Bonchopred_comparatif <- read.csv2("C:/Users/mallah.s/Desktop/Stats et Theses/Brochopred_Arvin/Bonchopred_comparatif.csv", stringsAsFactors=TRUE)
BP_C<-Bonchopred_comparatif
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_IIIA=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_IIIA == "Non"]
## W = 0.87148, p-value = 0.06823
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_IIIA=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_IIIA == "Oui"]
## W = 0.80513, p-value = 0.06533
la normalité: acceptée -> t-test sera realisé
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Stade_IIIA)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Stade_IIIA
## F = 1.4236, num df = 11, denom df = 5, p-value = 0.7334
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.216757 5.757118
## sample estimates:
## ratio of variances
## 1.42362
test de variance: accepté
t.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Stade_IIIA, var.equal=TRUE)
##
## Two Sample t-test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Stade_IIIA
## t = 0.44148, df = 16, p-value = 0.6648
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -42.25136 64.47803
## sample estimates:
## mean in group Non mean in group Oui
## -27.77667 -38.89000
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_IIIB=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_IIIB == "Non"]
## W = 0.8723, p-value = 0.06989
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_IIIB=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_IIIB == "Oui"]
## W = 0.63989, p-value = 0.001351
la normalité: non acceptée -> test de wilcoxon sera realisé
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Stade_IIIB)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Stade_IIIB
## F = 11.906, num df = 11, denom df = 5, p-value = 0.01334
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 1.812776 48.147776
## sample estimates:
## ratio of variances
## 11.90598
test de variance: non accepté
Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon
t.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Stade_IIIB)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Stade_IIIB
## t = -0.74976, df = 14.129, p-value = 0.4657
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -53.59641 25.81308
## sample estimates:
## mean in group Non mean in group Oui
## -36.11167 -22.22000
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_IV == "Non"]
## W = 0.83977, p-value = 0.02751
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_IV == "Oui"]
## W = 0.88181, p-value = 0.2775
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Stade_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Stade_IV
## F = 0.19086, num df = 11, denom df = 5, p-value = 0.02105
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.02905923 0.77182035
## sample estimates:
## ratio of variances
## 0.1908558
test de variance: rejetée
t.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Stade_IV,var.test=FALSE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Stade_IV
## t = 0.085543, df = 5.9751, p-value = 0.9346
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -76.77455 82.33122
## sample estimates:
## mean in group Non mean in group Oui
## -30.55500 -33.33333
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_IIIA=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_IIIA == "Non"]
## W = 0.8165, p-value = 0.01452
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_IIIA=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_IIIA == "Oui"]
## W = 0.96427, p-value = 0.6368
la normalité: non acceptée -> wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Stade_IIIA)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Stade_IIIA
## F = 0.88311, num df = 11, denom df = 2, p-value = 0.7142
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.02240987 4.64151193
## sample estimates:
## ratio of variances
## 0.8831069
test de variance: accepté
wilcox.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Stade_IIIA, var.equal=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Stade_IIIA
## W = 20.5, p-value = 0.7534
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_IIIB=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_IIIB == "Non"]
## W = 0.87251, p-value = 0.1308
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_IIIB=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_IIIB == "Oui"]
## W = 0.82682, p-value = 0.101
la normalité: acceptée -> t. test
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Stade_IIIB)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Stade_IIIB
## F = 8.1269, num df = 8, denom df = 5, p-value = 0.03366
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 1.202704 39.149398
## sample estimates:
## ratio of variances
## 8.126875
test de variance: non accepté
t.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Stade_IIIB)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Stade_IIIB
## t = 0.5096, df = 10.645, p-value = 0.6207
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -37.07053 59.29053
## sample estimates:
## mean in group Non mean in group Oui
## 11.11 0.00
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_IV == "Non"]
## W = 0.8463, p-value = 0.06783
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_IV == "Oui"]
## W = 0.85134, p-value = 0.1614
la normalité: acceptée -> t.test ( test de student)
