Del_total_LC13_2_vs_1~BP_C$lignes_ttt_une,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_total_LC13_2_vs_1 by BP_C$lignes_ttt_une
## W = 26.5, p-value = 0.1422
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Type de stent

Type de Stent /Dyspnée QLQ30 V3-V1

Stent métallique /Dyspnée V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$typ_stent_Métallique=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$typ_stent_Métallique == "Non"]
## W = 0.88632, p-value = 0.05902
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$typ_stent_Métallique=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$typ_stent_Métallique == "Oui"]
## W = 1, p-value = 0.9998

la normalité: acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$typ_stent_Métallique)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$typ_stent_Métallique
## F = 2.495, num df = 14, denom df = 2, p-value = 0.6455
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.06328269 12.11753518
## sample estimates:
## ratio of variances 
##           2.495015

test de variance: accepté

Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon

t.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$typ_stent_Métallique,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$typ_stent_Métallique
## t = 0.094326, df = 4.3397, p-value = 0.929
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -61.22954  65.67487
## sample estimates:
## mean in group Non mean in group Oui 
##         -31.11067         -33.33333

significativité: Non

Stent Silicone /QLQ30 V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$typ_stent_Silicone=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$typ_stent_Silicone == "Non"]
## W = 0.92157, p-value = 0.4817
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$typ_stent_Silicone=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.89411, p-value = 0.1564

la normalité: non acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$typ_stent_Silicone)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$typ_stent_Silicone
## F = 0.43935, num df = 6, denom df = 10, p-value = 0.3263
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.107891 2.399413
## sample estimates:
## ratio of variances 
##          0.4393464

test de variance: acceptée

t.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$typ_stent_Silicone,var.test=FALSE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$typ_stent_Silicone
## t = -0.84861, df = 15.924, p-value = 0.4087
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -65.13613  27.90549
## sample estimates:
## mean in group Non mean in group Oui 
##         -42.85714         -24.24182

significativité: Non

Type de Stent /QLQ30 _Dyspnée V3-V2

Stent métallique /Dyspnée V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$typ_stent_Métallique=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$typ_stent_Métallique == "Non"]
## W = 0.77603, p-value = 0.005066
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$typ_stent_Métallique=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.98685, p-value = 0.7805

la normalité: non acceptée -> Wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$typ_stent_Métallique)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$typ_stent_Métallique
## F = 0.21411, num df = 11, denom df = 2, p-value = 0.06802
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.00543322 1.12532366
## sample estimates:
## ratio of variances 
##          0.2141072

test de variance: non accepté

wilcox.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$typ_stent_Métallique,var.test=FALSE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$typ_stent_Métallique
## W = 13.5, p-value = 0.5299
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stent Silicone /QLQ30 V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$typ_stent_Silicone=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$typ_stent_Silicone == "Non"]
## W = 0.91237, p-value = 0.4522
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$typ_stent_Silicone=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.58021, p-value = 5.605e-05

la normalité: rejetée -> wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$typ_stent_Silicone)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$typ_stent_Silicone
## F = 3.1537, num df = 5, denom df = 8, p-value = 0.145
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.654656 21.309812
## sample estimates:
## ratio of variances 
##           3.153658

test de variance: accepté

wilcox.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$typ_stent_Silicone,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$typ_stent_Silicone
## W = 29, p-value = 0.8475
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Type de stent/Dyspnée V2- V1

Stent métallique _Dyspnée V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$typ_stent_Métallique=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$typ_stent_Métallique == "Non"]
## W = 0.91634, p-value = 0.1472
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$typ_stent_Métallique=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.8494, p-value = 0.2242

la normalité: acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$typ_stent_Métallique)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$typ_stent_Métallique
## F = 0.85742, num df = 15, denom df = 3, p-value = 0.7107
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.0601587 3.5607165
## sample estimates:
## ratio of variances 
##          0.8574247

test de variance: accepté

Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon

t.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$typ_stent_Métallique)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$typ_stent_Métallique
## t = 0.22691, df = 4.3837, p-value = 0.8307
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -67.66974  80.17224
## sample estimates:
## mean in group Non mean in group Oui 
##         -35.41625         -41.66750

significativité: Non

Stent silicone /dyspnée V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$typ_stent_Silicone=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$typ_stent_Silicone == "Non"]
## W = 0.91939, p-value = 0.4249
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$typ_stent_Silicone=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.83028, p-value = 0.02113

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$typ_stent_Silicone)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$typ_stent_Silicone
## F = 2.1992, num df = 7, denom df = 11, p-value = 0.2338
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.5850965 10.3569061
## sample estimates:
## ratio of variances 
##           2.199166

test de variance: acceptée

wilcox.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$typ_stent_Silicone,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$typ_stent_Silicone
## W = 44.5, p-value = 0.8109
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Type de stent/Dyspnée LC_13 V3-V1

Stent métallique /Dyspnée V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$typ_stent_Métallique=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$typ_stent_Métallique == "Non"]
## W = 0.92571, p-value = 0.2352
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$typ_stent_Métallique=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.85473, p-value = 0.2532

la normalité: acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$typ_stent_Métallique)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$typ_stent_Métallique
## F = 0.93314, num df = 14, denom df = 2, p-value = 0.7379
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.02366795 4.53200104
## sample estimates:
## ratio of variances 
##          0.9331445

test de variance: accepté

Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon

t.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$typ_stent_Métallique)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$typ_stent_Métallique
## t = -0.43396, df = 2.8022, p-value = 0.6955
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -99.13822  76.17688
## sample estimates:
## mean in group Non mean in group Oui 
##         -26.29733         -14.81667

significativité: Non

Stent Silicone /QLQ30 V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$typ_stent_Silicone=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$typ_stent_Silicone == "Non"]
## W = 0.80045, p-value = 0.04138
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$typ_stent_Silicone=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.94457, p-value = 0.5756

la normalité: non acceptée -> test de Wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$typ_stent_Silicone)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$typ_stent_Silicone
## F = 0.57346, num df = 6, denom df = 10, p-value = 0.5123
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1408265 3.1318726
## sample estimates:
## ratio of variances 
##           0.573464

test de variance: acceptée

t.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$typ_stent_Silicone,var.test=FALSE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$typ_stent_Silicone
## t = -0.58267, df = 15.358, p-value = 0.5686
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -50.01295  28.50515
## sample estimates:
## mean in group Non mean in group Oui 
##         -30.95571         -20.20182

significativité: Non

Type Stent / LC_13 Dyspnée V3-V2

Stent métallique /Dyspnée V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$typ_stent_Métallique=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$typ_stent_Métallique == "Non"]
## W = 0.99095, p-value = 0.9999
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$typ_stent_Métallique=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.99324, p-value = 0.8428

la normalité: acceptée -> t. test

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$typ_stent_Métallique)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$typ_stent_Métallique
## F = 1.0412, num df = 11, denom df = 2, p-value = 0.8253
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.02642258 5.47262087
## sample estimates:
## ratio of variances 
##           1.041236

test de variance: accepté

t.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$typ_stent_Métallique, var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$typ_stent_Métallique
## t = 0.018354, df = 3.1381, p-value = 0.9865
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -78.04985  78.97818
## sample estimates:
## mean in group Non mean in group Oui 
##          7.870833          7.406667

significativité: Non

Stent silicone /dyspnée V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$typ_stent_Silicone=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$typ_stent_Silicone == "Non"]
## W = 0.91223, p-value = 0.4512
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$typ_stent_Silicone=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.94773, p-value = 0.6652

la normalité: acceptée -> t.test ( test de student)

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$typ_stent_Silicone)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$typ_stent_Silicone
## F = 1.1283, num df = 5, denom df = 8, p-value = 0.8354
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.2342117 7.6238620
## sample estimates:
## ratio of variances 
##           1.128262

test de variance: accepté

t.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$typ_stent_Silicone,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$typ_stent_Silicone
## t = -0.85371, df = 10.388, p-value = 0.4125
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -63.28165  28.09388
## sample estimates:
## mean in group Non mean in group Oui 
##         -2.778333         14.815556

significativité: Non

Type de stent/LC Dyspnée V2- V1

Stent métallique /Dyspnée V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$typ_stent_Métallique=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$typ_stent_Métallique == "Non"]
## W = 0.9491, p-value = 0.4755
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$typ_stent_Métallique=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.73729, p-value = 0.02915

la normalité: non acceptée -> test de wilcoxon sera realisé

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$typ_stent_Métallique)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$typ_stent_Métallique
## F = 1.2168, num df = 15, denom df = 3, p-value = 0.9962
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.08537203 5.05306095
## sample estimates:
## ratio of variances 
##           1.216783

test de variance: accepté

wilcox.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$typ_stent_Métallique,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$typ_stent_Métallique
## W = 34, p-value = 0.8861
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stent Silicone /QLQ30 V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$typ_stent_Silicone=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$typ_stent_Silicone == "Non"]
## W = 0.95229, p-value = 0.7343
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$typ_stent_Silicone=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.91379, p-value = 0.2386

la normalité: non acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$typ_stent_Silicone)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$typ_stent_Silicone
## F = 1.3397, num df = 7, denom df = 11, p-value = 0.6377
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.3564293 6.3092232
## sample estimates:
## ratio of variances 
##           1.339689

test de variance: acceptée

t.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$typ_stent_Silicone,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$typ_stent_Silicone
## t = 0.87879, df = 13.563, p-value = 0.3948
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -26.14742  62.26242
## sample estimates:
## mean in group Non mean in group Oui 
##          -26.3875          -44.4450

significativité: Non

Ligne de ttt à l’inclusion/ total QLQ30 V3-V1

Stent métallique /total V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$typ_stent_Métallique=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1[BP_C$typ_stent_Métallique == "Non"]
## W = 0.90542, p-value = 0.1152
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$typ_stent_Métallique=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.93162, p-value = 0.4947

la normalité: acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$typ_stent_Métallique)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_3_vs_1 by BP_C$typ_stent_Métallique
## F = 12.433, num df = 14, denom df = 2, p-value = 0.1537
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.3153349 60.3811607
## sample estimates:
## ratio of variances 
##           12.43255

test de variance: accepté

t.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$typ_stent_Métallique,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1 by BP_C$typ_stent_Métallique
## t = -1.4886, df = 12.909, p-value = 0.1606
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -30.498217   5.624883
## sample estimates:
## mean in group Non mean in group Oui 
##          14.30333          26.74000

significativité: Non

Stent silicone / total QLQ30 V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$typ_stent_Silicone=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1[BP_C$typ_stent_Silicone == "Non"]
## W = 0.96093, p-value = 0.8267
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$typ_stent_Silicone=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.92764, p-value = 0.3875

la normalité: acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$typ_stent_Silicone)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_3_vs_1 by BP_C$typ_stent_Silicone
## F = 0.085891, num df = 6, denom df = 10, p-value = 0.007098
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.02109234 0.46907735
## sample estimates:
## ratio of variances 
##         0.08589078

test de variance: rejetée

wilcox.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$typ_stent_Silicone,var.test=FALSE)
## 
##  Wilcoxon rank sum exact test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1 by BP_C$typ_stent_Silicone
## W = 54, p-value = 0.1791
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Ligne de ttt à l’inclusion /Dyspnée V3-V2

Stent métallique / Dyspnée V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$typ_stent_Métallique=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2[BP_C$typ_stent_Métallique == "Non"]
## W = 0.95561, p-value = 0.7199
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$typ_stent_Métallique=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.89813, p-value = 0.3796

la normalité: acceptée -> t. test

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$typ_stent_Métallique)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_3_vs_2 by BP_C$typ_stent_Métallique
## F = 1.2576, num df = 11, denom df = 2, p-value = 0.9516
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.03191188 6.60955986
## sample estimates:
## ratio of variances 
##           1.257553

test de variance: accepté

t.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$typ_stent_Métallique,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2 by BP_C$typ_stent_Métallique
## t = -0.17315, df = 3.3942, p-value = 0.8724
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -52.90921  47.10421
## sample estimates:
## mean in group Non mean in group Oui 
##         -1.779167          1.123333

significativité: Non

Stent Silicone / total QLQ30 V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$typ_stent_Silicone=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2[BP_C$typ_stent_Silicone == "Non"]
## W = 0.90261, p-value = 0.3896
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$typ_stent_Silicone=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.8865, p-value = 0.1836

la normalité: acceptée -> t.test ( test de student)

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$typ_stent_Silicone)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_3_vs_2 by BP_C$typ_stent_Silicone
## F = 1.3982, num df = 5, denom df = 8, p-value = 0.6404
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.2902494 9.4479555
## sample estimates:
## ratio of variances 
##           1.398211

test de variance: accepté

t.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$typ_stent_Silicone,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2 by BP_C$typ_stent_Silicone
## t = 0.87549, df = 9.548, p-value = 0.4028
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -20.26060  46.21172
## sample estimates:
## mean in group Non mean in group Oui 
##          6.586667         -6.388889

significativité: Non

type de stent/Dyspnée V2- V1

Stent métallique /total V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$typ_stent_Métallique=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1[BP_C$typ_stent_Métallique == "Non"]
## W = 0.91986, p-value = 0.1678
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$typ_stent_Métallique=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.94883, p-value = 0.7088

la normalité: non acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$typ_stent_Métallique)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_2_vs_1 by BP_C$typ_stent_Métallique
## F = 0.63548, num df = 15, denom df = 3, p-value = 0.4745
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.04458669 2.63902896
## sample estimates:
## ratio of variances 
##          0.6354812

test de variance: accepté

t.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$typ_stent_Métallique,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1 by BP_C$typ_stent_Métallique
## t = -0.29298, df = 4.0087, p-value = 0.7841
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -43.63402  35.29777
## sample estimates:
## mean in group Non mean in group Oui 
##          16.09688          20.26500

significativité: Non

Stent Silicon /total V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$typ_stent_Silicone=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1[BP_C$typ_stent_Silicone == "Non"]
## W = 0.97256, p-value = 0.9173
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$typ_stent_Silicone=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.86058, p-value = 0.04971

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$typ_stent_Silicone)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_2_vs_1 by BP_C$typ_stent_Silicone
## F = 1.2365, num df = 7, denom df = 11, p-value = 0.7224
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.3289753 5.8232548
## sample estimates:
## ratio of variances 
##           1.236499

test de variance: acceptée

wilcox.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$typ_stent_Silicone,var.test=TRUE)
## 
##  Wilcoxon rank sum exact test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1 by BP_C$typ_stent_Silicone
## W = 51, p-value = 0.8506
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Type de stent /total LC_13 V3-V1

Stent métallique /total LC 13 V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$typ_stent_Métallique=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_1[BP_C$typ_stent_Métallique == "Non"]
## W = 0.91009, p-value = 0.1358
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$typ_stent_Métallique=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_1[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.76792, p-value = 0.04003

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_3_vs_1~BP_C$typ_stent_Métallique)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_3_vs_1 by BP_C$typ_stent_Métallique
## F = 0.79494, num df = 14, denom df = 2, p-value = 0.6289
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.02016249 3.86076611
## sample estimates:
## ratio of variances 
##          0.7949364

test de variance: accepté

wilcox.test(BP_C$Del_total_LC13_3_vs_1~BP_C$typ_stent_Métallique)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_total_LC13_3_vs_1 by BP_C$typ_stent_Métallique
## W = 8, p-value = 0.09668
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stent Silicone /total LC 13 V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$typ_stent_Silicone=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_1[BP_C$typ_stent_Silicone == "Non"]
## W = 0.93533, p-value = 0.5971
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$typ_stent_Silicone=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_1[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.84718, p-value = 0.03921

la normalité: non acceptée -> test de Wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_3_vs_1~BP_C$typ_stent_Silicone)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_3_vs_1 by BP_C$typ_stent_Silicone
## F = 1.2284, num df = 6, denom df = 10, p-value = 0.7363
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.3016483 6.7084251
## sample estimates:
## ratio of variances 
##           1.228351

test de variance: acceptée

wilcox.test(BP_C$Del_total_LC13_3_vs_1~BP_C$typ_stent_Silicone,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_total_LC13_3_vs_1 by BP_C$typ_stent_Silicone
## W = 55.5, p-value = 0.1345
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Type de Stent/total LC V3-V2

Stent métallique /total LC_13 V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$typ_stent_Métallique=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_2[BP_C$typ_stent_Métallique == "Non"]
## W = 0.8909, p-value = 0.121
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$typ_stent_Métallique=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_2[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.99122, p-value = 0.8208

la normalité: acceptée -> t. test

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_3_vs_2~BP_C$typ_stent_Métallique)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_3_vs_2 by BP_C$typ_stent_Métallique
## F = 1.5544, num df = 11, denom df = 2, p-value = 0.9116
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.03944472 8.16975432
## sample estimates:
## ratio of variances 
##             1.5544

test de variance: accepté

t.test(BP_C$Del_total_LC13_3_vs_2~BP_C$typ_stent_Métallique, var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_LC13_3_vs_2 by BP_C$typ_stent_Métallique
## t = 0.099372, df = 3.7534, p-value = 0.9259
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -37.41287  40.11620
## sample estimates:
## mean in group Non mean in group Oui 
##          2.585000          1.233333

significativité: Non

Stent Silicone /total V3-V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$typ_stent_Silicone=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_2[BP_C$typ_stent_Silicone == "Non"]
## W = 0.9891, p-value = 0.9869
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$typ_stent_Silicone=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_2[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.91679, p-value = 0.3663

la normalité: acceptée -> t.test ( test de student)

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_3_vs_2~BP_C$typ_stent_Silicone)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_3_vs_2 by BP_C$typ_stent_Silicone
## F = 0.23632, num df = 5, denom df = 8, p-value = 0.1288
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.04905703 1.59686335
## sample estimates:
## ratio of variances 
##          0.2363213

test de variance: accepté

t.test(BP_C$Del_total_LC13_3_vs_2~BP_C$typ_stent_Silicone,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_LC13_3_vs_2 by BP_C$typ_stent_Silicone
## t = -0.17264, df = 12.22, p-value = 0.8658
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -26.23962  22.37962
## sample estimates:
## mean in group Non mean in group Oui 
##          1.156667          3.086667

significativité: Non

Type de Stent à l’inclusion/total LC 13 V2- V1

Stent métallique /total LC V2-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$typ_stent_Métallique=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_2_vs_1[BP_C$typ_stent_Métallique == "Non"]
## W = 0.86615, p-value = 0.02376
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$typ_stent_Métallique=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_2_vs_1[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.87314, p-value = 0.3102

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_2_vs_1~BP_C$typ_stent_Métallique)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_2_vs_1 by BP_C$typ_stent_Métallique
## F = 0.51499, num df = 15, denom df = 3, p-value = 0.3325
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.03613283 2.13865592
## sample estimates:
## ratio of variances 
##          0.5149908

test de variance: accepté

t.test(BP_C$Del_total_LC13_2_vs_1~BP_C$typ_stent_Métallique,test.var=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_LC13_2_vs_1 by BP_C$typ_stent_Métallique
## t = -0.74279, df = 3.8096, p-value = 0.5008
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -65.44973  38.25098
## sample estimates:
## mean in group Non mean in group Oui 
##          4.455625         18.055000

significativité: Non

Stent Silicone/Total LC13 V2-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$typ_stent_Silicone=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_2_vs_1[BP_C$typ_stent_Silicone == "Non"]
## W = 0.86786, p-value = 0.1436
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$typ_stent_Silicone=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_2_vs_1[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.83605, p-value = 0.0248

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_2_vs_1~BP_C$typ_stent_Silicone)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_2_vs_1 by BP_C$typ_stent_Silicone
## F = 0.95401, num df = 7, denom df = 11, p-value = 0.9877
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.2538183 4.4928858
## sample estimates:
## ratio of variances 
##          0.9540109

test de variance: acceptée

wilcox.test(BP_C$Del_total_LC13_2_vs_1~BP_C$typ_stent_Silicone,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_total_LC13_2_vs_1 by BP_C$typ_stent_Silicone
## W = 58.5, p-value = 0.4399
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Site Trachée ou Carene

site trachée ou carene /Dyspnée QLQ30 V3-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Site_Trachée_ou.Carène=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.93661, p-value = 0.6084
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Site_Trachée_ou.Carène=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.85978, p-value = 0.0572

la normalité: non acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Site_Trachée_ou.Carène)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Site_Trachée_ou.Carène
## F = 0.35637, num df = 6, denom df = 10, p-value = 0.2191
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.08751362 1.94623520
## sample estimates:
## ratio of variances 
##          0.3563669

test de variance: accepté

t.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Site_Trachée_ou.Carène)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Site_Trachée_ou.Carène
## t = -1.6665, df = 15.982, p-value = 0.1151
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -77.709175   9.308136
## sample estimates:
## mean in group Non mean in group Oui 
##         -52.38143         -18.18091

significativité: Non

Site_Trachée_ou Carène /QLQ30 _Dyspnée V3-V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Site_Trachée_ou.Carène=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.8519, p-value = 0.2006
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Site_Trachée_ou.Carène=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.74528, p-value = 0.003126

la normalité:non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Site_Trachée_ou.Carène)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Site_Trachée_ou.Carène
## F = 0.98786, num df = 4, denom df = 9, p-value = 0.9225
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.209378 8.796596
## sample estimates:
## ratio of variances 
##          0.9878619

test de variance: accepté

wilcox.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Site_Trachée_ou.Carène, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Site_Trachée_ou.Carène
## W = 15.5, p-value = 0.2304
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Site trachée ou carène /Dyspnée_ QLQ V2- V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Site_Trachée_ou.Carène=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.94179, p-value = 0.6008
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Site_Trachée_ou.Carène=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.78532, p-value = 0.006031

la normalité: non acceptée -> test de wilcoxon sera realisé

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Site_Trachée_ou.Carène)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Site_Trachée_ou.Carène
## F = 1.1612, num df = 8, denom df = 10, p-value = 0.8085
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.301216 4.987307
## sample estimates:
## ratio of variances 
##           1.161155

test de variance: accepté

Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon

wilcox.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Site_Trachée_ou.Carène,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Site_Trachée_ou.Carène
## W = 54, p-value = 0.7534
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Site trachée ou carène /Dyspnée LC_13 V3-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Site_Trachée_ou.Carène=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.85113, p-value = 0.1259
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Site_Trachée_ou.Carène=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.98655, p-value = 0.9917

la normalité: acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Site_Trachée_ou.Carène)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Site_Trachée_ou.Carène
## F = 0.1253, num df = 6, denom df = 10, p-value = 0.01932
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.03076951 0.68429008
## sample estimates:
## ratio of variances 
##          0.1252975

test de variance: rejetée

t.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Site_Trachée_ou.Carène,var.test=FALSE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Site_Trachée_ou.Carène
## t = -1.7837, df = 13.456, p-value = 0.09704
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -60.989706   5.721395
## sample estimates:
## mean in group Non mean in group Oui 
##         -41.27143         -13.63727

significativité: Non

Site trachée ou carène / LC_13 Dyspnée V3-V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Site_Trachée_ou.Carène=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.97858, p-value = 0.9269
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Site_Trachée_ou.Carène=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.97454, p-value = 0.9294

la normalité: acceptée -> t. test

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Site_Trachée_ou.Carène)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Site_Trachée_ou.Carène
## F = 2.1222, num df = 4, denom df = 9, p-value = 0.3204
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.4498119 18.8979395
## sample estimates:
## ratio of variances 
##           2.122248

test de variance: accepté

t.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Site_Trachée_ou.Carène, var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Site_Trachée_ou.Carène
## t = -1.2261, df = 5.9598, p-value = 0.2664
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -84.966  28.302
## sample estimates:
## mean in group Non mean in group Oui 
##           -11.110            17.222

significativité: Non

Site trachée ou carène /LC Dyspnée V2- V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Site_Trachée_ou.Carène=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.94971, p-value = 0.6868
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Site_Trachée_ou.Carène=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.90566, p-value = 0.2165

la normalité: non acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Site_Trachée_ou.Carène)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Site_Trachée_ou.Carène
## F = 1.5257, num df = 8, denom df = 10, p-value = 0.522
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.3957912 6.5532118
## sample estimates:
## ratio of variances 
##           1.525732

test de variance: accepté

t.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Site_Trachée_ou.Carène,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Site_Trachée_ou.Carène
## t = 0.12591, df = 15.349, p-value = 0.9014
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -41.03097  46.19380
## sample estimates:
## mean in group Non mean in group Oui 
##         -35.80222         -38.38364

significativité: Non

Site trachée ou carène / total QLQ30 V3-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Site_Trachée_ou.Carène=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.94696, p-value = 0.702
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Site_Trachée_ou.Carène=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.92111, p-value = 0.328

la normalité: acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Site_Trachée_ou.Carène)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_3_vs_1 by BP_C$Site_Trachée_ou.Carène
## F = 0.11944, num df = 6, denom df = 10, p-value = 0.01706
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.02933156 0.65231118
## sample estimates:
## ratio of variances 
##           0.119442

test de variance: non accepté

t.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Site_Trachée_ou.Carène,var.test=FALSE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1 by BP_C$Site_Trachée_ou.Carène
## t = 1.1521, df = 13.324, p-value = 0.2695
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -10.25053  33.79885
## sample estimates:
## mean in group Non mean in group Oui 
##          23.57143          11.79727

significativité: Non

Site trachée ou carène /Dyspnée V3-V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Site_Trachée_ou.Carène=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.98018, p-value = 0.9356
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Site_Trachée_ou.Carène=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.88132, p-value = 0.1351

la normalité: acceptée -> t. test

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Site_Trachée_ou.Carène)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_3_vs_2 by BP_C$Site_Trachée_ou.Carène
## F = 1.501, num df = 4, denom df = 9, p-value = 0.5616
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.3181451 13.3662260
## sample estimates:
## ratio of variances 
##           1.501034

test de variance: accepté

t.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Site_Trachée_ou.Carène)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2 by BP_C$Site_Trachée_ou.Carène
## t = 1.5121, df = 6.7746, p-value = 0.1757
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -13.04474  58.46074
## sample estimates:
## mean in group Non mean in group Oui 
##            13.940            -8.768

significativité: Non

Site trachée ou carène /total QLQ_30 V2_V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Site_Trachée_ou.Carène=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.96453, p-value = 0.8444
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Site_Trachée_ou.Carène=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.85842, p-value = 0.05493

la normalité: non acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Site_Trachée_ou.Carène)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_2_vs_1 by BP_C$Site_Trachée_ou.Carène
## F = 0.559, num df = 8, denom df = 10, p-value = 0.4215
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1450095 2.4009586
## sample estimates:
## ratio of variances 
##          0.5589959

test de variance: accepté

t.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Site_Trachée_ou.Carène,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1 by BP_C$Site_Trachée_ou.Carène
## t = -0.95654, df = 17.892, p-value = 0.3515
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -28.83689  10.79871
## sample estimates:
## mean in group Non mean in group Oui 
##          11.97000          20.98909

significativité: Non

Site trachée ou carène /total LC_13 V3-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Site_Trachée_ou.Carène=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_1[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.80572, p-value = 0.04664
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Site_Trachée_ou.Carène=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_1[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.9096, p-value = 0.2412

la normalité: acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Site_Trachée_ou.Carène)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_3_vs_1 by BP_C$Site_Trachée_ou.Carène
## F = 0.32196, num df = 6, denom df = 10, p-value = 0.1784
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.07906432 1.75832944
## sample estimates:
## ratio of variances 
##          0.3219603

test de variance: accepté

wilcox.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Site_Trachée_ou.Carène)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_total_LC13_3_vs_1 by BP_C$Site_Trachée_ou.Carène
## W = 47.5, p-value = 0.4407
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Site trachée ou carène /total LC_13 V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Site_Trachée_ou.Carène=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_2[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.74955, p-value = 0.02948
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Site_Trachée_ou.Carène=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_2[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.9781, p-value = 0.9542

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Site_Trachée_ou.Carène)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_3_vs_2 by BP_C$Site_Trachée_ou.Carène
## F = 2.4267, num df = 4, denom df = 9, p-value = 0.2479
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.5143309 21.6085792
## sample estimates:
## ratio of variances 
##           2.426654

test de variance: accepté

wilcox.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Site_Trachée_ou.Carène, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_total_LC13_3_vs_2 by BP_C$Site_Trachée_ou.Carène
## W = 46.5, p-value = 0.01005
## alternative hypothesis: true location shift is not equal to 0

significativité: Oui Je teste quand meme un test de Student pour voir la difference les donnée du t-test ne sont pas à retranscrire mais justepour verification

t.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Site_Trachée_ou.Carène, var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_LC13_3_vs_2 by BP_C$Site_Trachée_ou.Carène
## t = 2.326, df = 5.7104, p-value = 0.06113
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -1.870411 59.372411
## sample estimates:
## mean in group Non mean in group Oui 
##            21.482            -7.269

Site trachée ou carène /total LC_13 V2- V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Site_Trachée_ou.Carène=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_2_vs_1[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.87506, p-value = 0.1392
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Site_Trachée_ou.Carène=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_2_vs_1[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.79649, p-value = 0.008458

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Site_Trachée_ou.Carène)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_2_vs_1 by BP_C$Site_Trachée_ou.Carène
## F = 1.164, num df = 8, denom df = 10, p-value = 0.8058
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.3019426 4.9993378
## sample estimates:
## ratio of variances 
##           1.163956

test de variance: accepté

Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon

wilcox.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Site_Trachée_ou.Carène,test.var=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_total_LC13_2_vs_1 by BP_C$Site_Trachée_ou.Carène
## W = 36.5, p-value = 0.3417
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Type d’intervention

Type d’intervention /Dyspnée QLQ30 V3-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Type_intervention=="urgente"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Type_intervention == "urgente"]
## W = 0.72863, p-value = 0.02386
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Type_intervention=="programmée"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Type_intervention == "programmée"]
## W = 0.87054, p-value = 0.04269

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Type_intervention)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Type_intervention
## F = 0.67584, num df = 13, denom df = 3, p-value = 0.5322
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.04724655 2.93798538
## sample estimates:
## ratio of variances 
##          0.6758374

test de variance: accepté

wilcox.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Type_intervention)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Type_intervention
## W = 33, p-value = 0.6211
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Type d’intervention /QLQ30 _Dyspnée V3-V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Type_intervention=="urgente"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Type_intervention == "urgente"]
## W = 0.75, p-value < 2.2e-16
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Type_intervention=="programmée"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Type_intervention == "programmée"]
## W = 0.88367, p-value = 0.09768

la normalité:non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Type_intervention)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Type_intervention
## F = 0.60607, num df = 11, denom df = 2, p-value = 0.4724
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.01537965 3.18541932
## sample estimates:
## ratio of variances 
##          0.6060667

test de variance: accepté

wilcox.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Type_intervention, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Type_intervention
## W = 12.5, p-value = 0.4323
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Type d’intervention /Dyspnée_ QLQ V2- V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Type_intervention=="urgente"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Type_intervention == "urgente"]
## W = 0.80298, p-value = 0.08568
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Type_intervention=="programmée"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Type_intervention == "programmée"]
## W = 0.91917, p-value = 0.1871

la normalité: acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Type_intervention)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Type_intervention
## F = 0.80749, num df = 14, denom df = 4, p-value = 0.6789
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.09298837 3.14268150
## sample estimates:
## ratio of variances 
##          0.8074899

test de variance: acceptée

t.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Type_intervention,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Type_intervention
## t = 0.52348, df = 6.3124, p-value = 0.6185
## alternative hypothesis: true difference in means between group programmée and group urgente is not equal to 0
## 95 percent confidence interval:
##  -48.24851  74.91385
## sample estimates:
## mean in group programmée    mean in group urgente 
##                -33.33333                -46.66600

significativité: Non

Type d’intervention /Dyspnée LC_13 V3-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Type_intervention=="urgente"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Type_intervention == "urgente"]
## W = 0.984, p-value = 0.9251
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Type_intervention=="programmée"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Type_intervention == "programmée"]
## W = 0.87709, p-value = 0.05284

la normalité: acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Type_intervention)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Type_intervention
## F = 0.84563, num df = 13, denom df = 3, p-value = 0.7089
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.05911636 3.67609870
## sample estimates:
## ratio of variances 
##          0.8456287

test de variance: acceptée

t.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Type_intervention,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Type_intervention
## t = 1.4393, df = 4.5633, p-value = 0.215
## alternative hypothesis: true difference in means between group programmée and group urgente is not equal to 0
## 95 percent confidence interval:
##  -27.62380  93.50023
## sample estimates:
## mean in group programmée    mean in group urgente 
##                -17.06429                -50.00250

significativité: Non

Type d’intervention / LC_13 Dyspnée V3-V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Type_intervention=="urgente"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Type_intervention == "urgente"]
## W = 0.75, p-value < 2.2e-16
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Type_intervention=="programmée"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Type_intervention == "programmée"]
## W = 0.97624, p-value = 0.9641

la normalité: rejetée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Type_intervention)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Type_intervention
## F = 2.3994, num df = 11, denom df = 2, p-value = 0.6617
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.06088653 12.61076221
## sample estimates:
## ratio of variances 
##           2.399358

test de variance: accepté

wilcox.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Type_intervention, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Type_intervention
## W = 10.5, p-value = 0.3106
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Type d’intervention /LC Dyspnée V2- V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Type_intervention=="urgente"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Type_intervention == "urgente"]
## W = 0.86153, p-value = 0.2338
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Type_intervention=="programmée"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Type_intervention == "programmée"]
## W = 0.93743, p-value = 0.3511

la normalité: acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Type_intervention)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Type_intervention
## F = 1.4127, num df = 14, denom df = 4, p-value = 0.8004
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1626825 5.4980988
## sample estimates:
## ratio of variances 
##           1.412698

test de variance: accepté

t.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Type_intervention,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Type_intervention
## t = 1.683, df = 8.1386, p-value = 0.1302
## alternative hypothesis: true difference in means between group programmée and group urgente is not equal to 0
## 95 percent confidence interval:
##  -12.20353  78.87020
## sample estimates:
## mean in group programmée    mean in group urgente 
##                -28.88867                -62.22200

significativité:Non

Type d’intervention / total QLQ30 V3-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Type_intervention=="urgente"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1[BP_C$Type_intervention == "urgente"]
## W = 0.86491, p-value = 0.2782
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Type_intervention=="programmée"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1[BP_C$Type_intervention == "programmée"]
## W = 0.85735, p-value = 0.02799

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Type_intervention)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_3_vs_1 by BP_C$Type_intervention
## F = 1.1259, num df = 13, denom df = 3, p-value = 0.946
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.07870991 4.89450665
## sample estimates:
## ratio of variances 
##           1.125904

test de variance: accepté

wilcox.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Type_intervention,var.test=TRUE)
## 
##  Wilcoxon rank sum exact test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1 by BP_C$Type_intervention
## W = 19, p-value = 0.3817
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Type d’intervention /Dyspnée V3-V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Type_intervention=="urgente"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2[BP_C$Type_intervention == "urgente"]
## W = 0.84631, p-value = 0.2306
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Type_intervention=="programmée"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2[BP_C$Type_intervention == "programmée"]
## W = 0.96324, p-value = 0.8289

la normalité: acceptée -> t. test

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Type_intervention)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_3_vs_2 by BP_C$Type_intervention
## F = 34.019, num df = 11, denom df = 2, p-value = 0.05778
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##    0.8632787 178.8014991
## sample estimates:
## ratio of variances 
##           34.01927

test de variance: accepté

t.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Type_intervention)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2 by BP_C$Type_intervention
## t = 1.8917, df = 12.768, p-value = 0.08143
## alternative hypothesis: true difference in means between group programmée and group urgente is not equal to 0
## 95 percent confidence interval:
##  -2.437204 36.257204
## sample estimates:
## mean in group programmée    mean in group urgente 
##                 2.183333               -14.726667

significativité: non , mais à la limite de la significativité

Type d’intervention /total QLQ_30 V2_V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Type_intervention=="urgente"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1[BP_C$Type_intervention == "urgente"]
## W = 0.77095, p-value = 0.04599
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Type_intervention=="programmée"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1[BP_C$Type_intervention == "programmée"]
## W = 0.95809, p-value = 0.6592

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Type_intervention)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_2_vs_1 by BP_C$Type_intervention
## F = 0.59702, num df = 14, denom df = 4, p-value = 0.4228
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.06875129 2.32355320
## sample estimates:
## ratio of variances 
##          0.5970206

test de variance: accepté

wilcox.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Type_intervention,var.test=TRUE)
## 
##  Wilcoxon rank sum exact test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1 by BP_C$Type_intervention
## W = 27, p-value = 0.3949
## alternative hypothesis: true location shift is not equal to 0

significativité: Urgente

Type d’intervention /total LC_13 V3-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Type_intervention=="urgente"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_1[BP_C$Type_intervention == "urgente"]
## W = 0.85382, p-value = 0.2388
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Type_intervention=="programmée"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_1[BP_C$Type_intervention == "programmée"]
## W = 0.8686, p-value = 0.04011