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Stade_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Stade_IV
## F = 0.22269, num df = 8, denom df = 5, p-value = 0.0604
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.03295567 1.07274515
## sample estimates:
## ratio of variances
## 0.2226871
test de variance: accepté
t.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Stade_IV,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Stade_IV
## t = -0.90407, df = 6.5052, p-value = 0.3982
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -94.79644 42.94422
## sample estimates:
## mean in group Non mean in group Oui
## -3.704444 22.221667
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_IIIA=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_IIIA == "Non"]
## W = 0.83906, p-value = 0.009444
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_IIIA=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_IIIA == "Oui"]
## W = 0.99839, p-value = 0.9951
la normalité: rejetée -> wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Stade_IIIA)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Stade_IIIA
## F = 0.32308, num df = 15, denom df = 3, p-value = 0.1176
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.02266786 1.34168179
## sample estimates:
## ratio of variances
## 0.3230785
test de variance: accepté
wilcox.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Stade_IIIA, var.equal=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Stade_IIIA
## W = 25, p-value = 0.5254
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_IIIB=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_IIIB == "Non"]
## W = 0.88535, p-value = 0.1027
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_IIIB=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_IIIB == "Oui"]
## W = 0.78232, p-value = 0.01846
la normalité: non acceptée -> test de wilcoxon sera realisé
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Stade_IIIB)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Stade_IIIB
## F = 3.3167, num df = 11, denom df = 7, p-value = 0.1225
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.704259 12.466224
## sample estimates:
## ratio of variances
## 3.316687
test de variance: accepté
Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon
wilcox.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Stade_IIIB)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Stade_IIIB
## W = 34, p-value = 0.2815
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_IV == "Non"]
## W = 0.92398, p-value = 0.3207
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_IV == "Oui"]
## W = 0.84338, p-value = 0.08157
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Stade_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Stade_IV
## F = 1.033, num df = 11, denom df = 7, p-value = 0.9957
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2193375 3.8825361
## sample estimates:
## ratio of variances
## 1.032964
test de variance: acceptée
wilcox.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Stade_IV,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Stade_IV
## W = 69, p-value = 0.102
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_IIIA=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_IIIA == "Non"]
## W = 0.94919, p-value = 0.6251
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_IIIA=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_IIIA == "Oui"]
## W = 0.78254, p-value = 0.04071
la normalité: rejetée -> Wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Stade_IIIA)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Stade_IIIA
## F = 2.4532, num df = 11, denom df = 5, p-value = 0.3323
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3735237 9.9208811
## sample estimates:
## ratio of variances
## 2.453236
test de variance: accepté
wilcox.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Stade_IIIA, var.equal=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Stade_IIIA
## W = 47.5, p-value = 0.2989
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_IIIB=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_IIIB == "Non"]
## W = 0.88126, p-value = 0.09098
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_IIIB=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_IIIB == "Oui"]
## W = 0.891, p-value = 0.3234
la normalité: acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Stade_IIIB)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Stade_IIIB
## F = 3.0823, num df = 11, denom df = 5, p-value = 0.2241
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.469297 12.464643
## sample estimates:
## ratio of variances
## 3.082257
test de variance: accepté
Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon
t.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Stade_IIIB)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Stade_IIIB
## t = -1.2867, df = 15.526, p-value = 0.2171
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -56.47701 13.88035
## sample estimates:
## mean in group Non mean in group Oui
## -31.48333 -10.18500
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_IV == "Non"]
## W = 0.9323, p-value = 0.4052
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_IV == "Oui"]
## W = 0.92139, p-value = 0.5154
la normalité: non acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Stade_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Stade_IV