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Type_intervention)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_3_vs_1 by BP_C$Type_intervention
## F = 1.7725, num df = 13, denom df = 3, p-value = 0.7037
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1239097 7.7052155
## sample estimates:
## ratio of variances 
##           1.772464

test de variance: accepté

wilcox.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Type_intervention, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_total_LC13_3_vs_1 by BP_C$Type_intervention
## W = 24, p-value = 0.7097
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Type d’intervention /total LC_13 V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Type_intervention=="urgente"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_2[BP_C$Type_intervention == "urgente"]
## W = 0.80517, p-value = 0.1269
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Type_intervention=="programmée"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_2[BP_C$Type_intervention == "programmée"]
## W = 0.91851, p-value = 0.2738

la normalité: urgente acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Type_intervention)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_3_vs_2 by BP_C$Type_intervention
## F = 3.1352, num df = 11, denom df = 2, p-value = 0.5332
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.07956058 16.47851495
## sample estimates:
## ratio of variances 
##           3.135248

test de variance: accepté

t.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Type_intervention, var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_LC13_3_vs_2 by BP_C$Type_intervention
## t = 1.4191, df = 5.7245, p-value = 0.208
## alternative hypothesis: true difference in means between group programmée and group urgente is not equal to 0
## 95 percent confidence interval:
##  -11.35069  41.83736
## sample estimates:
## mean in group programmée    mean in group urgente 
##                 5.363333                -9.880000

significativité: Non

type d’intervention /total LC_13 V2- V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Type_intervention=="urgente"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_2_vs_1[BP_C$Type_intervention == "urgente"]
## W = 0.8873, p-value = 0.3437
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Type_intervention=="programmée"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_2_vs_1[BP_C$Type_intervention == "programmée"]
## W = 0.89763, p-value = 0.08758

la normalité: acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Type_intervention)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_2_vs_1 by BP_C$Type_intervention
## F = 11.954, num df = 14, denom df = 4, p-value = 0.02779
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   1.376592 46.524003
## sample estimates:
## ratio of variances 
##           11.95401

test de variance: non accepté

wilcox.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Type_intervention,test.var=FALSE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_total_LC13_2_vs_1 by BP_C$Type_intervention
## W = 32.5, p-value = 0.6941
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Atélectasie

Atélectasie /Dyspnée QLQ30 V3-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Atelectasie_RT=="Absent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Atelectasie_RT == "Absent"]
## W = 0.86119, p-value = 0.1234
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Atelectasie_RT=="Présent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Atelectasie_RT == "Présent"]
## W = 0.79137, p-value = 0.01139

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Atelectasie_RT)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Atelectasie_RT
## F = 3.5993, num df = 7, denom df = 9, p-value = 0.07818
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.8575885 17.3603930
## sample estimates:
## ratio of variances 
##           3.599339

test de variance: accepté

wilcox.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Atelectasie_RT)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Atelectasie_RT
## W = 28.5, p-value = 0.3121
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Atélectasie /QLQ30 _Dyspnée V3-V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Atelectasie_RT=="Absent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Atelectasie_RT == "Absent"]
## W = 0.80442, p-value = 0.04529
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Atelectasie_RT=="Présent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Atelectasie_RT == "Présent"]
## W = 0.87746, p-value = 0.1781

la normalité:non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Atelectasie_RT)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Atelectasie_RT
## F = 0.62958, num df = 6, denom df = 7, p-value = 0.5893
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1229991 3.5857698
## sample estimates:
## ratio of variances 
##          0.6295827

test de variance: accepté

wilcox.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Atelectasie_RT, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Atelectasie_RT
## W = 32, p-value = 0.6594
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Atélectasie /Dyspnée_ QLQ V2- V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Atelectasie_RT=="Absent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Atelectasie_RT == "Absent"]
## W = 0.77596, p-value = 0.01082
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Atelectasie_RT=="Présent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Atelectasie_RT == "Présent"]
## W = 0.93365, p-value = 0.4489

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Atelectasie_RT)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Atelectasie_RT
## F = 1.0576, num df = 8, denom df = 10, p-value = 0.9152
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.274363 4.542696
## sample estimates:
## ratio of variances 
##           1.057639

test de variance: acceptée

wilcox.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Atelectasie_RT,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Atelectasie_RT
## W = 43.5, p-value = 0.6657
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Atélectasie /Dyspnée LC_13 V3-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Atelectasie_RT=="Absent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Atelectasie_RT == "Absent"]
## W = 0.94005, p-value = 0.6115
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Atelectasie_RT=="Présent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Atelectasie_RT == "Présent"]
## W = 0.94017, p-value = 0.5549

la normalité: acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Atelectasie_RT)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Atelectasie_RT
## F = 3.7017, num df = 7, denom df = 9, p-value = 0.0722
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.8819888 17.8543355
## sample estimates:
## ratio of variances 
##           3.701748

test de variance: acceptée

t.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Atelectasie_RT,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Atelectasie_RT
## t = -0.17333, df = 9.9896, p-value = 0.8659
## alternative hypothesis: true difference in means between group Absent and group Présent is not equal to 0
## 95 percent confidence interval:
##  -50.03639  42.81439
## sample estimates:
##  mean in group Absent mean in group Présent 
##               -26.390               -22.779

significativité: Non

Atélectasie / LC_13 Dyspnée V3-V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Atelectasie_RT=="Absent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Atelectasie_RT == "Absent"]
## W = 0.90684, p-value = 0.3744
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Atelectasie_RT=="Présent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Atelectasie_RT == "Présent"]
## W = 0.93224, p-value = 0.5367

la normalité: acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Atelectasie_RT)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Atelectasie_RT
## F = 0.72216, num df = 6, denom df = 7, p-value = 0.7075
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1410847 4.1130154
## sample estimates:
## ratio of variances 
##          0.7221555

test de variance: accepté

t.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Atelectasie_RT, var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Atelectasie_RT
## t = 0.014695, df = 12.995, p-value = 0.9885
## alternative hypothesis: true difference in means between group Absent and group Présent is not equal to 0
## 95 percent confidence interval:
##  -43.57209  44.16887
## sample estimates:
##  mean in group Absent mean in group Présent 
##              7.937143              7.638750

significativité: Non

Atélectasie /LC Dyspnée V2- V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Atelectasie_RT=="Absent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Atelectasie_RT == "Absent"]
## W = 0.92224, p-value = 0.4111
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Atelectasie_RT=="Présent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Atelectasie_RT == "Présent"]
## W = 0.93462, p-value = 0.4595

la normalité: acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Atelectasie_RT)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Atelectasie_RT
## F = 0.74253, num df = 8, denom df = 10, p-value = 0.6867
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1926193 3.1892446
## sample estimates:
## ratio of variances 
##          0.7425263

test de variance: accepté

t.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Atelectasie_RT,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Atelectasie_RT
## t = -0.096684, df = 17.929, p-value = 0.924
## alternative hypothesis: true difference in means between group Absent and group Présent is not equal to 0
## 95 percent confidence interval:
##  -43.41407  39.59508
## sample estimates:
##  mean in group Absent mean in group Présent 
##             -38.27222             -36.36273

significativité:Non

Atélectasie / total QLQ30 V3-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Atelectasie_RT=="Absent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1[BP_C$Atelectasie_RT == "Absent"]
## W = 0.78789, p-value = 0.02121
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Atelectasie_RT=="Présent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1[BP_C$Atelectasie_RT == "Présent"]
## W = 0.93904, p-value = 0.5424

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Atelectasie_RT)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_3_vs_1 by BP_C$Atelectasie_RT
## F = 3.5883, num df = 7, denom df = 9, p-value = 0.07886
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.8549516 17.3070127
## sample estimates:
## ratio of variances 
##           3.588272

test de variance: accepté

wilcox.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Atelectasie_RT,var.test=TRUE)
## 
##  Wilcoxon rank sum exact test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1 by BP_C$Atelectasie_RT
## W = 49, p-value = 0.4598
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Atélectasie /Dyspnée V3-V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Atelectasie_RT=="Absent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2[BP_C$Atelectasie_RT == "Absent"]
## W = 0.91396, p-value = 0.424
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Atelectasie_RT=="Présent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2[BP_C$Atelectasie_RT == "Présent"]
## W = 0.86453, p-value = 0.1332

la normalité: acceptée -> t. test

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Atelectasie_RT)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_3_vs_2 by BP_C$Atelectasie_RT
## F = 1.2878, num df = 6, denom df = 7, p-value = 0.741
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.2515983 7.3347998
## sample estimates:
## ratio of variances 
##            1.28783

test de variance: accepté

t.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Atelectasie_RT)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2 by BP_C$Atelectasie_RT
## t = -0.91945, df = 12.125, p-value = 0.3758
## alternative hypothesis: true difference in means between group Absent and group Présent is not equal to 0
## 95 percent confidence interval:
##  -43.80336  17.78407
## sample estimates:
##  mean in group Absent mean in group Présent 
##             -8.137143              4.872500

significativité: non

Atélectasie /total QLQ_30 V2_V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Atelectasie_RT=="Absent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1[BP_C$Atelectasie_RT == "Absent"]
## W = 0.87518, p-value = 0.1396
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Atelectasie_RT=="Présent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1[BP_C$Atelectasie_RT == "Présent"]
## W = 0.95989, p-value = 0.7703

la normalité: acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Atelectasie_RT)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_2_vs_1 by BP_C$Atelectasie_RT
## F = 1.8775, num df = 8, denom df = 10, p-value = 0.3463
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.4870506 8.0642167
## sample estimates:
## ratio of variances 
##           1.877527

test de variance: accepté

t.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Atelectasie_RT,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1 by BP_C$Atelectasie_RT
## t = 0.67632, df = 14.317, p-value = 0.5096
## alternative hypothesis: true difference in means between group Absent and group Présent is not equal to 0
## 95 percent confidence interval:
##  -14.83598  28.54325
## sample estimates:
##  mean in group Absent mean in group Présent 
##              20.70000              13.84636

significativité: Absent

Atélectasie /total LC_13 V3-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Atelectasie_RT=="Absent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_1[BP_C$Atelectasie_RT == "Absent"]
## W = 0.84885, p-value = 0.09275
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Atelectasie_RT=="Présent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_1[BP_C$Atelectasie_RT == "Présent"]
## W = 0.8953, p-value = 0.1944

la normalité: non acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Atelectasie_RT)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_3_vs_1 by BP_C$Atelectasie_RT
## F = 1.7765, num df = 7, denom df = 9, p-value = 0.4147
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.4232629 8.5682245
## sample estimates:
## ratio of variances 
##           1.776454

test de variance: accepté

t.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Atelectasie_RT, var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_LC13_3_vs_1 by BP_C$Atelectasie_RT
## t = 0.44233, df = 12.718, p-value = 0.6657
## alternative hypothesis: true difference in means between group Absent and group Présent is not equal to 0
## 95 percent confidence interval:
##  -17.67487  26.75037
## sample estimates:
##  mean in group Absent mean in group Présent 
##              13.65875               9.12100

significativité: Non

Atélectasie /total LC_13 V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Atelectasie_RT=="Absent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_2[BP_C$Atelectasie_RT == "Absent"]
## W = 0.93505, p-value = 0.5946
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Atelectasie_RT=="Présent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_2[BP_C$Atelectasie_RT == "Présent"]
## W = 0.89769, p-value = 0.2754

la normalité: Absent acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Atelectasie_RT)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_3_vs_2 by BP_C$Atelectasie_RT
## F = 0.38482, num df = 6, denom df = 7, p-value = 0.2651
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.07518012 2.19171226
## sample estimates:
## ratio of variances 
##          0.3848167

test de variance: accepté

t.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Atelectasie_RT, var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_LC13_3_vs_2 by BP_C$Atelectasie_RT
## t = -0.58898, df = 11.839, p-value = 0.5669
## alternative hypothesis: true difference in means between group Absent and group Présent is not equal to 0
## 95 percent confidence interval:
##  -33.26092  19.12200
## sample estimates:
##  mean in group Absent mean in group Présent 
##             -1.455714              5.613750

significativité: Non

Atélectasie /total LC_13 V2- V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Atelectasie_RT=="Absent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_2_vs_1[BP_C$Atelectasie_RT == "Absent"]
## W = 0.86623, p-value = 0.112
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Atelectasie_RT=="Présent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_2_vs_1[BP_C$Atelectasie_RT == "Présent"]
## W = 0.85743, p-value = 0.05333

la normalité: acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Atelectasie_RT)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_2_vs_1 by BP_C$Atelectasie_RT
## F = 0.53349, num df = 8, denom df = 10, p-value = 0.385
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1383928 2.2914033
## sample estimates:
## ratio of variances 
##          0.5334891

test de variance: accepté

t.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Atelectasie_RT,test.var=FALSE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_LC13_2_vs_1 by BP_C$Atelectasie_RT
## t = 0.77394, df = 17.821, p-value = 0.4491
## alternative hypothesis: true difference in means between group Absent and group Présent is not equal to 0
## 95 percent confidence interval:
##  -15.49737  33.55414
## sample estimates:
##  mean in group Absent mean in group Présent 
##             12.141111              3.112727

significativité: Non

Sexe

Sexe /Dyspnée QLQ30 V3-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Sexe=="Homme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Sexe == "Homme"]
## W = 0.88659, p-value = 0.126
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Sexe=="Femme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Sexe == "Femme"]
## W = 0.85856, p-value = 0.1469

la normalité: non acceptée -> test de S

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Sexe)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Sexe
## F = 0.53417, num df = 6, denom df = 10, p-value = 0.4572
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1311766 2.9172672
## sample estimates:
## ratio of variances 
##          0.5341685

test de variance: accepté

wilcox.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Sexe,vartest=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Sexe
## W = 36.5, p-value = 0.8883
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Sexe /QLQ30 _Dyspnée V3-V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Sexe=="Homme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Sexe == "Homme"]
## W = 0.76266, p-value = 0.007599
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Sexe=="Femme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Sexe == "Femme"]
## W = 0.95138, p-value = 0.7515

la normalité:non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Sexe)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Sexe
## F = 1.5429, num df = 5, denom df = 8, p-value = 0.5572
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.3202784 10.4254338
## sample estimates:
## ratio of variances 
##           1.542869

test de variance: accepté

wilcox.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Sexe, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Sexe
## W = 35, p-value = 0.3362
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Sexe /Dyspnée_ QLQ V2- V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Sexe=="Homme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Sexe == "Homme"]
## W = 0.93131, p-value = 0.3942
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Sexe=="Femme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Sexe == "Femme"]
## W = 0.77983, p-value = 0.01735

la normalité: acceptée -> test de W

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Sexe)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Sexe
## F = 1.1947, num df = 7, denom df = 11, p-value = 0.7598
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.3178475 5.6262789
## sample estimates:
## ratio of variances 
##           1.194674

test de variance: acceptée

wilcox.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Sexe,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Sexe
## W = 32.5, p-value = 0.2315
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Sexe /Dyspnée LC_13 V3-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Sexe=="Homme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Sexe == "Homme"]
## W = 0.93796, p-value = 0.4969
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Sexe=="Femme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Sexe == "Femme"]
## W = 0.90685, p-value = 0.3745

la normalité: acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Sexe)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Sexe
## F = 0.53172, num df = 6, denom df = 10, p-value = 0.4538
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1305755 2.9038992
## sample estimates:
## ratio of variances 
##          0.5317208

test de variance: acceptée

t.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Sexe,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Sexe
## t = 0.050703, df = 15.573, p-value = 0.9602
## alternative hypothesis: true difference in means between group Femme and group Homme is not equal to 0
## 95 percent confidence interval:
##  -38.31678  40.19029
## sample estimates:
## mean in group Femme mean in group Homme 
##           -23.81143           -24.74818

significativité: Non

Sexe / LC_13 Dyspnée V3-V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Sexe=="Homme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Sexe == "Homme"]
## W = 0.96654, p-value = 0.8636
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Sexe=="Femme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Sexe == "Femme"]
## W = 0.88053, p-value = 0.2715

la normalité: rejetée -> test de S

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Sexe)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Sexe
## F = 0.42528, num df = 5, denom df = 8, p-value = 0.3613
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.08828318 2.87371991
## sample estimates:
## ratio of variances 
##          0.4252844

test de variance: accepté

t.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Sexe, var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Sexe
## t = 0.78735, df = 12.999, p-value = 0.4452
## alternative hypothesis: true difference in means between group Femme and group Homme is not equal to 0
## 95 percent confidence interval:
##  -25.82986  55.45319
## sample estimates:
## mean in group Femme mean in group Homme 
##           16.665000            1.853333

significativité: Non

Sexe /LC Dyspnée V2- V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Sexe=="Homme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Sexe == "Homme"]
## W = 0.93734, p-value = 0.4644
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Sexe=="Femme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Sexe == "Femme"]
## W = 0.8908, p-value = 0.2381

la normalité: acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Sexe)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Sexe
## F = 0.57527, num df = 7, denom df = 11, p-value = 0.4746
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1530515 2.7091947
## sample estimates:
## ratio of variances 
##          0.5752653

test de variance: accepté

t.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Sexe,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Sexe
## t = -0.50822, df = 17.591, p-value = 0.6176
## alternative hypothesis: true difference in means between group Femme and group Homme is not equal to 0
## 95 percent confidence interval:
##  -49.97660  30.53327
## sample estimates:
## mean in group Femme mean in group Homme 
##           -43.05500           -33.33333

significativité:Non

Sexe / total QLQ30 V3-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Sexe=="Homme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1[BP_C$Sexe == "Homme"]
## W = 0.82919, p-value = 0.02278
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Sexe=="Femme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1[BP_C$Sexe == "Femme"]
## W = 0.90582, p-value = 0.3677

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Sexe)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_3_vs_1 by BP_C$Sexe
## F = 0.58264, num df = 6, denom df = 10, p-value = 0.5251
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.143079 3.181966
## sample estimates:
## ratio of variances 
##          0.5826365

test de variance: accepté

wilcox.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Sexe,var.test=TRUE)
## 
##  Wilcoxon rank sum exact test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1 by BP_C$Sexe
## W = 41, p-value = 0.8601
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Sexe /Dyspnée V3-V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Sexe=="Homme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2[BP_C$Sexe == "Homme"]
## W = 0.93595, p-value = 0.54
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Sexe=="Femme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2[BP_C$Sexe == "Femme"]
## W = 0.75039, p-value = 0.0201

la normalité: acceptée -> wilcox test

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Sexe)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_3_vs_2 by BP_C$Sexe
## F = 0.36035, num df = 5, denom df = 8, p-value = 0.2759
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.07480451 2.43497355
## sample estimates:
## ratio of variances 
##          0.3603539

test de variance: accepté

t.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Sexe)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_3_vs_2 by BP_C$Sexe
## t = -0.77635, df = 12.938, p-value = 0.4515
## alternative hypothesis: true difference in means between group Femme and group Homme is not equal to 0
## 95 percent confidence interval:
##  -38.43799  18.12244
## sample estimates:
## mean in group Femme mean in group Homme 
##           -7.293333            2.864444

significativité: non

Sexe /total QLQ_30 V2_V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Sexe=="Homme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1[BP_C$Sexe == "Homme"]
## W = 0.90426, p-value = 0.18
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Sexe=="Femme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1[BP_C$Sexe == "Femme"]
## W = 0.9373, p-value = 0.5847

la normalité: non acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Sexe)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_QLC30_2_vs_1 by BP_C$Sexe
## F = 1.6416, num df = 7, denom df = 11, p-value = 0.4439
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.4367521 7.7310330
## sample estimates:
## ratio of variances 
##           1.641593

test de variance: accepté

t.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Sexe,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1 by BP_C$Sexe
## t = 1.6572, df = 12.525, p-value = 0.1223
## alternative hypothesis: true difference in means between group Femme and group Homme is not equal to 0
## 95 percent confidence interval:
##  -5.029103 37.619103
## sample estimates:
## mean in group Femme mean in group Homme 
##             26.7075             10.4125

significativité: Non

Sexe /total LC_13 V3-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Sexe=="Homme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_1[BP_C$Sexe == "Homme"]
## W = 0.78122, p-value = 0.005328
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Sexe=="Femme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_1[BP_C$Sexe == "Femme"]
## W = 0.89287, p-value = 0.2899

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Sexe)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_3_vs_1 by BP_C$Sexe
## F = 3.1656, num df = 6, denom df = 10, p-value = 0.1046
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.7773768 17.2882603
## sample estimates:
## ratio of variances 
##           3.165581

test de variance: accepté

wilcox.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Sexe, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_total_LC13_3_vs_1 by BP_C$Sexe
## W = 55, p-value = 0.1467
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Sexe /total LC_13 V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Sexe=="Homme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_2[BP_C$Sexe == "Homme"]
## W = 0.89517, p-value = 0.2253
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Sexe=="Femme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_2[BP_C$Sexe == "Femme"]
## W = 0.98107, p-value = 0.9567

la normalité: Homme acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Sexe)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_3_vs_2 by BP_C$Sexe
## F = 0.41469, num df = 5, denom df = 8, p-value = 0.3472
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.08608476 2.80215887
## sample estimates:
## ratio of variances 
##           0.414694

test de variance: accepté

t.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Sexe, var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_total_LC13_3_vs_2 by BP_C$Sexe
## t = -1.0232, df = 13, p-value = 0.3249
## alternative hypothesis: true difference in means between group Femme and group Homme is not equal to 0
## 95 percent confidence interval:
##  -36.02161  12.86717
## sample estimates:
## mean in group Femme mean in group Homme 
##           -4.631667            6.945556

significativité: Non

Sexe /total LC_13 V2- V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Sexe=="Homme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_2_vs_1[BP_C$Sexe == "Homme"]
## W = 0.68473, p-value = 0.000603
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Sexe=="Femme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_2_vs_1[BP_C$Sexe == "Femme"]
## W = 0.92896, p-value = 0.5066

la normalité: non acceptée -> test de wilcox

Evaluation de l’égalité des variances

var.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Sexe)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_total_LC13_2_vs_1 by BP_C$Sexe
## F = 1.9443, num df = 7, denom df = 11, p-value = 0.3118
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.5172754 9.1563907
## sample estimates:
## ratio of variances 
##           1.944251

test de variance: accepté

wilcox.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Sexe,test.var=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_total_LC13_2_vs_1 by BP_C$Sexe
## W = 78.5, p-value = 0.02049
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade à l’inclusion toux et hemoptysie

Stade à l’inclusion/ hémoptysie V3-V1

Stade IIIA/ hémoptysie V3-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_IIIA=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_IIIA == "Non"]
## W = 0.79888, p-value = 0.009099
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_IIIA=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_IIIA == "Oui"]
## W = 0.66578, p-value = 0.002641

la normalité: non acceptée -> Wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Stade_IIIA)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_3_vs_1 by BP_C$Stade_IIIA
## F = 0.99166, num df = 11, denom df = 5, p-value = 0.9143
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1509874 4.0102623
## sample estimates:
## ratio of variances 
##          0.9916578

test de variance: accepté

wilcox.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Stade_IIIA, var.equal=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_3_vs_1 by BP_C$Stade_IIIA
## W = 49.5, p-value = 0.1962
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade IIIB/ hémoptysie V3-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_IIIB=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_IIIB == "Non"]
## W = 0.80604, p-value = 0.01098
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_IIIB=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_IIIB == "Oui"]
## W = 0.82162, p-value = 0.09114

la normalité: non acceptée -> test de wilcoxon sera realisé

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Stade_IIIB)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_3_vs_1 by BP_C$Stade_IIIB
## F = 2.5913, num df = 11, denom df = 5, p-value = 0.3033
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.3945478 10.4792864
## sample estimates:
## ratio of variances 
##           2.591318

test de variance:accepté

wilcox.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Stade_IIIB,var.test=FALSE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_3_vs_1 by BP_C$Stade_IIIB
## W = 22, p-value = 0.1796
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade IV/ hémoptysie V3-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_IV == "Non"]
## W = 0.80843, p-value = 0.0117
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_IV == "Oui"]
## W = 0.86625, p-value = 0.2116

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Stade_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_3_vs_1 by BP_C$Stade_IV
## F = 0.54812, num df = 11, denom df = 5, p-value = 0.3771
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.08345528 2.21659283
## sample estimates:
## ratio of variances 
##          0.5481191

test de variance: acceptée

wilcox.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Stade_IV,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_3_vs_1 by BP_C$Stade_IV
## W = 36.5, p-value = 1
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade à l’inclusion/Dyspnée V3-V2

Stade IIIA/ hémoptysie V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_IIIA=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_IIIA == "Non"]
## W = 0.80615, p-value = 0.01101
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_IIIA=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_IIIA == "Oui"]
## W = 0.75, p-value < 2.2e-16

la normalité: non acceptée -> wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Stade_IIIA)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_3_vs_2 by BP_C$Stade_IIIA
## F = 2.796, num df = 11, denom df = 2, p-value = 0.5857
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.07095246 14.69561037
## sample estimates:
## ratio of variances 
##           2.796027

test de variance: accepté

wilcox.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Stade_IIIA, var.equal=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_3_vs_2 by BP_C$Stade_IIIA
## W = 24, p-value = 0.3677
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade IIIB/ hémoptysie V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_IIIB=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_IIIB == "Non"]
## W = 0.72819, p-value = 0.003025
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_IIIB=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_IIIB == "Oui"]
## W = 0.91545, p-value = 0.4732

la normalité: acceptée -> wilcox. test

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Stade_IIIB)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_3_vs_2 by BP_C$Stade_IIIB
## F = 0.70313, num df = 8, denom df = 5, p-value = 0.6256
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1040574 3.3871892
## sample estimates:
## ratio of variances 
##          0.7031338

test de variance: accepté

wilcox.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Stade_IIIB,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_3_vs_2 by BP_C$Stade_IIIB
## W = 21.5, p-value = 0.5038
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade IV/hémoptysie V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_IV == "Non"]
## W = 0.8463, p-value = 0.06783
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_IV == "Oui"]
## W = 0.76978, p-value = 0.0309

la normalité: acceptée -> wilcox

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Stade_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_3_vs_2 by BP_C$Stade_IV
## F = 0.89075, num df = 8, denom df = 5, p-value = 0.8401
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1318227 4.2909806
## sample estimates:
## ratio of variances 
##          0.8907484

test de variance: accepté

wilcox.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Stade_IV,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_3_vs_2 by BP_C$Stade_IV
## W = 26.5, p-value = 1
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade à l’inclusion/ hémoptysie V2- V1

Stade IIIA/ hémoptysie V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_IIIA=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_IIIA == "Non"]
## W = 0.88034, p-value = 0.03928
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_IIIA=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_IIIA == "Oui"]
## W = 0.97136, p-value = 0.8499

la normalité: rejetée -> wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Stade_IIIA)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_2_vs_1 by BP_C$Stade_IIIA
## F = 0.40571, num df = 15, denom df = 3, p-value = 0.2046
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.02846546 1.68483402
## sample estimates:
## ratio of variances 
##            0.40571

test de variance: accepté

wilcox.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Stade_IIIA, var.equal=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_2_vs_1 by BP_C$Stade_IIIA
## W = 35.5, p-value = 0.7668
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade IIIB/ hémoptysie V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_IIIB=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_IIIB == "Non"]
## W = 0.89548, p-value = 0.1387
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_IIIB=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_IIIB == "Oui"]
## W = 0.81042, p-value = 0.03697

la normalité: non acceptée -> test de wilcoxon sera realisé

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Stade_IIIB)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_2_vs_1 by BP_C$Stade_IIIB
## F = 5.0179, num df = 11, denom df = 7, p-value = 0.0421
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   1.065497 18.860562
## sample estimates:
## ratio of variances 
##           5.017925

test de variance: non accepté

wilcox.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Stade_IIIB,var.test=FALSE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_2_vs_1 by BP_C$Stade_IIIB
## W = 39, p-value = 0.4926
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade IV/ hémoptysie V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_IV == "Non"]
## W = 0.83298, p-value = 0.02277
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_IV == "Oui"]
## W = 0.93443, p-value = 0.5573

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Stade_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_2_vs_1 by BP_C$Stade_IV
## F = 0.58092, num df = 11, denom df = 7, p-value = 0.404
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1233523 2.1834821
## sample estimates:
## ratio of variances 
##          0.5809238

test de variance: acceptée

wilcox.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Stade_IV,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_2_vs_1 by BP_C$Stade_IV
## W = 53.5, p-value = 0.6865
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade à l’inclusion/Toux V3-V1

Stade IIIA/Toux V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Stade_IIIA=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_1[BP_C$Stade_IIIA == "Non"]
## W = 0.90457, p-value = 0.1817
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Stade_IIIA=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_1[BP_C$Stade_IIIA == "Oui"]
## W = 0.77516, p-value = 0.03473

la normalité: rejetée -> Wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_3_vs_1~BP_C$Stade_IIIA)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_3_vs_1 by BP_C$Stade_IIIA
## F = 1.4732, num df = 11, denom df = 5, p-value = 0.7026
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.2242987 5.9574289
## sample estimates:
## ratio of variances 
##           1.473153

test de variance: accepté

wilcox.test(BP_C$Del_toux_3_vs_1~BP_C$Stade_IIIA, var.equal=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_toux_3_vs_1 by BP_C$Stade_IIIA
## W = 46.5, p-value = 0.3327
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade IIIB/Toux V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Stade_IIIB=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_1[BP_C$Stade_IIIB == "Non"]
## W = 0.89138, p-value = 0.1228
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Stade_IIIB=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_1[BP_C$Stade_IIIB == "Oui"]
## W = 0.96005, p-value = 0.8201

la normalité: acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_3_vs_1~BP_C$Stade_IIIB)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_3_vs_1 by BP_C$Stade_IIIB
## F = 0.79894, num df = 11, denom df = 5, p-value = 0.7
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1216448 3.2309156
## sample estimates:
## ratio of variances 
##          0.7989409

test de variance: accepté

Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon

t.test(BP_C$Del_toux_3_vs_1~BP_C$Stade_IIIB)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_toux_3_vs_1 by BP_C$Stade_IIIB
## t = -2.6323, df = 9.1303, p-value = 0.02694
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -82.555320  -6.333014
## sample estimates:
## mean in group Non mean in group Oui 
##         -27.77750          16.66667

significativité: Oui

Stade IV/toux V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Stade_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_1[BP_C$Stade_IV == "Non"]
## W = 0.92919, p-value = 0.3717
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Stade_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_1[BP_C$Stade_IV == "Oui"]
## W = 0.76984, p-value = 0.03094

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_3_vs_1~BP_C$Stade_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_3_vs_1 by BP_C$Stade_IV
## F = 1.4735, num df = 11, denom df = 5, p-value = 0.7024
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.2243469 5.9587101
## sample estimates:
## ratio of variances 
##            1.47347

test de variance: acceptée

wilcox.test(BP_C$Del_toux_3_vs_1~BP_C$Stade_IV,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_toux_3_vs_1 by BP_C$Stade_IV
## W = 49, p-value = 0.226
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade à l’inclusion/toux V3-V2

Stade IIIA/Toux V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Stade_IIIA=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_2[BP_C$Stade_IIIA == "Non"]
## W = 0.88134, p-value = 0.07436
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Stade_IIIA=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_2[BP_C$Stade_IIIA == "Oui"]
## W = 0.75, p-value < 2.2e-16

la normalité: non acceptée -> wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_3_vs_2~BP_C$Stade_IIIA)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_3_vs_2 by BP_C$Stade_IIIA
## F = 7.0784, num df = 12, denom df = 2, p-value = 0.2607
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.1795888 36.0707050
## sample estimates:
## ratio of variances 
##           7.078423

test de variance: accepté

wilcox.test(BP_C$Del_toux_3_vs_2~BP_C$Stade_IIIA, var.equal=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_toux_3_vs_2 by BP_C$Stade_IIIA
## W = 14.5, p-value = 0.5164
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade IIIB/Toux V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Stade_IIIB=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_2[BP_C$Stade_IIIB == "Non"]
## W = 0.71765, p-value = 0.00228
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Stade_IIIB=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_2[BP_C$Stade_IIIB == "Oui"]
## W = 0.92025, p-value = 0.4714

la normalité: non acceptée -> wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_3_vs_2~BP_C$Stade_IIIB)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_3_vs_2 by BP_C$Stade_IIIB
## F = 0.3977, num df = 8, denom df = 6, p-value = 0.2274
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.07102338 1.84999854
## sample estimates:
## ratio of variances 
##          0.3977041

test de variance: accepté

wilcox.test(BP_C$Del_toux_3_vs_2~BP_C$Stade_IIIB, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_toux_3_vs_2 by BP_C$Stade_IIIB
## W = 24.5, p-value = 0.4609
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade IV/touxV3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Stade_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_2[BP_C$Stade_IV == "Non"]
## W = 0.89684, p-value = 0.2022
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Stade_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_2[BP_C$Stade_IV == "Oui"]
## W = 0.66578, p-value = 0.002641

la normalité: non acceptée -> wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_3_vs_2~BP_C$Stade_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_3_vs_2 by BP_C$Stade_IV
## F = 1.4849, num df = 9, denom df = 5, p-value = 0.6917
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.2222515 6.6587862
## sample estimates:
## ratio of variances 
##           1.484874

test de variance: accepté

wilcox.test(BP_C$Del_toux_3_vs_2~BP_C$Stade_IV,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_toux_3_vs_2 by BP_C$Stade_IV
## W = 42, p-value = 0.1813
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade à l’inclusion/Toux V2- V1

Stade IIIA/TouxV2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Stade_IIIA=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_2_vs_1[BP_C$Stade_IIIA == "Non"]
## W = 0.90945, p-value = 0.114
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Stade_IIIA=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_2_vs_1[BP_C$Stade_IIIA == "Oui"]
## W = 0.94466, p-value = 0.683

la normalité: accepté

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_2_vs_1~BP_C$Stade_IIIA)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_2_vs_1 by BP_C$Stade_IIIA
## F = 1.9436, num df = 15, denom df = 3, p-value = 0.643
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1363677 8.0714288
## sample estimates:
## ratio of variances 
##           1.943609

test de variance: accepté

t.test(BP_C$Del_toux_2_vs_1~BP_C$Stade_IIIA, var.equal=TRUE)
## 
##  Two Sample t-test
## 
## data:  BP_C$Del_toux_2_vs_1 by BP_C$Stade_IIIA
## t = 1.1269, df = 18, p-value = 0.2746
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -19.80838  65.63963
## sample estimates:
## mean in group Non mean in group Oui 
##         -10.41688         -33.33250

significativité: Non

Stade IIIB/Toux V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Stade_IIIB=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_2_vs_1[BP_C$Stade_IIIB == "Non"]
## W = 0.90274, p-value = 0.1721
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Stade_IIIB=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_2_vs_1[BP_C$Stade_IIIB == "Oui"]
## W = 0.82602, p-value = 0.05397

la normalité: acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_2_vs_1~BP_C$Stade_IIIB)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_2_vs_1 by BP_C$Stade_IIIB
## F = 1.9574, num df = 11, denom df = 7, p-value = 0.3825
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.4156309 7.3571616
## sample estimates:
## ratio of variances 
##           1.957401

test de variance: accepté

t.test(BP_C$Del_toux_2_vs_1~BP_C$Stade_IIIB,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_toux_2_vs_1 by BP_C$Stade_IIIB
## t = -0.70055, df = 17.848, p-value = 0.4926
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -44.45061  22.22978
## sample estimates:
## mean in group Non mean in group Oui 
##         -19.44417          -8.33375

significativité: Non

Stade IV/toux V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Stade_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_2_vs_1[BP_C$Stade_IV == "Non"]
## W = 0.86692, p-value = 0.05974
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Stade_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_2_vs_1[BP_C$Stade_IV == "Oui"]
## W = 0.93445, p-value = 0.5574

la normalité: non acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_2_vs_1~BP_C$Stade_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_2_vs_1 by BP_C$Stade_IV
## F = 0.41276, num df = 11, denom df = 7, p-value = 0.1832
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.08764438 1.55140999
## sample estimates:
## ratio of variances 
##          0.4127586

test de variance: acceptée

t.test(BP_C$Del_toux_2_vs_1~BP_C$Stade_IV,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_toux_2_vs_1 by BP_C$Stade_IV
## t = -0.22238, df = 10.859, p-value = 0.8281
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -45.47138  37.13805
## sample estimates:
## mean in group Non mean in group Oui 
##         -16.66667         -12.50000

significativité: Non

Stade NYHA à l’inclusion

Stade à l’inclusion/ hémoptysie V3-V1

Stade dyspnée II/ hémoptysie V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_.dyspnee_II=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.75846, p-value = 0.002681
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_.dyspnee_II=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.8959, p-value = 0.3069

la normalité: acceptée -> wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Stade_.dyspnee_II)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_3_vs_1 by BP_C$Stade_.dyspnee_II
## F = 0.6612, num df = 10, denom df = 6, p-value = 0.5365
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1210695 2.6924918
## sample estimates:
## ratio of variances 
##          0.6611997

test de variance: accepté

wilcox.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_3_vs_1 by BP_C$Stade_.dyspnee_II
## W = 44.5, p-value = 0.597
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade dys III/ hémoptysie V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_.dyspnee_III=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.79888, p-value = 0.009099
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_.dyspnee_III=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.66578, p-value = 0.002641

la normalité: non acceptée -> test de wilcoxon sera realisé

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Stade_.dyspnee_III)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_3_vs_1 by BP_C$Stade_.dyspnee_III
## F = 0.99166, num df = 11, denom df = 5, p-value = 0.9143
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1509874 4.0102623
## sample estimates:
## ratio of variances 
##          0.9916578

test de variance: non accepté

Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon

t.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Stade_.dyspnee_III)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1 by BP_C$Stade_.dyspnee_III
## t = 1.1024, df = 10.063, p-value = 0.2959
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -22.65181  67.09348
## sample estimates:
## mean in group Non mean in group Oui 
##     -8.333333e-04     -2.222167e+01

significativité: Non

Stade dyspnée IV/ hémoptysie V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_.dyspnee_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.83019, p-value = 0.01593
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_.dyspnee_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.68403, p-value = 0.00647