## F = 0.23512, num df = 11, denom df = 5, p-value = 0.04257
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.03579941 0.95084118
## sample estimates:
## ratio of variances
## 0.235124
test de variance: rejetée
t.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Stade_IV,var.test=FALSE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Stade_IV
## t = 0.19819, df = 6.2057, p-value = 0.8492
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -57.26856 67.45190
## sample estimates:
## mean in group Non mean in group Oui
## -22.68667 -27.77833
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_IIIA=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_IIIA == "Non"]
## W = 0.95517, p-value = 0.7133
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_IIIA=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_IIIA == "Oui"]
## W = 0.85464, p-value = 0.2529
la normalité: acceptée -> t.test
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Stade_IIIA)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Stade_IIIA
## F = 0.73709, num df = 11, denom df = 2, p-value = 0.5948
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.01870455 3.87406870
## sample estimates:
## ratio of variances
## 0.737091
test de variance: accepté
t.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Stade_IIIA, var.equal=TRUE)
##
## Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Stade_IIIA
## t = 1.3729, df = 13, p-value = 0.193
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -18.85601 84.60101
## sample estimates:
## mean in group Non mean in group Oui
## 14.3525 -18.5200
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_IIIB=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_IIIB == "Non"]
## W = 0.99037, p-value = 0.9966
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_IIIB=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_IIIB == "Oui"]
## W = 0.96822, p-value = 0.8802
la normalité: acceptée -> t. test
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Stade_IIIB)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Stade_IIIB
## F = 1.6435, num df = 8, denom df = 5, p-value = 0.6059
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2432267 7.9173104
## sample estimates:
## ratio of variances
## 1.643524
test de variance: accepté
t.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Stade_IIIB, var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Stade_IIIB
## t = -0.51782, df = 12.546, p-value = 0.6136
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -52.84270 32.46936
## sample estimates:
## mean in group Non mean in group Oui
## 3.703333 13.890000
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_IV == "Non"]
## W = 0.96249, p-value = 0.824
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_IV == "Oui"]
## W = 0.96353, p-value = 0.8465
la normalité: acceptée -> t.test ( test de student)
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Stade_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Stade_IV
## F = 0.79349, num df = 8, denom df = 5, p-value = 0.7329
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1174291 3.8224536
## sample estimates:
## ratio of variances
## 0.7934887
test de variance: accepté
t.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Stade_IV,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Stade_IV
## t = -0.55361, df = 9.949, p-value = 0.5921
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -58.96478 35.50812
## sample estimates:
## mean in group Non mean in group Oui
## 3.086667 14.815000
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_IIIA=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_IIIA == "Non"]
## W = 0.88866, p-value = 0.05304
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_IIIA=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_IIIA == "Oui"]
## W = 0.94562, p-value = 0.6889
la normalité: accepté meme si une des données est = à 0.05 -> on va opter pour un test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Stade_IIIA)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Stade_IIIA
## F = 0.47004, num df = 15, denom df = 3, p-value = 0.2791
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.03297932 1.95200393
## sample estimates:
## ratio of variances
## 0.4700448
test de variance: accepté
t.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Stade_IIIA, var.equal=TRUE)
##
## Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Stade_IIIA
## t = -0.76337, df = 18, p-value = 0.4551
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -70.35049 32.85174
## sample estimates:
## mean in group Non mean in group Oui
## -40.97187 -22.22250
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_IIIB=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_IIIB == "Non"]
## W = 0.9239, p-value = 0.3199
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_IIIB=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_IIIB == "Oui"]
## W = 0.8021, p-value = 0.03014
la normalité: non acceptée -> test de wilcoxon sera realisé
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Stade_IIIB)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Stade_IIIB
## F = 2.8523, num df = 11, denom df = 7, p-value = 0.1745
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.6056531 10.7207811
## sample estimates:
## ratio of variances
## 2.852305
test de variance: accepté
Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon
wilcox.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Stade_IIIB)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Stade_IIIB
## W = 47, p-value = 0.9689
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_IV == "Non"]
## W = 0.9345, p-value = 0.4302
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_IV == "Oui"]
## W = 0.86904, p-value = 0.1475
la normalité: non acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Stade_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Stade_IV
## F = 0.63984, num df = 11, denom df = 7, p-value = 0.4876
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1358624 2.4049256
## sample estimates:
## ratio of variances
## 0.6398397
test de variance: acceptée
t.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Stade_IV,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Stade_IV
## t = 0.79574, df = 12.767, p-value = 0.4407
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -28.66716 62.00216
## sample estimates:
## mean in group Non mean in group Oui
## -30.5550 -47.2225
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_IIIA=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_IIIA == "Non"]
## W = 0.89374, p-value = 0.1317
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_IIIA=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_IIIA == "Oui"]
## W = 0.86977, p-value = 0.2253
la normalité: acceptée -> t-test sera realisé
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Stade_IIIA)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_3_vs_1 by BP_C$Stade_IIIA
## F = 2.8164, num df = 11, denom df = 5, p-value = 0.2629
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.4288249 11.3896954
## sample estimates:
## ratio of variances
## 2.816444
test de variance: accepté
t.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Stade_IIIA, var.equal=TRUE)
##
## Two Sample t-test
##
## data: BP_C$Del_total_QLC30_3_vs_1 by BP_C$Stade_IIIA
## t = -0.69761, df = 16, p-value = 0.4954
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -36.32254 18.33587
## sample estimates:
## mean in group Non mean in group Oui
## 13.37833 22.37167
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_IIIB=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_IIIB == "Non"]
## W = 0.76634, p-value = 0.00398
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_IIIB=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_IIIB == "Oui"]
## W = 0.98413, p-value = 0.9701
la normalité: acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Stade_IIIB)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_3_vs_1 by BP_C$Stade_IIIB
## F = 7.8526, num df = 11, denom df = 5, p-value = 0.03396
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 1.195625 31.756101
## sample estimates:
## ratio of variances
## 7.85265
test de variance: non accepté
t.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Stade_IIIB,var.test=FALSE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_QLC30_3_vs_1 by BP_C$Stade_IIIB
## t = 1.5019, df = 15.154, p-value = 0.1537
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -5.990963 34.659296
## sample estimates:
## mean in group Non mean in group Oui
## 21.15417 6.82000
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_IV == "Non"]
## W = 0.95912, p-value = 0.7713
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_IV == "Oui"]
## W = 0.734, p-value = 0.01383
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Stade_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_3_vs_1 by BP_C$Stade_IV
## F = 0.15503, num df = 11, denom df = 5, p-value = 0.009832
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.02360428 0.62693546
## sample estimates:
## ratio of variances
## 0.1550286
test de variance: rejetée
wilcox.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Stade_IV,var.test=FALSE)
##
## Wilcoxon rank sum exact test
##
## data: BP_C$Del_total_QLC30_3_vs_1 by BP_C$Stade_IV
## W = 19, p-value = 0.1246
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_IIIA=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_IIIA == "Non"]
## W = 0.90326, p-value = 0.1748
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_IIIA=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_IIIA == "Oui"]
## W = 0.9872, p-value = 0.7835
la normalité: non acceptée -> Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Stade_IIIA)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_3_vs_2 by BP_C$Stade_IIIA
## F = 0.35654, num df = 11, denom df = 2, p-value = 0.2074
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.009047524 1.873914918
## sample estimates:
## ratio of variances
## 0.3565362
test de variance: accepté
t.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Stade_IIIA, var.equal=TRUE)
##
## Two Sample t-test
##
## data: BP_C$Del_total_QLC30_3_vs_2 by BP_C$Stade_IIIA
## t = -1.4919, df = 13, p-value = 0.1596
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -60.94289 11.15456
## sample estimates:
## mean in group Non mean in group Oui
## -6.17750 18.71667
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_IIIB=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_IIIB == "Non"]
## W = 0.97044, p-value = 0.8985
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_IIIB=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_IIIB == "Oui"]