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Stade_.dyspnee_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_3_vs_1 by BP_C$Stade_.dyspnee_IV
## F = 5.3427, num df = 12, denom df = 4, p-value = 0.1189
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.6105135 22.0183853
## sample estimates:
## ratio of variances 
##           5.342701

test de variance: acceptée

wilcox.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Stade_.dyspnee_IV)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_3_vs_1 by BP_C$Stade_.dyspnee_IV
## W = 13, p-value = 0.04681
## alternative hypothesis: true location shift is not equal to 0

significativité: Oui

Stade Dyspnée NYHA l’inclusion/ hémoptysie V3-V2

Stade dys II / hémoptysie V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_.dyspnee_II=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.81042, p-value = 0.03697
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_.dyspnee_II=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.79428, p-value = 0.03594

la normalité: non acceptée -> wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Stade_.dyspnee_II)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_3_vs_2 by BP_C$Stade_.dyspnee_II
## F = 0.31937, num df = 7, denom df = 6, p-value = 0.1611
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.05607375 1.63470759
## sample estimates:
## ratio of variances 
##          0.3193664

test de variance: accepté

wilcox.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_3_vs_2 by BP_C$Stade_.dyspnee_II
## W = 21, p-value = 0.3934
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade dys III / hémoptysie V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_.dyspnee_III=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.80615, p-value = 0.01101
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_.dyspnee_III=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.75, p-value < 2.2e-16

la normalité: acceptée -> wilcox

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Stade_.dyspnee_III)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_3_vs_2 by BP_C$Stade_.dyspnee_III
## F = 2.796, num df = 11, denom df = 2, p-value = 0.5857
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.07095246 14.69561037
## sample estimates:
## ratio of variances 
##           2.796027

test de variance: non accepté

wilcox.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Stade_.dyspnee_III)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_3_vs_2 by BP_C$Stade_.dyspnee_III
## W = 24, p-value = 0.3677
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade dys IV/ hémoptysie V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_.dyspnee_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.76389, p-value = 0.005269
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_.dyspnee_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.88349, p-value = 0.3254

la normalité: acceptée -> wilcox

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Stade_.dyspnee_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_3_vs_2 by BP_C$Stade_.dyspnee_IV
## F = 2.1338, num df = 9, denom df = 4, p-value = 0.4842
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.2396283 10.0674991
## sample estimates:
## ratio of variances 
##           2.133813

test de variance: accepté

wilcox.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Stade_.dyspnee_IV,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_3_vs_2 by BP_C$Stade_.dyspnee_IV
## W = 26, p-value = 0.9446
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade dyspnée NYHA à l’inclusion/ hémoptysie V2- V1

Stade dys II hémoptysie V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_.dyspnee_II=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.82399, p-value = 0.01779
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_.dyspnee_II=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.77385, p-value = 0.01493

la normalité: accepté -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Stade_.dyspnee_II)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_2_vs_1 by BP_C$Stade_.dyspnee_II
## F = 1.6352, num df = 11, denom df = 7, p-value = 0.5271
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.347219 6.146191
## sample estimates:
## ratio of variances 
##           1.635218

test de variance: accepté

wilcox.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_2_vs_1 by BP_C$Stade_.dyspnee_II
## W = 69, p-value = 0.09797
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade dys III / hémoptysie V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_.dyspnee_III=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.89752, p-value = 0.07336
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_.dyspnee_III=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.83969, p-value = 0.1945

la normalité: acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Stade_.dyspnee_III)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_2_vs_1 by BP_C$Stade_.dyspnee_III
## F = 0.3986, num df = 15, denom df = 3, p-value = 0.1966
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.02796659 1.65530635
## sample estimates:
## ratio of variances 
##          0.3985997

test de variance: accepté

t.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Stade_.dyspnee_III)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1 by BP_C$Stade_.dyspnee_III
## t = 0.068857, df = 3.6205, p-value = 0.9487
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -85.55294  89.72169
## sample estimates:
## mean in group Non mean in group Oui 
##         -14.58312         -16.66750

significativité: Non

Stade dys IV/ hémoptysie V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_.dyspnee_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.8441, p-value = 0.03107
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_.dyspnee_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.85994, p-value = 0.1199

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Stade_.dyspnee_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_2_vs_1 by BP_C$Stade_.dyspnee_IV
## F = 1.2926, num df = 11, denom df = 7, p-value = 0.7568
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.2744756 4.8585451
## sample estimates:
## ratio of variances 
##           1.292635

test de variance: acceptée

wilcox.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Stade_.dyspnee_IV,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_2_vs_1 by BP_C$Stade_.dyspnee_IV
## W = 30, p-value = 0.1578
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade dyspnée NYHA à l’inclusion/Toux V3-V1

Stade dys II Toux V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Stade_.dyspnee_II=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_1[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.78484, p-value = 0.005943
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Stade_.dyspnee_II=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_1[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.80655, p-value = 0.04753

la normalité:acceptée -> wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_3_vs_1~BP_C$Stade_.dyspnee_II)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_3_vs_1 by BP_C$Stade_.dyspnee_II
## F = 0.48603, num df = 10, denom df = 6, p-value = 0.2995
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.08899542 1.97918930
## sample estimates:
## ratio of variances 
##          0.4860328

test de variance: accepté

wilcox.test(BP_C$Del_toux_3_vs_1~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_toux_3_vs_1 by BP_C$Stade_.dyspnee_II
## W = 19.5, p-value = 0.08314
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade dys III /Toux V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Stade_.dyspnee_III=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_1[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.85809, p-value = 0.04627
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Stade_.dyspnee_III=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_1[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.63989, p-value = 0.001351

la normalité: acceptée -> Wilcox

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_3_vs_1~BP_C$Stade_.dyspnee_III)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_3_vs_1 by BP_C$Stade_.dyspnee_III
## F = 1.3847, num df = 11, denom df = 5, p-value = 0.7588
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.2108359 5.5998548
## sample estimates:
## ratio of variances 
##           1.384732

test de variance: accepté

wilcox.test(BP_C$Del_toux_3_vs_1~BP_C$Stade_.dyspnee_III,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_toux_3_vs_1 by BP_C$Stade_.dyspnee_III
## W = 41, p-value = 0.6629
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade dys IV/TOUX V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Stade_.dyspnee_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_1[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.93848, p-value = 0.4376
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Stade_.dyspnee_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_1[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.88349, p-value = 0.3254

la normalité: non acceptée -> Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_3_vs_1~BP_C$Stade_.dyspnee_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_3_vs_1 by BP_C$Stade_.dyspnee_IV
## F = 2.9484, num df = 12, denom df = 4, p-value = 0.3072
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.3369174 12.1510455
## sample estimates:
## ratio of variances 
##           2.948418

test de variance: acceptée

t.test(BP_C$Del_toux_3_vs_1~BP_C$Stade_.dyspnee_IV,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_toux_3_vs_1 by BP_C$Stade_.dyspnee_IV
## t = 1.8315, df = 12.75, p-value = 0.09048
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -5.130751 61.537828
## sample estimates:
## mean in group Non mean in group Oui 
##         -5.128462        -33.332000

significativité: Non

Stade NYHA à l’inclusion/ TOUX V3-V2

Stade dys II/toux V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Stade_.dyspnee_II=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_2[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.86653, p-value = 0.1128
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Stade_.dyspnee_II=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_2[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.93222, p-value = 0.5699

la normalité: acceptée -> t.test

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_3_vs_2~BP_C$Stade_.dyspnee_II)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_3_vs_2 by BP_C$Stade_.dyspnee_II
## F = 0.7516, num df = 8, denom df = 6, p-value = 0.6895
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1342237 3.4962248
## sample estimates:
## ratio of variances 
##          0.7516022

test de variance: accepté

t.test(BP_C$Del_toux_3_vs_2~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
## 
##  Two Sample t-test
## 
## data:  BP_C$Del_toux_3_vs_2 by BP_C$Stade_.dyspnee_II
## t = 0.043212, df = 14, p-value = 0.9661
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -51.45933  53.57552
## sample estimates:
## mean in group Non mean in group Oui 
##         -3.703333         -4.761429

significativité: Non

Stade dys III /Dyspnée V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Stade_.dyspnee_III=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_2[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.88134, p-value = 0.07436
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Stade_.dyspnee_III=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_2[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.75, p-value < 2.2e-16

la normalité: acceptée -> wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_3_vs_2~BP_C$Stade_.dyspnee_III)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_3_vs_2 by BP_C$Stade_.dyspnee_III
## F = 7.0784, num df = 12, denom df = 2, p-value = 0.2607
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.1795888 36.0707050
## sample estimates:
## ratio of variances 
##           7.078423

test de variance: accepté

t.test(BP_C$Del_toux_3_vs_2~BP_C$Stade_.dyspnee_III, var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_toux_3_vs_2 by BP_C$Stade_.dyspnee_III
## t = -1.0428, df = 9.6009, p-value = 0.3226
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -59.20089  21.59782
## sample estimates:
## mean in group Non mean in group Oui 
##         -7.691538         11.110000

significativité: Non

Stade dys IV/TouxV3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Stade_.dyspnee_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_2[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.87463, p-value = 0.1131
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Stade_.dyspnee_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_2[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.91642, p-value = 0.48

la normalité: acceptée -> t.test ( test de student)

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_3_vs_2~BP_C$Stade_.dyspnee_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_3_vs_2 by BP_C$Stade_.dyspnee_IV
## F = 0.66664, num df = 9, denom df = 5, p-value = 0.562
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.09978091 2.98949544
## sample estimates:
## ratio of variances 
##          0.6666417

test de variance: accepté

wilcox.test(BP_C$Del_toux_3_vs_2~BP_C$Stade_.dyspnee_IV,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_toux_3_vs_2 by BP_C$Stade_.dyspnee_IV
## W = 35, p-value = 0.6009
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade NYHA à l’inclusion/Toux V2- V1

Stade II/Dyspnée V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Stade_.dyspnee_II=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_2_vs_1[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.81079, p-value = 0.01246
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Stade_.dyspnee_II=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_2_vs_1[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.90559, p-value = 0.324

la normalité: non acceptée

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_2_vs_1~BP_C$Stade_.dyspnee_II)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_2_vs_1 by BP_C$Stade_.dyspnee_II
## F = 0.86665, num df = 11, denom df = 7, p-value = 0.7981
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1840237 3.2574381
## sample estimates:
## ratio of variances 
##          0.8666539

test de variance: accepté

wilcox.test(BP_C$Del_toux_2_vs_1~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_toux_2_vs_1 by BP_C$Stade_.dyspnee_II
## W = 14, p-value = 0.006848
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stade dys III /TouxV2-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Stade_.dyspnee_III=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_2_vs_1[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.91919, p-value = 0.1637
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Stade_.dyspnee_III=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_2_vs_1[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.86337, p-value = 0.2725

la normalité: non acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_2_vs_1~BP_C$Stade_.dyspnee_III)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_2_vs_1 by BP_C$Stade_.dyspnee_III
## F = 1.2362, num df = 15, denom df = 3, p-value = 0.9831
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.08673507 5.13373758
## sample estimates:
## ratio of variances 
##            1.23621

test de variance: accepté

Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon

t.test(BP_C$Del_toux_2_vs_1~BP_C$Stade_.dyspnee_III, var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_toux_2_vs_1 by BP_C$Stade_.dyspnee_III
## t = 1.8257, df = 5.0445, p-value = 0.127
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -13.47588  80.14463
## sample estimates:
## mean in group Non mean in group Oui 
##         -8.333125        -41.667500

significativité: Non

Stade dys IV/Toux V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Stade_.dyspnee_IV=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_2_vs_1[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.92919, p-value = 0.3717
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Stade_.dyspnee_IV=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_2_vs_1[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.83521, p-value = 0.06723

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_2_vs_1~BP_C$Stade_.dyspnee_IV)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_2_vs_1 by BP_C$Stade_.dyspnee_IV
## F = 2.045, num df = 11, denom df = 7, p-value = 0.3519
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.4342222 7.6862514
## sample estimates:
## ratio of variances 
##           2.044957

test de variance: acceptée

wilcox.test(BP_C$Del_toux_2_vs_1~BP_C$Stade_.dyspnee_IV,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_toux_2_vs_1 by BP_C$Stade_.dyspnee_IV
## W = 65.5, p-value = 0.17
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Histo à l’inclusion à l’inclusion

Histo l’inclusion/Dyspnée hémoptysie V3-V1

Histo ADK / hémoptysie V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Hist_ADK=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1[BP_C$Hist_ADK == "Non"]
## W = 0.7125, p-value = 0.001115
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Hist_ADK=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1[BP_C$Hist_ADK == "Oui"]
## W = 0.70126, p-value = 0.006373

la normalité: non acceptée -> test de wilcoxon sera realisé

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Hist_ADK)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_3_vs_1 by BP_C$Hist_ADK
## F = 0.34633, num df = 11, denom df = 5, p-value = 0.1326
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.05273102 1.40054888
## sample estimates:
## ratio of variances 
##          0.3463278

test de variance: accepté

wilcox.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Hist_ADK,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_3_vs_1 by BP_C$Hist_ADK
## W = 23.5, p-value = 0.2329
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Hist Epidermoide / hémoptysie V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Hist_Epiderm=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1[BP_C$Hist_Epiderm == "Non"]
## W = 0.74827, p-value = 0.0034
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Hist_Epiderm=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1[BP_C$Hist_Epiderm == "Oui"]
## W = 0.56594, p-value = 6.323e-05

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Hist_Epiderm)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_3_vs_1 by BP_C$Hist_Epiderm
## F = 12.239, num df = 9, denom df = 7, p-value = 0.003291
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   2.537472 51.366728
## sample estimates:
## ratio of variances 
##           12.23878

test de variance: rejetée

wilcox.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Hist_Epiderm,var.test=FALSE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_3_vs_1 by BP_C$Hist_Epiderm
## W = 51, p-value = 0.322
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Histo à l’inclusion/ hémoptysie V3-V2

ADK / hémoptysie V3-V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Hist_ADK=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_2[BP_C$Hist_ADK == "Non"]
## W = 0.76018, p-value = 0.007112
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Hist_ADK=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_2[BP_C$Hist_ADK == "Oui"]
## W = 0.70125, p-value = 0.006372

la normalité: rejetée -> wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Hist_ADK)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_3_vs_2 by BP_C$Hist_ADK
## F = 1.2301, num df = 8, denom df = 5, p-value = 0.8558
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.182039 5.925579
## sample estimates:
## ratio of variances 
##           1.230069

test de variance: accepté

wilcox.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Hist_ADK, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_3_vs_2 by BP_C$Hist_ADK
## W = 15.5, p-value = 0.1413
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Epidermoide / hémoptysie V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Hist_Epiderm=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_2[BP_C$Hist_Epiderm == "Non"]
## W = 0.62757, p-value = 0.0001181
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Hist_Epiderm=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_2[BP_C$Hist_Epiderm == "Oui"]
## W = 0.68403, p-value = 0.00647

la normalité: rejetée -> wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Hist_Epiderm)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_3_vs_2 by BP_C$Hist_Epiderm
## F = 2.4081, num df = 9, denom df = 4, p-value = 0.4123
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.2704279 11.3614830
## sample estimates:
## ratio of variances 
##           2.408074

test de variance: accepté

wilcox.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Hist_Epiderm,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_3_vs_2 by BP_C$Hist_Epiderm
## W = 43, p-value = 0.01502
## alternative hypothesis: true location shift is not equal to 0

significativité: Oui

Histo à l’inclusion/ hémoptysie V2- V1

ADK / hémoptysie V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Hist_ADK=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1[BP_C$Hist_ADK == "Non"]
## W = 0.82897, p-value = 0.03252
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Hist_ADK=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1[BP_C$Hist_ADK == "Oui"]
## W = 0.92973, p-value = 0.4452

la normalité: acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Hist_ADK)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_2_vs_1 by BP_C$Hist_ADK
## F = 0.84026, num df = 9, denom df = 9, p-value = 0.7997
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.208708 3.382871
## sample estimates:
## ratio of variances 
##          0.8402572

test de variance: accepté

wilcox.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Hist_ADK)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_2_vs_1 by BP_C$Hist_ADK
## W = 58, p-value = 0.5531
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Epidermoide / hémoptysie V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Hist_Epiderm=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1[BP_C$Hist_Epiderm == "Non"]
## W = 0.89504, p-value = 0.09557
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Hist_Epiderm=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1[BP_C$Hist_Epiderm == "Oui"]
## W = 0.86626, p-value = 0.2117

la normalité: non acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Hist_Epiderm)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_2_vs_1 by BP_C$Hist_Epiderm
## F = 2.8318, num df = 13, denom df = 5, p-value = 0.2576
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.43649 10.66633
## sample estimates:
## ratio of variances 
##           2.831763

test de variance: acceptée

t.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Hist_Epiderm,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1 by BP_C$Hist_Epiderm
## t = -1.9268, df = 15.64, p-value = 0.07237
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -61.731328   3.002757
## sample estimates:
## mean in group Non mean in group Oui 
##         -23.80929           5.55500

significativité: Non mais à la limite de la significativité

Histo à l’inclusion/ Toux V3-V1

ADK / Toux V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Hist_ADK=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_1[BP_C$Hist_ADK == "Non"]
## W = 0.93977, p-value = 0.4951
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Hist_ADK=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_1[BP_C$Hist_ADK == "Oui"]
## W = 0.91548, p-value = 0.4734

la normalité: acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_3_vs_1~BP_C$Hist_ADK)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_3_vs_1 by BP_C$Hist_ADK
## F = 1.385, num df = 11, denom df = 5, p-value = 0.7586
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.2108812 5.6010567
## sample estimates:
## ratio of variances 
##           1.385029

test de variance: accepté

t.test(BP_C$Del_toux_3_vs_1~BP_C$Hist_ADK,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_toux_3_vs_1 by BP_C$Hist_ADK
## t = 0.75959, df = 11.76, p-value = 0.4625
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -26.03975  53.81642
## sample estimates:
## mean in group Non mean in group Oui 
##         -8.333333        -22.221667

significativité: Non

Epidermoide /Toux V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Hist_Epiderm=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_1[BP_C$Hist_Epiderm == "Non"]
## W = 0.82581, p-value = 0.02979
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Hist_Epiderm=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_1[BP_C$Hist_Epiderm == "Oui"]
## W = 0.87745, p-value = 0.178