## W = 0.95146, p-value = 0.7521
la normalité: acceptée -> t. test
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Stade_IIIB)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_3_vs_2 by BP_C$Stade_IIIB
## F = 6.0555, num df = 8, denom df = 5, p-value = 0.0629
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.8961633 29.1711535
## sample estimates:
## ratio of variances
## 6.055529
test de variance: accepté
t.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Stade_IIIB)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_QLC30_3_vs_2 by BP_C$Stade_IIIB
## t = -0.0061963, df = 11.341, p-value = 0.9952
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -27.80158 27.64491
## sample estimates:
## mean in group Non mean in group Oui
## -1.230000 -1.151667
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_IV == "Non"]
## W = 0.92545, p-value = 0.4393
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_IV == "Oui"]
## W = 0.92789, p-value = 0.5639
la normalité: acceptée -> t.test ( test de student)
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Stade_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_3_vs_2 by BP_C$Stade_IV
## F = 0.6496, num df = 8, denom df = 5, p-value = 0.559
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.09613426 3.12928178
## sample estimates:
## ratio of variances
## 0.6495958
test de variance: accepté
t.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Stade_IV,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_QLC30_3_vs_2 by BP_C$Stade_IV
## t = 1.1375, df = 9.191, p-value = 0.2841
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -16.38105 49.72994
## sample estimates:
## mean in group Non mean in group Oui
## 5.471111 -11.203333
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_IIIA=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_IIIA == "Non"]
## W = 0.90223, p-value = 0.08725
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_IIIA=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_IIIA == "Oui"]
## W = 0.95772, p-value = 0.7646
la normalité: rejetée -> Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Stade_IIIA)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_2_vs_1 by BP_C$Stade_IIIA
## F = 0.83296, num df = 15, denom df = 3, p-value = 0.6868
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.05844213 3.45911450
## sample estimates:
## ratio of variances
## 0.8329588
test de variance: accepté
t.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Stade_IIIA, var.equal=TRUE)
##
## Two Sample t-test
##
## data: BP_C$Del_total_QLC30_2_vs_1 by BP_C$Stade_IIIA
## t = 0.48529, df = 18, p-value = 0.6333
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -19.85245 31.77870
## sample estimates:
## mean in group Non mean in group Oui
## 18.12313 12.16000
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_IIIB=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_IIIB == "Non"]
## W = 0.9327, p-value = 0.4096
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_IIIB=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_IIIB == "Oui"]
## W = 0.97024, p-value = 0.8998
la normalité: non acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Stade_IIIB)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_2_vs_1 by BP_C$Stade_IIIB
## F = 4.2678, num df = 11, denom df = 7, p-value = 0.06493
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.9062104 16.0410045
## sample estimates:
## ratio of variances
## 4.267771
test de variance: accepté
Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon
t.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Stade_IIIB,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_QLC30_2_vs_1 by BP_C$Stade_IIIB
## t = 2.0216, df = 16.825, p-value = 0.05942
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -0.7345335 33.7862002
## sample estimates:
## mean in group Non mean in group Oui
## 23.54083 7.01500
significativité: les resultats sont à la limite de la significativité, on peut en deduire ( avec precaution car nombre de patient non suffisant) que l’evolution du score QL30 entre la V2 et la V3 pour les patients inclus au Stade IIIB tend à etre dépendant
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_IV == "Non"]
## W = 0.92879, p-value = 0.3674
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_IV == "Oui"]
## W = 0.88648, p-value = 0.217
la normalité: non acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Stade_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_2_vs_1 by BP_C$Stade_IV
## F = 0.42694, num df = 11, denom df = 7, p-value = 0.1999
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.09065611 1.60472122
## sample estimates:
## ratio of variances
## 0.4269422
test de variance: acceptée
t.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Stade_IV,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_QLC30_2_vs_1 by BP_C$Stade_IV
## t = -2.1229, df = 10.986, p-value = 0.05732
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -41.7603477 0.7578477
## sample estimates:
## mean in group Non mean in group Oui
## 8.73000 29.23125
significativité: les resultats sont à la limite de la significativité, on peut en deduire ( avec precaution car nombre de patient non suffisant) que l’evolution du score QL30 entre la V2 et la V1 pour les patients inclus au Stade IIIB tend à etre dépendant
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_IIIA=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_IIIA == "Non"]
## W = 0.90942, p-value = 0.2097
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_IIIA=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_IIIA == "Oui"]
## W = 0.75142, p-value = 0.02057
la normalité: rejetée -> Wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Stade_IIIA)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_3_vs_1 by BP_C$Stade_IIIA
## F = 2.5738, num df = 11, denom df = 5, p-value = 0.3068
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3918771 10.4083523
## sample estimates:
## ratio of variances
## 2.573778
test de variance: accepté
wilcox.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Stade_IIIA, var.equal=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_total_LC13_3_vs_1 by BP_C$Stade_IIIA
## W = 31.5, p-value = 0.7075
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_IIIB=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_IIIB == "Non"]
## W = 0.82399, p-value = 0.01779
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_IIIB=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_IIIB == "Oui"]
## W = 0.86202, p-value = 0.1962
la normalité: acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Stade_IIIB)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_3_vs_1 by BP_C$Stade_IIIB
## F = 0.69522, num df = 11, denom df = 5, p-value = 0.5705
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1058527 2.8114750
## sample estimates:
## ratio of variances
## 0.6952216
test de variance: accepté
wilcox.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Stade_IIIB)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_total_LC13_3_vs_1 by BP_C$Stade_IIIB
## W = 51.5, p-value = 0.1594
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_IV == "Non"]
## W = 0.88078, p-value = 0.0897
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_IV == "Oui"]
## W = 0.83161, p-value = 0.1109
la normalité: non acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Stade_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_3_vs_1 by BP_C$Stade_IV
## F = 0.60217, num df = 11, denom df = 5, p-value = 0.4486
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.09168531 2.43518435
## sample estimates:
## ratio of variances
## 0.6021725
test de variance: rejetée
t.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Stade_IV,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_LC13_3_vs_1 by BP_C$Stade_IV
## t = 0.12407, df = 8.1292, p-value = 0.9043
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -25.01698 27.87031
## sample estimates:
## mean in group Non mean in group Oui
## 11.61333 10.18667
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_IIIA=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_IIIA == "Non"]
## W = 0.92264, p-value = 0.3085
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_IIIA=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_IIIA == "Oui"]
## W = 0.96429, p-value = 0.6369
la normalité: acceptée -> t.test
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Stade_IIIA)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_3_vs_2 by BP_C$Stade_IIIA
## F = 86.405, num df = 11, denom df = 2, p-value = 0.02299
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 2.192626 454.134790
## sample estimates:
## ratio of variances
## 86.40494
test de variance: rejeté
t.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Stade_IIIA, var.equal=TRUE)
##
## Two Sample t-test
##
## data: BP_C$Del_total_LC13_3_vs_2 by BP_C$Stade_IIIA
## t = -0.23473, df = 13, p-value = 0.8181
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -37.39628 30.06628
## sample estimates:
## mean in group Non mean in group Oui
## 1.581667 5.246667
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_IIIB=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_IIIB == "Non"]
## W = 0.9042, p-value = 0.2774
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_IIIB=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_IIIB == "Oui"]
## W = 0.90074, p-value = 0.3783
la normalité: acceptée -> t. test
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Stade_IIIB)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_3_vs_2 by BP_C$Stade_IIIB
## F = 0.21759, num df = 8, denom df = 5, p-value = 0.05678
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.03220132 1.04819019
## sample estimates:
## ratio of variances
## 0.2175898
test de variance: accepté
t.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Stade_IIIB, var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_LC13_3_vs_2 by BP_C$Stade_IIIB
## t = -0.4508, df = 6.4707, p-value = 0.6669
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -41.55956 28.43622
## sample estimates:
## mean in group Non mean in group Oui
## -0.310000 6.251667
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_IV == "Non"]
## W = 0.882, p-value = 0.1648
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_IV == "Oui"]
## W = 0.96508, p-value = 0.8579
la normalité: acceptée -> t.test ( test de student)
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Stade_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_3_vs_2 by BP_C$Stade_IV
## F = 1.958, num df = 8, denom df = 5, p-value = 0.4762
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2897685 9.4323008
## sample estimates:
## ratio of variances
## 1.958016
test de variance: accepté