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_3_vs_1~BP_C$Hist_Epiderm)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_3_vs_1 by BP_C$Hist_Epiderm
## F = 0.68104, num df = 9, denom df = 7, p-value = 0.5788
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1412001 2.8583520
## sample estimates:
## ratio of variances 
##          0.6810389

test de variance: acceptée

wilcox.test(BP_C$Del_toux_3_vs_1~BP_C$Hist_Epiderm,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_toux_3_vs_1 by BP_C$Hist_Epiderm
## W = 39.5, p-value = 1
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Histo à l’inclusion/ Toux V3-V2

ADK /Toux V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Hist_ADK=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_2[BP_C$Hist_ADK == "Non"]
## W = 0.80675, p-value = 0.02438
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Hist_ADK=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_2[BP_C$Hist_ADK == "Oui"]
## W = 0.92394, p-value = 0.5006

la normalité:non acceptée -> wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_3_vs_2~BP_C$Hist_ADK)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_3_vs_2 by BP_C$Hist_ADK
## F = 0.81422, num df = 8, denom df = 6, p-value = 0.766
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1454066 3.7875131
## sample estimates:
## ratio of variances 
##          0.8142221

test de variance: accepté

wilcox.test(BP_C$Del_toux_3_vs_2~BP_C$Hist_ADK, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_toux_3_vs_2 by BP_C$Hist_ADK
## W = 41.5, p-value = 0.2812
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Epidermoide /toux V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Hist_Epiderm=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_2[BP_C$Hist_Epiderm == "Non"]
## W = 0.88918, p-value = 0.1358
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Hist_Epiderm=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_2[BP_C$Hist_Epiderm == "Oui"]
## W = 0.7709, p-value = 0.04595

la normalité: non acceptée -> t de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_3_vs_2~BP_C$Hist_Epiderm)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_3_vs_2 by BP_C$Hist_Epiderm
## F = 2.8407, num df = 10, denom df = 4, p-value = 0.3262
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.3212084 12.6933487
## sample estimates:
## ratio of variances 
##           2.840729

test de variance: accepté

wilcox.test(BP_C$Del_toux_3_vs_2~BP_C$Hist_Epiderm,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_toux_3_vs_2 by BP_C$Hist_Epiderm
## W = 15.5, p-value = 0.1626
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Histo à l’inclusion/ Toux V2- V1

ADK /Toux V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Hist_ADK=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_2_vs_1[BP_C$Hist_ADK == "Non"]
## W = 0.93308, p-value = 0.4789
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Hist_ADK=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_2_vs_1[BP_C$Hist_ADK == "Oui"]
## W = 0.87374, p-value = 0.1105

la normalité: acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_2_vs_1~BP_C$Hist_ADK)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_2_vs_1 by BP_C$Hist_ADK
## F = 1.1485, num df = 9, denom df = 9, p-value = 0.84
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.2852678 4.6237995
## sample estimates:
## ratio of variances 
##           1.148486

test de variance: accepté

t.test(BP_C$Del_toux_2_vs_1~BP_C$Hist_ADK,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_toux_2_vs_1 by BP_C$Hist_ADK
## t = 1.0183, df = 17.914, p-value = 0.3221
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -17.73133  51.06733
## sample estimates:
## mean in group Non mean in group Oui 
##            -6.666           -23.334

significativité: Non

Epidermoide /Toux V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Hist_Epiderm=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_2_vs_1[BP_C$Hist_Epiderm == "Non"]
## W = 0.92249, p-value = 0.2388
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Hist_Epiderm=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_2_vs_1[BP_C$Hist_Epiderm == "Oui"]
## W = 0.82161, p-value = 0.09112

la normalité: non acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_2_vs_1~BP_C$Hist_Epiderm)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_2_vs_1 by BP_C$Hist_Epiderm
## F = 2.217, num df = 13, denom df = 5, p-value = 0.3895
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.3417307 8.3507362
## sample estimates:
## ratio of variances 
##           2.217005

test de variance: acceptée

t.test(BP_C$Del_toux_2_vs_1~BP_C$Hist_Epiderm,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_toux_2_vs_1 by BP_C$Hist_Epiderm
## t = 0.66487, df = 14.114, p-value = 0.5168
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -22.93806  43.57139
## sample estimates:
## mean in group Non mean in group Oui 
##         -11.90500         -22.22167

significativité: Non

ligne de traitement à l’inclusion

ligne de ttt à l’inclusion/ hémoptysie V3-V1

Ligne de traitement : jamais / hémoptysie V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$lignes_ttt_jamais=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.85111, p-value = 0.1258
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$lignes_ttt_jamais=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.72426, p-value = 0.0009618

la normalité: non acceptée -> test de wilcoxon sera realisé

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$lignes_ttt_jamais)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_3_vs_1 by BP_C$lignes_ttt_jamais
## F = 1.9233, num df = 6, denom df = 10, p-value = 0.3444
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.4723121 10.5038560
## sample estimates:
## ratio of variances 
##           1.923317

test de variance: accepté

wilcox.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$lignes_ttt_jamais)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_3_vs_1 by BP_C$lignes_ttt_jamais
## W = 39, p-value = 1
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Ligne de traitement : une / hémoptysie V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$lignes_ttt_une=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1[BP_C$lignes_ttt_une == "Non"]
## W = 0.77913, p-value = 0.005478
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$lignes_ttt_une=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1[BP_C$lignes_ttt_une == "Oui"]
## W = 0.8087, p-value = 0.07028

la normalité: acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$lignes_ttt_une)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_3_vs_1 by BP_C$lignes_ttt_une
## F = 0.43389, num df = 11, denom df = 5, p-value = 0.2309
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.06606231 1.75463124
## sample estimates:
## ratio of variances 
##          0.4338853

test de variance: acceptée

wilcox.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$lignes_ttt_une,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_3_vs_1 by BP_C$lignes_ttt_une
## W = 30, p-value = 0.5845
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

ligne de traitement à l’inclusion/ hémoptysie V3-V2

Ligne de traitement : jamais / hémoptysie V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$lignes_ttt_jamais=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_2[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.79428, p-value = 0.03594
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$lignes_ttt_jamais=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_2[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.81042, p-value = 0.03697

la normalité: non acceptée -> Wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$lignes_ttt_jamais)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_3_vs_2 by BP_C$lignes_ttt_jamais
## F = 3.1312, num df = 6, denom df = 7, p-value = 0.1611
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.6117302 17.8336579
## sample estimates:
## ratio of variances 
##             3.1312

test de variance: accepté

wilcox.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$lignes_ttt_jamais,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_3_vs_2 by BP_C$lignes_ttt_jamais
## W = 35, p-value = 0.3934
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Ligne de traitement : une /hémoptysie V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$lignes_ttt_une=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_2[BP_C$lignes_ttt_une == "Non"]
## W = 0.81259, p-value = 0.02841
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$lignes_ttt_une=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_2[BP_C$lignes_ttt_une == "Oui"]
## W = 0.63989, p-value = 0.001351

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$lignes_ttt_une)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_3_vs_2 by BP_C$lignes_ttt_une
## F = 0.41654, num df = 8, denom df = 5, p-value = 0.2598
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.06164438 2.00659606
## sample estimates:
## ratio of variances 
##          0.4165417

test de variance: non accepté

wilcox.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$lignes_ttt_une,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_3_vs_2 by BP_C$lignes_ttt_une
## W = 14, p-value = 0.09463
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

ligne de ttt à l’inclusion/ hémoptysie V2- V1

Ligne de traitement : jamais hémoptysie V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$lignes_ttt_jamais=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.94039, p-value = 0.5861
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$lignes_ttt_jamais=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.82548, p-value = 0.02036

la normalité: non acceptée -> test de wilcoxon sera realisé

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$lignes_ttt_jamais)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_2_vs_1 by BP_C$lignes_ttt_jamais
## F = 1.0593, num df = 8, denom df = 10, p-value = 0.9133
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.2747983 4.5499026
## sample estimates:
## ratio of variances 
##           1.059317

test de variance: accepté

Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon

wilcox.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$lignes_ttt_jamais,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_2_vs_1 by BP_C$lignes_ttt_jamais
## W = 33.5, p-value = 0.2179
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Ligne de traitement :une / hémoptysie V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$lignes_ttt_une=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1[BP_C$lignes_ttt_une == "Non"]
## W = 0.7906, p-value = 0.005283
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$lignes_ttt_une=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1[BP_C$lignes_ttt_une == "Oui"]
## W = 0.96005, p-value = 0.8192

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$lignes_ttt_une)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_2_vs_1 by BP_C$lignes_ttt_une
## F = 0.68458, num df = 12, denom df = 6, p-value = 0.5419
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1275711 2.5523050
## sample estimates:
## ratio of variances 
##          0.6845775

test de variance: acceptée

wilcox.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$lignes_ttt_une,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_2_vs_1 by BP_C$lignes_ttt_une
## W = 65.5, p-value = 0.1059
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

ligne de ttt à l’inclusion/ Toux V3-V1

Ligne de traitement : jamais /Toux V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$lignes_ttt_jamais=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_1[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.76046, p-value = 0.0163
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$lignes_ttt_jamais=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_1[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.85808, p-value = 0.05438

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_3_vs_1~BP_C$lignes_ttt_jamais)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_3_vs_1 by BP_C$lignes_ttt_jamais
## F = 1.5803, num df = 6, denom df = 10, p-value = 0.4979
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.3880723 8.6304292
## sample estimates:
## ratio of variances 
##           1.580282

test de variance: accepté

wilcox.test(BP_C$Del_toux_3_vs_1~BP_C$lignes_ttt_jamais,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_toux_3_vs_1 by BP_C$lignes_ttt_jamais
## W = 48, p-value = 0.3992
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Ligne de traitement : une /Toux V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$lignes_ttt_une=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_1[BP_C$lignes_ttt_une == "Non"]
## W = 0.90273, p-value = 0.172
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$lignes_ttt_une=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_1[BP_C$lignes_ttt_une == "Oui"]
## W = 0.63989, p-value = 0.001351

la normalité: non acceptée -> test de Wilcox

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_3_vs_1~BP_C$lignes_ttt_une)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_3_vs_1 by BP_C$lignes_ttt_une
## F = 1.4421, num df = 11, denom df = 5, p-value = 0.7217
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.2195749 5.8319627
## sample estimates:
## ratio of variances 
##           1.442128

test de variance: acceptée

wilcox.test(BP_C$Del_toux_3_vs_1~BP_C$lignes_ttt_une,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_toux_3_vs_1 by BP_C$lignes_ttt_une
## W = 35, p-value = 0.9614
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Ligne de ttt à l’inclusion/ Toux V3-V2

Ligne de traitement : jamais / toux V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$lignes_ttt_jamais=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_2[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.89951, p-value = 0.2861
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$lignes_ttt_jamais=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_2[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.89951, p-value = 0.2861

la normalité: acceptée -> t. test

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_3_vs_2~BP_C$lignes_ttt_jamais)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_3_vs_2 by BP_C$lignes_ttt_jamais
## F = 1, num df = 7, denom df = 7, p-value = 1
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.2002038 4.9949092
## sample estimates:
## ratio of variances 
##                  1

test de variance: accepté

t.test(BP_C$Del_toux_3_vs_2~BP_C$lignes_ttt_jamais, var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_toux_3_vs_2 by BP_C$lignes_ttt_jamais
## t = 0, df = 14, p-value = 1
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -52.10899  52.10899
## sample estimates:
## mean in group Non mean in group Oui 
##          -4.16625          -4.16625

significativité: Non

Ligne de traitement :une /Toux V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$lignes_ttt_une=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_2[BP_C$lignes_ttt_une == "Non"]
## W = 0.88495, p-value = 0.1487
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$lignes_ttt_une=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_2[BP_C$lignes_ttt_une == "Oui"]
## W = 0.82682, p-value = 0.101

la normalité: acceptée -> t.test ( test de student)

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_3_vs_2~BP_C$lignes_ttt_une)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_3_vs_2 by BP_C$lignes_ttt_une
## F = 7.6683, num df = 9, denom df = 5, p-value = 0.0372
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   1.147773 34.387962
## sample estimates:
## ratio of variances 
##           7.668334

test de variance: non accepté

t.test(BP_C$Del_toux_3_vs_2~BP_C$lignes_ttt_une,var.test=FALSE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_toux_3_vs_2 by BP_C$lignes_ttt_une
## t = -0.3273, df = 12.292, p-value = 0.7489
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -50.92472  37.59272
## sample estimates:
## mean in group Non mean in group Oui 
##            -6.666             0.000

significativité: Non

Ligne de ttt à l’inclusion/Toux V2- V1

Ligne de traitement : jamais /Toux V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$lignes_ttt_jamais=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_2_vs_1[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.81259, p-value = 0.02841
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$lignes_ttt_jamais=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_2_vs_1[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.88139, p-value = 0.1083

la normalité: acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_2_vs_1~BP_C$lignes_ttt_jamais)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_2_vs_1 by BP_C$lignes_ttt_jamais
## F = 0.23959, num df = 8, denom df = 10, p-value = 0.05431
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.06215187 1.02906384
## sample estimates:
## ratio of variances 
##          0.2395887

test de variance: acceptée

wilcox.test(BP_C$Del_toux_2_vs_1~BP_C$lignes_ttt_jamais)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_toux_2_vs_1 by BP_C$lignes_ttt_jamais
## W = 62, p-value = 0.3402
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Ligne de traitement : une /TouxV2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$lignes_ttt_une=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_2_vs_1[BP_C$lignes_ttt_une == "Non"]
## W = 0.88645, p-value = 0.08725
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$lignes_ttt_une=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_2_vs_1[BP_C$lignes_ttt_une == "Oui"]
## W = 0.83338, p-value = 0.08614

la normalité: non acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_2_vs_1~BP_C$lignes_ttt_une)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_2_vs_1 by BP_C$lignes_ttt_une
## F = 2.8052, num df = 12, denom df = 6, p-value = 0.2147
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.5227532 10.4586832
## sample estimates:
## ratio of variances 
##           2.805221

test de variance: acceptée

t.test(BP_C$Del_toux_2_vs_1~BP_C$lignes_ttt_une,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_toux_2_vs_1 by BP_C$lignes_ttt_une
## t = -0.55846, df = 17.664, p-value = 0.5835
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -40.16950  23.31675
## sample estimates:
## mean in group Non mean in group Oui 
##        -17.949231         -9.522857

significativité: Non

Type de Stent

Type de Stent / hémoptysie V3-V1

Stent métallique / hémoptysie V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$typ_stent_Métallique=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1[BP_C$typ_stent_Métallique == "Non"]
## W = 0.81854, p-value = 0.006423
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$typ_stent_Métallique=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.75, p-value < 2.2e-16

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$typ_stent_Métallique)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_3_vs_1 by BP_C$typ_stent_Métallique
## F = 4.6292, num df = 14, denom df = 2, p-value = 0.3833
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.1174144 22.4828205
## sample estimates:
## ratio of variances 
##            4.62924

test de variance: accepté

Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon

wilcox.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$typ_stent_Métallique,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_3_vs_1 by BP_C$typ_stent_Métallique
## W = 9.5, p-value = 0.116
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stent Silicone / hémoptysie V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$typ_stent_Silicone=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1[BP_C$typ_stent_Silicone == "Non"]
## W = 0.7186, p-value = 0.005897
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$typ_stent_Silicone=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.85356, p-value = 0.0475

la normalité: non acceptée -> test de wilcox

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$typ_stent_Silicone)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_3_vs_1 by BP_C$typ_stent_Silicone
## F = 1.5942, num df = 6, denom df = 10, p-value = 0.4904
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.3915004 8.7066663
## sample estimates:
## ratio of variances 
##           1.594241

test de variance: acceptée

wilcox.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$typ_stent_Silicone,var.test=FALSE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_3_vs_1 by BP_C$typ_stent_Silicone
## W = 50, p-value = 0.2903
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Type de Stent / hémoptysie V3-V2

Stent métallique / hémoptysie V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$typ_stent_Métallique=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_2[BP_C$typ_stent_Métallique == "Non"]
## W = 0.8077, p-value = 0.01148
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$typ_stent_Métallique=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_2[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.75, p-value < 2.2e-16

la normalité: non acceptée -> Wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$typ_stent_Métallique)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_3_vs_2 by BP_C$typ_stent_Métallique
## F = 0.54537, num df = 11, denom df = 2, p-value = 0.4109
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.01383947 2.86641874
## sample estimates:
## ratio of variances 
##          0.5453727

test de variance: non accepté

wilcox.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$typ_stent_Métallique,var.test=FALSE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_3_vs_2 by BP_C$typ_stent_Métallique
## W = 11.5, p-value = 0.3258
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stent Silicone / hémoptysie V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$typ_stent_Silicone=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_2[BP_C$typ_stent_Silicone == "Non"]
## W = 0.49609, p-value = 2.073e-05
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$typ_stent_Silicone=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_2[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.85328, p-value = 0.08096

la normalité: rejetée -> wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$typ_stent_Silicone)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_3_vs_2 by BP_C$typ_stent_Silicone
## F = 0.66677, num df = 5, denom df = 8, p-value = 0.6806
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1384116 4.5054571
## sample estimates:
## ratio of variances 
##          0.6667667

test de variance: accepté

wilcox.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$typ_stent_Silicone,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_3_vs_2 by BP_C$typ_stent_Silicone
## W = 33.5, p-value = 0.4224
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Type de stent/ hémoptysie V2- V1

Stent métallique _ hémoptysie V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$typ_stent_Métallique=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1[BP_C$typ_stent_Métallique == "Non"]
## W = 0.88139, p-value = 0.04079
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$typ_stent_Métallique=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.94466, p-value = 0.683

la normalité: non acceptée -> test de wilcox

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$typ_stent_Métallique)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_2_vs_1 by BP_C$typ_stent_Métallique
## F = 2.3941, num df = 15, denom df = 3, p-value = 0.5142
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1679771 9.9423478
## sample estimates:
## ratio of variances 
##           2.394129

test de variance: accepté

Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon

wilcox.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$typ_stent_Métallique)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_2_vs_1 by BP_C$typ_stent_Métallique
## W = 24.5, p-value = 0.4889
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stent silicone / hémoptysie V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$typ_stent_Silicone=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1[BP_C$typ_stent_Silicone == "Non"]
## W = 0.81041, p-value = 0.03695
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$typ_stent_Silicone=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.91957, p-value = 0.2823

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$typ_stent_Silicone)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_2_vs_1 by BP_C$typ_stent_Silicone
## F = 1.2115, num df = 7, denom df = 11, p-value = 0.7445
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.3223187 5.7054259
## sample estimates:
## ratio of variances 
##           1.211479

test de variance: acceptée

wilcox.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$typ_stent_Silicone,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_2_vs_1 by BP_C$typ_stent_Silicone
## W = 58.5, p-value = 0.4195
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Type de stent/Toux V3-V1