t.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Stade_IV,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_LC13_3_vs_2 by BP_C$Stade_IV
## t = 0.77048, df = 12.869, p-value = 0.4549
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -16.2706 34.2806
## sample estimates:
## mean in group Non mean in group Oui
## 5.916667 -3.088333
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_IIIA=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_IIIA == "Non"]
## W = 0.86131, p-value = 0.02007
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_IIIA=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_IIIA == "Oui"]
## W = 0.8732, p-value = 0.3104
la normalité: rejetée
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Stade_IIIA)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_2_vs_1 by BP_C$Stade_IIIA
## F = 1.9071, num df = 15, denom df = 3, p-value = 0.6557
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1338032 7.9196390
## sample estimates:
## ratio of variances
## 1.907058
test de variance: accepté
wilcox.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Stade_IIIA, var.equal=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_total_LC13_2_vs_1 by BP_C$Stade_IIIA
## W = 33, p-value = 0.9623
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_IIIB=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_IIIB == "Non"]
## W = 0.87031, p-value = 0.06594
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_IIIB=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_IIIB == "Oui"]
## W = 0.87213, p-value = 0.1581
la normalité: non acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Stade_IIIB)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_2_vs_1 by BP_C$Stade_IIIB
## F = 0.28998, num df = 11, denom df = 7, p-value = 0.06607
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.06157395 1.08993222
## sample estimates:
## ratio of variances
## 0.2899806
test de variance: accepté
Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon
t.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Stade_IIIB,test.var=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_LC13_2_vs_1 by BP_C$Stade_IIIB
## t = 0.83446, df = 9.7365, p-value = 0.424
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -19.12184 41.88600
## sample estimates:
## mean in group Non mean in group Oui
## 11.72833 0.34625
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_IV == "Non"]
## W = 0.87837, p-value = 0.08355
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_IV == "Oui"]
## W = 0.82008, p-value = 0.04675
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Stade_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_2_vs_1 by BP_C$Stade_IV
## F = 2.4209, num df = 11, denom df = 7, p-value = 0.2501
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.5140428 9.0991703
## sample estimates:
## ratio of variances
## 2.420869
test de variance: acceptée
wilcox.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Stade_IV,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_total_LC13_2_vs_1 by BP_C$Stade_IV
## W = 30, p-value = 0.1765
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_.dyspnee_II=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.75817, p-value = 0.002658
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_.dyspnee_II=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.7832, p-value = 0.02783
la normalité: acceptée -> t-test sera realisé
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Stade_.dyspnee_II)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Stade_.dyspnee_II
## F = 0.46028, num df = 10, denom df = 6, p-value = 0.2662
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.08428048 1.87433264
## sample estimates:
## ratio of variances
## 0.460283
test de variance: accepté
t.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
##
## Two Sample t-test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Stade_.dyspnee_II
## t = -0.19474, df = 16, p-value = 0.848
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -56.61856 47.09128
## sample estimates:
## mean in group Non mean in group Oui
## -33.33364 -28.57000
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_.dyspnee_III=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.87148, p-value = 0.06823
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_.dyspnee_III=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.80513, p-value = 0.06533
la normalité: non acceptée -> test de wilcoxon sera realisé
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Stade_.dyspnee_III)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Stade_.dyspnee_III
## F = 1.4236, num df = 11, denom df = 5, p-value = 0.7334
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.216757 5.757118
## sample estimates:
## ratio of variances
## 1.42362
test de variance: non accepté
Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon
t.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Stade_.dyspnee_III)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Stade_.dyspnee_III
## t = 0.4696, df = 11.909, p-value = 0.6471
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -40.49328 62.71995
## sample estimates:
## mean in group Non mean in group Oui
## -27.77667 -38.89000
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_.dyspnee_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.88284, p-value = 0.07793