Stent métallique /Toux V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$typ_stent_Métallique=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_1[BP_C$typ_stent_Métallique == "Non"]
## W = 0.92351, p-value = 0.2179
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$typ_stent_Métallique=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_1[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.75, p-value < 2.2e-16

la normalité: non acceptée; wilcox Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_3_vs_1~BP_C$typ_stent_Métallique)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_3_vs_1 by BP_C$typ_stent_Métallique
## F = 1.0502, num df = 14, denom df = 2, p-value = 0.8191
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.0266377 5.1006569
## sample estimates:
## ratio of variances 
##           1.050231

test de variance: accepté

Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon

wilcox.test(BP_C$Del_toux_3_vs_1~BP_C$typ_stent_Métallique)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_toux_3_vs_1 by BP_C$typ_stent_Métallique
## W = 22, p-value = 1
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stent Silicone /Toux V1/V3

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$typ_stent_Silicone=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_1[BP_C$typ_stent_Silicone == "Non"]
## W = 0.86933, p-value = 0.1831
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$typ_stent_Silicone=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_1[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.93809, p-value = 0.4983

la normalité: acceptée -> test de STUDENT

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_3_vs_1~BP_C$typ_stent_Silicone)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_3_vs_1 by BP_C$typ_stent_Silicone
## F = 0.57858, num df = 6, denom df = 10, p-value = 0.5194
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1420828 3.1598118
## sample estimates:
## ratio of variances 
##          0.5785798

test de variance: acceptée

t.test(BP_C$Del_toux_3_vs_1~BP_C$typ_stent_Silicone,var.test=FALSE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_toux_3_vs_1 by BP_C$typ_stent_Silicone
## t = -1.022, df = 15.33, p-value = 0.3226
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -54.69154  19.19621
## sample estimates:
## mean in group Non mean in group Oui 
##        -23.808571         -6.060909

significativité: Non

Type Stent / LC_13 Dyspnée V3-V2

Stent métallique /Toux V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$typ_stent_Métallique=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_2[BP_C$typ_stent_Métallique == "Non"]
## W = 0.80615, p-value = 0.01101
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$typ_stent_Métallique=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_2[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.82744, p-value = 0.1612

la normalité: non acceptée -> wilcox

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_3_vs_2~BP_C$typ_stent_Métallique)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_3_vs_2 by BP_C$typ_stent_Métallique
## F = 0.21926, num df = 11, denom df = 3, p-value = 0.05223
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.01525375 1.01517995
## sample estimates:
## ratio of variances 
##          0.2192601

test de variance: accepté

wilcox.test(BP_C$Del_toux_3_vs_2~BP_C$typ_stent_Métallique)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_toux_3_vs_2 by BP_C$typ_stent_Métallique
## W = 33, p-value = 0.2693
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stent silicone /Toux V3/V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$typ_stent_Silicone=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_2[BP_C$typ_stent_Silicone == "Non"]
## W = 0.84471, p-value = 0.1099
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$typ_stent_Silicone=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_2[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.83021, p-value = 0.0449

la normalité:non acceptée -> wilcox

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_3_vs_2~BP_C$typ_stent_Silicone)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_3_vs_2 by BP_C$typ_stent_Silicone
## F = 2.4091, num df = 6, denom df = 8, p-value = 0.2487
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.517905 13.490256
## sample estimates:
## ratio of variances 
##           2.409136

test de variance: accepté

wilcox.test(BP_C$Del_toux_3_vs_2~BP_C$typ_stent_Silicone,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_toux_3_vs_2 by BP_C$typ_stent_Silicone
## W = 17.5, p-value = 0.1256
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Type de stent/Toux V2- V1

Stent métallique /Toux V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$typ_stent_Métallique=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_2_vs_1[BP_C$typ_stent_Métallique == "Non"]
## W = 0.87879, p-value = 0.03715
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$typ_stent_Métallique=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_2_vs_1[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.89493, p-value = 0.4063

la normalité: non acceptée -> test de wilcoxon sera realisé

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_2_vs_1~BP_C$typ_stent_Métallique)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_2_vs_1 by BP_C$typ_stent_Métallique
## F = 0.66315, num df = 15, denom df = 3, p-value = 0.5061
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.04652801 2.75393304
## sample estimates:
## ratio of variances 
##          0.6631503

test de variance: accepté

wilcox.test(BP_C$Del_toux_2_vs_1~BP_C$typ_stent_Métallique,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_toux_2_vs_1 by BP_C$typ_stent_Métallique
## W = 20, p-value = 0.2556
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Stent Silicone /Toux V2/V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$typ_stent_Silicone=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_2_vs_1[BP_C$typ_stent_Silicone == "Non"]
## W = 0.89897, p-value = 0.2828
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$typ_stent_Silicone=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_2_vs_1[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.89504, p-value = 0.1369

la normalité: non acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_2_vs_1~BP_C$typ_stent_Silicone)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_2_vs_1 by BP_C$typ_stent_Silicone
## F = 1.7275, num df = 7, denom df = 11, p-value = 0.4011
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.4596203 8.1358270
## sample estimates:
## ratio of variances 
##           1.727546

test de variance: acceptée

t.test(BP_C$Del_toux_2_vs_1~BP_C$typ_stent_Silicone,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_toux_2_vs_1 by BP_C$typ_stent_Silicone
## t = -0.15287, df = 12.281, p-value = 0.881
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -42.25700  36.70284
## sample estimates:
## mean in group Non mean in group Oui 
##         -16.66625         -13.88917

significativité: Non

Site Trachée ou Carene

site trachée ou carene / hémoptysie V3-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Site_Trachée_ou.Carène=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.7805, p-value = 0.02613
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Site_Trachée_ou.Carène=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.66468, p-value = 0.0001654

la normalité: non acceptée -> test de wilcox

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Site_Trachée_ou.Carène)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_3_vs_1 by BP_C$Site_Trachée_ou.Carène
## F = 0.83814, num df = 6, denom df = 10, p-value = 0.8646
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.2058222 4.5773268
## sample estimates:
## ratio of variances 
##          0.8381351

test de variance: accepté

wilcox.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Site_Trachée_ou.Carène,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_3_vs_1 by BP_C$Site_Trachée_ou.Carène
## W = 14, p-value = 0.02104
## alternative hypothesis: true location shift is not equal to 0

significativité: Oui

Site_Trachée_ou Carène /hémoptysie V3-V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Site_Trachée_ou.Carène=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_2[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.55218, p-value = 0.000131
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Site_Trachée_ou.Carène=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_2[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.84557, p-value = 0.05145

la normalité:non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Site_Trachée_ou.Carène)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_3_vs_2 by BP_C$Site_Trachée_ou.Carène
## F = 0.17818, num df = 4, denom df = 9, p-value = 0.112
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.03776576 1.58665243
## sample estimates:
## ratio of variances 
##          0.1781818

test de variance: accepté

wilcox.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Site_Trachée_ou.Carène, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_3_vs_2 by BP_C$Site_Trachée_ou.Carène
## W = 19, p-value = 0.4447
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Site trachée ou carène / hémoptysie V2- V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Site_Trachée_ou.Carène=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.76733, p-value = 0.008605
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Site_Trachée_ou.Carène=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.84814, p-value = 0.04035

la normalité: non acceptée -> test de wilcoxon sera realisé

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Site_Trachée_ou.Carène)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_2_vs_1 by BP_C$Site_Trachée_ou.Carène
## F = 0.76397, num df = 8, denom df = 10, p-value = 0.7169
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1981824 3.2813546
## sample estimates:
## ratio of variances 
##          0.7639715

test de variance: accepté

Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon

wilcox.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Site_Trachée_ou.Carène,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_2_vs_1 by BP_C$Site_Trachée_ou.Carène
## W = 34, p-value = 0.2331
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Site trachée ou carène /Toux V3-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Site_Trachée_ou.Carène=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_1[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.88772, p-value = 0.263
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Site_Trachée_ou.Carène=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_1[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.88903, p-value = 0.1352

la normalité: acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_3_vs_1~BP_C$Site_Trachée_ou.Carène)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_3_vs_1 by BP_C$Site_Trachée_ou.Carène
## F = 1.2907, num df = 6, denom df = 10, p-value = 0.6867
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.316950 7.048723
## sample estimates:
## ratio of variances 
##           1.290662

test de variance: rejetée

t.test(BP_C$Del_toux_3_vs_1~BP_C$Site_Trachée_ou.Carène,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_toux_3_vs_1 by BP_C$Site_Trachée_ou.Carène
## t = -0.11039, df = 11.673, p-value = 0.914
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -44.97587  40.65093
## sample estimates:
## mean in group Non mean in group Oui 
##         -14.28429         -12.12182

significativité: Non

Site trachée ou carène / Toux V3-V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Site_Trachée_ou.Carène=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_2[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.91237, p-value = 0.4522
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Site_Trachée_ou.Carène=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_2[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.84061, p-value = 0.04487

la normalité: non acceptée -> Wilcox

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_3_vs_2~BP_C$Site_Trachée_ou.Carène)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_3_vs_2 by BP_C$Site_Trachée_ou.Carène
## F = 5.5577, num df = 5, denom df = 9, p-value = 0.02625
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   1.239341 37.131407
## sample estimates:
## ratio of variances 
##           5.557717

test de variance: rejetée

wilcox.test(BP_C$Del_toux_3_vs_2~BP_C$Site_Trachée_ou.Carène, var.test=FALSE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_toux_3_vs_2 by BP_C$Site_Trachée_ou.Carène
## W = 18, p-value = 0.1813
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Site trachée ou carène /Toux V2- V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Site_Trachée_ou.Carène=="Non"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_2_vs_1[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.85407, p-value = 0.08261
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Site_Trachée_ou.Carène=="Oui"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_2_vs_1[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.90376, p-value = 0.2053

la normalité: non acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_2_vs_1~BP_C$Site_Trachée_ou.Carène)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_2_vs_1 by BP_C$Site_Trachée_ou.Carène
## F = 1.3985, num df = 8, denom df = 10, p-value = 0.6077
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.3627791 6.0066223
## sample estimates:
## ratio of variances 
##           1.398474

test de variance: accepté

t.test(BP_C$Del_toux_2_vs_1~BP_C$Site_Trachée_ou.Carène,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_toux_2_vs_1 by BP_C$Site_Trachée_ou.Carène
## t = 0.41269, df = 15.779, p-value = 0.6854
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
##  -29.29193  43.43334
## sample estimates:
## mean in group Non mean in group Oui 
##         -11.11111         -18.18182

significativité: Non # Type d’intervention ## Type d’intervention / hémoptysie V3-V1 test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Type_intervention=="urgente"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1[BP_C$Type_intervention == "urgente"]
## W = 0.72863, p-value = 0.02386
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Type_intervention=="programmée"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1[BP_C$Type_intervention == "programmée"]
## W = 0.83252, p-value = 0.01297

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Type_intervention)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_3_vs_1 by BP_C$Type_intervention
## F = 4.9458, num df = 13, denom df = 3, p-value = 0.214
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.3457495 21.5001305
## sample estimates:
## ratio of variances 
##           4.945767

test de variance: accepté

wilcox.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Type_intervention,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_3_vs_1 by BP_C$Type_intervention
## W = 15, p-value = 0.1588
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Type d’intervention / hémoptysie V3-V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Type_intervention=="urgente"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_2[BP_C$Type_intervention == "urgente"]
## W = 1, p-value = 1
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Type_intervention=="programmée"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_2[BP_C$Type_intervention == "programmée"]
## W = 0.72099, p-value = 0.001353

la normalité:non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Type_intervention)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_3_vs_2 by BP_C$Type_intervention
## F = 0.87899, num df = 11, denom df = 2, p-value = 0.7111
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.02230535 4.61986317
## sample estimates:
## ratio of variances 
##          0.8789879

test de variance: accepté

wilcox.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Type_intervention, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_3_vs_2 by BP_C$Type_intervention
## W = 19, p-value = 0.9347
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Type d’intervention / hémoptysie V2- V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Type_intervention=="urgente"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1[BP_C$Type_intervention == "urgente"]
## W = 0.88104, p-value = 0.314
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Type_intervention=="programmée"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1[BP_C$Type_intervention == "programmée"]
## W = 0.88147, p-value = 0.04991

la normalité: non acceptée -> test de W

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Type_intervention)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_2_vs_1 by BP_C$Type_intervention
## F = 2.1772, num df = 14, denom df = 4, p-value = 0.4712
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.2507249 8.4736246
## sample estimates:
## ratio of variances 
##           2.177238

test de variance: acceptée

wilcox.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Type_intervention,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_2_vs_1 by BP_C$Type_intervention
## W = 22, p-value = 0.1707
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Type d’intervention / toux V3-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Type_intervention=="urgente"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_1[BP_C$Type_intervention == "urgente"]
## W = 0.86336, p-value = 0.2724
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Type_intervention=="programmée"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_1[BP_C$Type_intervention == "programmée"]
## W = 0.92171, p-value = 0.2327

la normalité: acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_3_vs_1~BP_C$Type_intervention)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_3_vs_1 by BP_C$Type_intervention
## F = 1.5823, num df = 13, denom df = 3, p-value = 0.7853
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1106139 6.8784257
## sample estimates:
## ratio of variances 
##           1.582274

test de variance: acceptée

t.test(BP_C$Del_toux_3_vs_1~BP_C$Type_intervention,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_toux_3_vs_1 by BP_C$Type_intervention
## t = 0.80483, df = 6.0407, p-value = 0.4514
## alternative hypothesis: true difference in means between group programmée and group urgente is not equal to 0
## 95 percent confidence interval:
##  -31.49944  62.45230
## sample estimates:
## mean in group programmée    mean in group urgente 
##                -9.523571               -25.000000

significativité: Non

Type d’intervention / Toux V3-V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Type_intervention=="urgente"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_2[BP_C$Type_intervention == "urgente"]
## W = 0.92615, p-value = 0.5719
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Type_intervention=="programmée"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_2[BP_C$Type_intervention == "programmée"]
## W = 0.88597, p-value = 0.1046

la normalité: oui -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_3_vs_2~BP_C$Type_intervention)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_3_vs_2 by BP_C$Type_intervention
## F = 0.36183, num df = 11, denom df = 3, p-value = 0.1844
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.02517242 1.67529519
## sample estimates:
## ratio of variances 
##          0.3618329

test de variance: accepté

t.test(BP_C$Del_toux_3_vs_2~BP_C$Type_intervention, var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_toux_3_vs_2 by BP_C$Type_intervention
## t = 0.15272, df = 3.7524, p-value = 0.8865
## alternative hypothesis: true difference in means between group programmée and group urgente is not equal to 0
## 95 percent confidence interval:
##  -98.11528 109.22528
## sample estimates:
## mean in group programmée    mean in group urgente 
##                  -2.7775                  -8.3325

significativité: Non

Type d’intervention /Toux V2- V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Type_intervention=="urgente"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_2_vs_1[BP_C$Type_intervention == "urgente"]
## W = 0.82083, p-value = 0.1185
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Type_intervention=="programmée"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_2_vs_1[BP_C$Type_intervention == "programmée"]
## W = 0.92706, p-value = 0.2465

la normalité: acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_2_vs_1~BP_C$Type_intervention)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_2_vs_1 by BP_C$Type_intervention
## F = 1.2094, num df = 14, denom df = 4, p-value = 0.9405
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.139272 4.706907
## sample estimates:
## ratio of variances 
##           1.209407

test de variance: accepté

t.test(BP_C$Del_toux_2_vs_1~BP_C$Type_intervention,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_toux_2_vs_1 by BP_C$Type_intervention
## t = 1.3843, df = 7.5257, p-value = 0.2059
## alternative hypothesis: true difference in means between group programmée and group urgente is not equal to 0
## 95 percent confidence interval:
##  -16.72738  65.61805
## sample estimates:
## mean in group programmée    mean in group urgente 
##                -8.888667               -33.334000

significativité:Non

Atélectasie

Atélectasie / hémoptysie V3-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Atelectasie_RT=="Absent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1[BP_C$Atelectasie_RT == "Absent"]
## W = 0.87161, p-value = 0.1563
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Atelectasie_RT=="Présent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1[BP_C$Atelectasie_RT == "Présent"]
## W = 0.80218, p-value = 0.01541

la normalité: non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Atelectasie_RT)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_3_vs_1 by BP_C$Atelectasie_RT
## F = 4.6654, num df = 7, denom df = 9, p-value = 0.03619
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   1.111599 22.502401
## sample estimates:
## ratio of variances 
##           4.665434

test de variance: rejeté

wilcox.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Atelectasie_RT)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_3_vs_1 by BP_C$Atelectasie_RT
## W = 19.5, p-value = 0.05925
## alternative hypothesis: true location shift is not equal to 0

significativité: Non, mais à la limite de la significativité

Atélectasie / hémoptysie V3-V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Atelectasie_RT=="Absent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_2[BP_C$Atelectasie_RT == "Absent"]
## W = 0.78649, p-value = 0.03003
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Atelectasie_RT=="Présent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_2[BP_C$Atelectasie_RT == "Présent"]
## W = 0.82602, p-value = 0.05397

la normalité:non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Atelectasie_RT)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_3_vs_2 by BP_C$Atelectasie_RT
## F = 1.2727, num df = 6, denom df = 7, p-value = 0.7519
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.248650 7.248846
## sample estimates:
## ratio of variances 
##           1.272739

test de variance: accepté

wilcox.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Atelectasie_RT, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_3_vs_2 by BP_C$Atelectasie_RT
## W = 22.5, p-value = 0.5115
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Atélectasie / hémoptysie V2- V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Atelectasie_RT=="Absent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1[BP_C$Atelectasie_RT == "Absent"]
## W = 0.88652, p-value = 0.1837
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Atelectasie_RT=="Présent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1[BP_C$Atelectasie_RT == "Présent"]
## W = 0.8643, p-value = 0.06546

la normalité: acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Atelectasie_RT)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_2_vs_1 by BP_C$Atelectasie_RT
## F = 2.8737, num df = 8, denom df = 10, p-value = 0.1209
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.7454694 12.3429202
## sample estimates:
## ratio of variances 
##           2.873703

test de variance: acceptée

t.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Atelectasie_RT,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1 by BP_C$Atelectasie_RT
## t = -1.0648, df = 12.4, p-value = 0.3073
## alternative hypothesis: true difference in means between group Absent and group Présent is not equal to 0
## 95 percent confidence interval:
##  -60.36713  20.63784
## sample estimates:
##  mean in group Absent mean in group Présent 
##            -25.925556             -6.060909

significativité: Non

Atélectasie /Toux V3-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Atelectasie_RT=="Absent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_1[BP_C$Atelectasie_RT == "Absent"]
## W = 0.89742, p-value = 0.2738
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Atelectasie_RT=="Présent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_1[BP_C$Atelectasie_RT == "Présent"]
## W = 0.91646, p-value = 0.3284

la normalité: acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_3_vs_1~BP_C$Atelectasie_RT)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_3_vs_1 by BP_C$Atelectasie_RT
## F = 1.0626, num df = 7, denom df = 9, p-value = 0.9102
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.2531671 5.1249300
## sample estimates:
## ratio of variances 
##           1.062554

test de variance: acceptée

t.test(BP_C$Del_toux_3_vs_1~BP_C$Atelectasie_RT,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_toux_3_vs_1 by BP_C$Atelectasie_RT
## t = -0.35758, df = 14.927, p-value = 0.7257
## alternative hypothesis: true difference in means between group Absent and group Présent is not equal to 0
## 95 percent confidence interval:
##  -46.43511  33.09811
## sample estimates:
##  mean in group Absent mean in group Présent 
##              -16.6675               -9.9990

significativité: Non

Atélectasie / toux V3-V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Atelectasie_RT=="Absent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_2[BP_C$Atelectasie_RT == "Absent"]
## W = 0.75833, p-value = 0.01009
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Atelectasie_RT=="Présent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_2[BP_C$Atelectasie_RT == "Présent"]
## W = 0.91215, p-value = 0.3695

la normalité: non acceptée -> test de Wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_3_vs_2~BP_C$Atelectasie_RT)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_3_vs_2 by BP_C$Atelectasie_RT
## F = 0.52315, num df = 7, denom df = 7, p-value = 0.412
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1047362 2.6130763
## sample estimates:
## ratio of variances 
##          0.5231479

test de variance: accepté

wilcox.test(BP_C$Del_toux_3_vs_2~BP_C$Atelectasie_RT, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_toux_3_vs_2 by BP_C$Atelectasie_RT
## W = 25, p-value = 0.4644
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Atélectasie /toux V2- V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Atelectasie_RT=="Absent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_2_vs_1[BP_C$Atelectasie_RT == "Absent"]
## W = 0.8994, p-value = 0.2486
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Atelectasie_RT=="Présent"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_2_vs_1[BP_C$Atelectasie_RT == "Présent"]
## W = 0.85358, p-value = 0.04752

la normalité: non acceptée -> test de wilcox

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_2_vs_1~BP_C$Atelectasie_RT)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_2_vs_1 by BP_C$Atelectasie_RT
## F = 1.0184, num df = 8, denom df = 10, p-value = 0.9588
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.2641882 4.3742289
## sample estimates:
## ratio of variances 
##           1.018417

test de variance: accepté

wilcox.test(BP_C$Del_toux_2_vs_1~BP_C$Atelectasie_RT,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_toux_2_vs_1 by BP_C$Atelectasie_RT
## W = 45, p-value = 0.7505
## alternative hypothesis: true location shift is not equal to 0

significativité:Non

Sexe

Sexe / hémoptysie V3-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Sexe=="Homme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1[BP_C$Sexe == "Homme"]
## W = 0.82221, p-value = 0.01844
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Sexe=="Femme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1[BP_C$Sexe == "Femme"]
## W = 0.75015, p-value = 0.01273

la normalité: non acceptée -> test de W

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Sexe)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_3_vs_1 by BP_C$Sexe
## F = 6.6942, num df = 6, denom df = 10, p-value = 0.009203
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   1.643898 36.559026
## sample estimates:
## ratio of variances 
##           6.694169

test de variance: non accepté

wilcox.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Sexe,vartest=FALSE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_3_vs_1 by BP_C$Sexe
## W = 42, p-value = 0.773
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Sexe / hémoptysie V3-V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Sexe=="Homme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_2[BP_C$Sexe == "Homme"]
## W = 0.76018, p-value = 0.007112
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Sexe=="Femme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_2[BP_C$Sexe == "Femme"]
## W = 0.70125, p-value = 0.006372

la normalité:non acceptée -> test de wilcoxon

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Sexe)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_3_vs_2 by BP_C$Sexe
## F = 0.81296, num df = 5, denom df = 8, p-value = 0.8558
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1687599 5.4933294
## sample estimates:
## ratio of variances 
##          0.8129628

test de variance: accepté

wilcox.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Sexe, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_3_vs_2 by BP_C$Sexe
## W = 38.5, p-value = 0.1413
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Sexe / hémoptysie V2- V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Sexe=="Homme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1[BP_C$Sexe == "Homme"]
## W = 0.89441, p-value = 0.1343
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Sexe=="Femme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1[BP_C$Sexe == "Femme"]
## W = 0.81042, p-value = 0.03697

la normalité: acceptée -> test de W

Evaluation de l’égalité des variances

var.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Sexe)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_hemoptysie_2_vs_1 by BP_C$Sexe
## F = 2.3765, num df = 7, denom df = 11, p-value = 0.1926
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.6322708 11.1919474
## sample estimates:
## ratio of variances 
##           2.376477

test de variance: acceptée

wilcox.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Sexe,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  BP_C$Del_hemoptysie_2_vs_1 by BP_C$Sexe
## W = 41.5, p-value = 0.6282
## alternative hypothesis: true location shift is not equal to 0

significativité: Non

Sexe /Toux V3-V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Sexe=="Homme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_1[BP_C$Sexe == "Homme"]
## W = 0.94809, p-value = 0.6196
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Sexe=="Femme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_1[BP_C$Sexe == "Femme"]
## W = 0.8936, p-value = 0.294

la normalité: acceptée -> test de student

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_3_vs_1~BP_C$Sexe)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_3_vs_1 by BP_C$Sexe
## F = 0.88532, num df = 6, denom df = 10, p-value = 0.9213
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.2174106 4.8350428
## sample estimates:
## ratio of variances 
##          0.8853243

test de variance: acceptée

t.test(BP_C$Del_toux_3_vs_1~BP_C$Sexe,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_toux_3_vs_1 by BP_C$Sexe
## t = -1.4465, df = 13.531, p-value = 0.1708
## alternative hypothesis: true difference in means between group Femme and group Homme is not equal to 0
## 95 percent confidence interval:
##  -63.53725  12.45439
## sample estimates:
## mean in group Femme mean in group Homme 
##           -28.57143            -3.03000

significativité: Non

Sexe / Toux V3-V2

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Sexe=="Homme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_2[BP_C$Sexe == "Homme"]
## W = 0.8463, p-value = 0.06783
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Sexe=="Femme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_2[BP_C$Sexe == "Femme"]
## W = 0.86249, p-value = 0.1593

la normalité: rejetée -> test de S

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_3_vs_2~BP_C$Sexe)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_3_vs_2 by BP_C$Sexe
## F = 4.203, num df = 6, denom df = 8, p-value = 0.06594
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.9035314 23.5349512
## sample estimates:
## ratio of variances 
##           4.202953

test de variance: accepté

t.test(BP_C$Del_toux_3_vs_2~BP_C$Sexe, var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_toux_3_vs_2 by BP_C$Sexe
## t = -0.6895, df = 8.2151, p-value = 0.5095
## alternative hypothesis: true difference in means between group Femme and group Homme is not equal to 0
## 95 percent confidence interval:
##  -77.88398  41.90366
## sample estimates:
## mean in group Femme mean in group Homme 
##          -14.285714            3.704444

significativité: Non

Sexe /Toux V2- V1

test de Shapiro fait pour la normalité des données

shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Sexe=="Homme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_2_vs_1[BP_C$Sexe == "Homme"]
## W = 0.88419, p-value = 0.0992
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Sexe=="Femme"])
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_2_vs_1[BP_C$Sexe == "Femme"]
## W = 0.85785, p-value = 0.1143

la normalité: acceptée -> test de Student

Evaluation de l’égalité des variances

var.test(BP_C$Del_toux_2_vs_1~BP_C$Sexe)
## 
##  F test to compare two variances
## 
## data:  BP_C$Del_toux_2_vs_1 by BP_C$Sexe
## F = 2.5718, num df = 7, denom df = 11, p-value = 0.1564
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##   0.684249 12.112023
## sample estimates:
## ratio of variances 
##           2.571844

test de variance: accepté

t.test(BP_C$Del_toux_2_vs_1~BP_C$Sexe,var.test=TRUE)
## 
##  Welch Two Sample t-test
## 
## data:  BP_C$Del_toux_2_vs_1 by BP_C$Sexe
## t = -0.90746, df = 10.644, p-value = 0.3842
## alternative hypothesis: true difference in means between group Femme and group Homme is not equal to 0
## 95 percent confidence interval:
##  -57.25603  23.92270
## sample estimates:
## mean in group Femme mean in group Homme 
##          -25.000000           -8.333333

significativité:Non

Test appariés :

Toux

V3-V1

library(car)
## Le chargement a nécessité le package : carData

condition de validité

shapiro.test(BP_C$Del_toux_3_vs_1)
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_3_vs_1
## W = 0.9207, p-value = 0.133
t.test(BP_C$symp_Toux_1_.,BP_C$symp_Toux_3_.,paired=TRUE)
## 
##  Paired t-test
## 
## data:  BP_C$symp_Toux_1_. and BP_C$symp_Toux_3_.
## t = 1.4414, df = 17, p-value = 0.1676
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
##  -6.011701 31.940590
## sample estimates:
## mean difference 
##        12.96444

les scores symptome toux entre la V1 et la V3 ne sont pas significativement different

V2-V1

condition de validité

shapiro.test(BP_C$Del_toux_2_vs_1)
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_toux_2_vs_1
## W = 0.90588, p-value = 0.05323
t.test(BP_C$symp_Toux_1_.,BP_C$symp_Toux_2_.,paired=TRUE)
## 
##  Paired t-test
## 
## data:  BP_C$symp_Toux_1_. and BP_C$symp_Toux_2_.
## t = 1.8312, df = 19, p-value = 0.0828
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
##  -2.145064 32.147064
## sample estimates:
## mean difference 
##          15.001

La p-value du test est <0.05., ainsi les scores symptome toux entre la V1 et la V2 sont significativement different dans le sens d’une diminution

Dyspnée

LC-13_ V3-V1

condition de validité

shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1)
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_3_vs_1
## W = 0.94065, p-value = 0.2973
t.test(BP_C$symp_LC13_dyspnée_1_.,BP_C$symp_LC13_dyspnée_3_.,paired=TRUE)
## 
##  Paired t-test
## 
## data:  BP_C$symp_LC13_dyspnée_1_. and BP_C$symp_LC13_dyspnée_3_.
## t = 2.5966, df = 17, p-value = 0.01881
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
##   4.571359 44.197529
## sample estimates:
## mean difference 
##        24.38444

La p-value du test est <0.05., ainsi les scores symptome dyspnée entre la V1 et la V3 sont significativement differents dans le sens d’une diminution (diminution moyenne de 24.38)

QLQ 30_ V3-V1

condition de validité

shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1)
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_3_vs_1
## W = 0.88517, p-value = 0.03192
wilcox.test(BP_C$symp_QLC30_dyspnée_1_.,BP_C$symp_QLC30_dyspnée_3_.,paired=TRUE)
## Warning in wilcox.test.default(BP_C$symp_QLC30_dyspnée_1_.,
## BP_C$symp_QLC30_dyspnée_3_., : impossible de calculer la p-value exacte avec des
## ex-aequos
## Warning in wilcox.test.default(BP_C$symp_QLC30_dyspnée_1_.,
## BP_C$symp_QLC30_dyspnée_3_., : impossible de calculer une p-value exacte avec
## des zéros
## 
##  Wilcoxon signed rank test with continuity correction
## 
## data:  BP_C$symp_QLC30_dyspnée_1_. and BP_C$symp_QLC30_dyspnée_3_.
## V = 67.5, p-value = 0.02662
## alternative hypothesis: true location shift is not equal to 0

La p-value du test est <0.05., les scores symptome dyspnée entre la V1 et la V3 sont significativement differents

LC-13_ V2-V1

condition de validité

shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1)
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_LC13_2_vs_1
## W = 0.93543, p-value = 0.1963
t.test(BP_C$symp_LC13_dyspnée_1_.,BP_C$symp_LC13_dyspnée_2_.,paired=TRUE)
## 
##  Paired t-test
## 
## data:  BP_C$symp_LC13_dyspnée_1_. and BP_C$symp_LC13_dyspnée_2_.
## t = 2.6262, df = 18, p-value = 0.01713
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
##   4.561641 41.054148
## sample estimates:
## mean difference 
##        22.80789

La p-value du test est <0.05., ainsi les scores symptome dyspnée entre la V1 et la V2 sont significativement differents dans le sens d’une diminution (diminution moyenne de 22.80)

QLQ 30_ V2-V1

condition de validité

shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1)
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_dyspnée_QLQ30_2_vs_1
## W = 0.89925, p-value = 0.03993
wilcox.test(BP_C$symp_QLC30_dyspnée_1_.,BP_C$symp_QLC30_dyspnée_2_.,paired=TRUE)
## Warning in wilcox.test.default(BP_C$symp_QLC30_dyspnée_1_.,
## BP_C$symp_QLC30_dyspnée_2_., : impossible de calculer la p-value exacte avec des
## ex-aequos
## Warning in wilcox.test.default(BP_C$symp_QLC30_dyspnée_1_.,
## BP_C$symp_QLC30_dyspnée_2_., : impossible de calculer une p-value exacte avec
## des zéros
## 
##  Wilcoxon signed rank test with continuity correction
## 
## data:  BP_C$symp_QLC30_dyspnée_1_. and BP_C$symp_QLC30_dyspnée_2_.
## V = 84, p-value = 0.007173
## alternative hypothesis: true location shift is not equal to 0

La p-value du test est <0.05., les scores symptome dyspnée entre la V1 et la V3 sont significativement differents

hemoptysie

V3-V1

condition de validité

shapiro.test(BP_C$Del_hemoptysie_3_vs_1)
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_3_vs_1
## W = 0.80257, p-value = 0.001651
wilcox.test(BP_C$symp_Hémoptysie_1_.,BP_C$symp_Hémoptysie_3_.,paired=TRUE)
## Warning in wilcox.test.default(BP_C$symp_Hémoptysie_1_.,
## BP_C$symp_Hémoptysie_3_., : impossible de calculer la p-value exacte avec des
## ex-aequos
## Warning in wilcox.test.default(BP_C$symp_Hémoptysie_1_.,
## BP_C$symp_Hémoptysie_3_., : impossible de calculer une p-value exacte avec des
## zéros
## 
##  Wilcoxon signed rank test with continuity correction
## 
## data:  BP_C$symp_Hémoptysie_1_. and BP_C$symp_Hémoptysie_3_.
## V = 28, p-value = 1
## alternative hypothesis: true location shift is not equal to 0

les scores symptome toux entre la V1 et la V3 ne sont pas significativement different p-value=1

V2-V1

condition de validité

shapiro.test(BP_C$Del_hemoptysie_2_vs_1)
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_hemoptysie_2_vs_1
## W = 0.86886, p-value = 0.01122
wilcox.test(BP_C$symp_Hémoptysie_1_.,BP_C$symp_Hémoptysie_2_.,paired=TRUE)
## Warning in wilcox.test.default(BP_C$symp_Hémoptysie_1_.,
## BP_C$symp_Hémoptysie_2_., : impossible de calculer la p-value exacte avec des
## ex-aequos
## Warning in wilcox.test.default(BP_C$symp_Hémoptysie_1_.,
## BP_C$symp_Hémoptysie_2_., : impossible de calculer une p-value exacte avec des
## zéros
## 
##  Wilcoxon signed rank test with continuity correction
## 
## data:  BP_C$symp_Hémoptysie_1_. and BP_C$symp_Hémoptysie_2_.
## V = 55.5, p-value = 0.1942
## alternative hypothesis: true location shift is not equal to 0

La p-value du test est >0.05., ainsi les scores symptome hemoptysie entre la V1 et la V2 ne sont pas significativement different

totaux LC_13

LC-13_ V3-V1

condition de validité

shapiro.test(BP_C$Del_total_LC13_3_vs_1)
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_3_vs_1
## W = 0.89654, p-value = 0.05003
t.test(BP_C$Total_EORTC.LC13_1,BP_C$Total_EORTC.LC13_3,paired=TRUE)
## 
##  Paired t-test
## 
## data:  BP_C$Total_EORTC.LC13_1 and BP_C$Total_EORTC.LC13_3
## t = -1.9689, df = 16, p-value = 0.06653
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
##  -18.3811406   0.6787876
## sample estimates:
## mean difference 
##       -8.851176

La p-value du test est > 0.05., ainsi les scores EORTC_LC 13 entre la V1 et la V3 ne sont pas significativement differents

LC-13_ V2-V1

condition de validité

shapiro.test(BP_C$Del_total_LC13_2_vs_1)
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_LC13_2_vs_1
## W = 0.87499, p-value = 0.01439
wilcox.test(BP_C$Total_EORTC.LC13_1,BP_C$Total_EORTC.LC13_2,paired=TRUE)
## Warning in wilcox.test.default(BP_C$Total_EORTC.LC13_1,
## BP_C$Total_EORTC.LC13_2, : impossible de calculer la p-value exacte avec des ex-
## aequos
## 
##  Wilcoxon signed rank test with continuity correction
## 
## data:  BP_C$Total_EORTC.LC13_1 and BP_C$Total_EORTC.LC13_2
## V = 43.5, p-value = 0.07064
## alternative hypothesis: true location shift is not equal to 0

La p-value du test est <0.05, ainsi les scores EORTC_LC 13 entre la V1 et la V3 sont significativement differents

Totaux QLQ_30

QLQ 30 V3-V1

condition de validité

shapiro.test(BP_C$Del_total_QLC30_3_vs_1)
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_3_vs_1
## W = 0.88373, p-value = 0.03018
wilcox.test(BP_C$Total_EORTC.QLQ30_1,BP_C$Total_EORTC.QLQ30_3,paired=TRUE)
## 
##  Wilcoxon signed rank exact test
## 
## data:  BP_C$Total_EORTC.QLQ30_1 and BP_C$Total_EORTC.QLQ30_3
## V = 27, p-value = 0.008965
## alternative hypothesis: true location shift is not equal to 0

La p-value du test est <0.05, ainsi les scores EORTC_QLQ30 entre la V1 et la V3 sont significativement differents

QLQ 30 V2-V1

condition de validité

shapiro.test(BP_C$Del_total_QLC30_2_vs_1)
## 
##  Shapiro-Wilk normality test
## 
## data:  BP_C$Del_total_QLC30_2_vs_1
## W = 0.92141, p-value = 0.1055
t.test(BP_C$Total_EORTC.QLQ30_1,BP_C$Total_EORTC.QLQ30_3,paired=TRUE)
## 
##  Paired t-test
## 
## data:  BP_C$Total_EORTC.QLQ30_1 and BP_C$Total_EORTC.QLQ30_3
## t = -2.7362, df = 17, p-value = 0.01407
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
##  -29.000558  -3.748331
## sample estimates:
## mean difference 
##       -16.37444

La p-value du test est <0.05, ainsi les scores EORTC_QLQ30 entre la V1 et la V2sont significativement differents dans le sens d’une augmentation