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_.dyspnee_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.73476, p-value = 0.02138
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Stade_.dyspnee_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Stade_.dyspnee_IV
## F = 1.4706, num df = 12, denom df = 4, p-value = 0.7621
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1680493 6.0607578
## sample estimates:
## ratio of variances
## 1.470626
test de variance: acceptée
wilcox.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Stade_.dyspnee_IV)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Stade_.dyspnee_IV
## W = 25.5, p-value = 0.5076
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_.dyspnee_II=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.82713, p-value = 0.05542
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_.dyspnee_II=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.93222, p-value = 0.5699
la normalité: acceptée -> Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Stade_.dyspnee_II)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Stade_.dyspnee_II
## F = 0.77886, num df = 7, denom df = 6, p-value = 0.7438
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1367511 3.9866802
## sample estimates:
## ratio of variances
## 0.778862
test de variance: accepté
t.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
##
## Two Sample t-test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Stade_.dyspnee_II
## t = 0.14015, df = 13, p-value = 0.8907
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -51.47424 58.61638
## sample estimates:
## mean in group Non mean in group Oui
## 8.332500 4.761429
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_.dyspnee_III=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.85694, p-value = 0.04476
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_.dyspnee_III=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.75, p-value < 2.2e-16
la normalité: acceptée -> t. test
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Stade_.dyspnee_III)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Stade_.dyspnee_III
## F = 7.5471, num df = 11, denom df = 2, p-value = 0.2454
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1915163 39.6666758
## sample estimates:
## ratio of variances
## 7.547091
test de variance: non accepté
t.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Stade_.dyspnee_III)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Stade_.dyspnee_III
## t = -0.29428, df = 10.118, p-value = 0.7745
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -47.54797 36.43797
## sample estimates:
## mean in group Non mean in group Oui
## 5.555 11.110
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_.dyspnee_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.89705, p-value = 0.2033
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_.dyspnee_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.86279, p-value = 0.2384
la normalité: acceptée -> t.test ( test de student)
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Stade_.dyspnee_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Stade_.dyspnee_IV
## F = 0.54164, num df = 9, denom df = 4, p-value = 0.4086
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.06082687 2.55551833
## sample estimates:
## ratio of variances
## 0.5416439
test de variance: accepté
t.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Stade_.dyspnee_IV,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Stade_.dyspnee_IV
## t = 0, df = 6.256, p-value = 1
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -72.83559 72.83559
## sample estimates:
## mean in group Non mean in group Oui
## 6.666 6.666
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_.dyspnee_II=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.89331, p-value = 0.13
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_.dyspnee_II=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.85994, p-value = 0.1199
la normalité: accepté -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Stade_.dyspnee_II)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Stade_.dyspnee_II
## F = 2.2008, num df = 11, denom df = 7, p-value = 0.3044
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.4673128 8.2719929
## sample estimates:
## ratio of variances
## 2.200795
test de variance: accepté
t.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
##
## Two Sample t-test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Stade_.dyspnee_II
## t = -0.25945, df = 18, p-value = 0.7982
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -50.55241 39.43907
## sample estimates:
## mean in group Non mean in group Oui
## -38.88917 -33.33250
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_.dyspnee_III=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.91634, p-value = 0.1472
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_.dyspnee_III=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.8494, p-value = 0.2242
la normalité: acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Stade_.dyspnee_III)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Stade_.dyspnee_III
## F = 0.85742, num df = 15, denom df = 3, p-value = 0.7107
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.0601587 3.5607165
## sample estimates:
## ratio of variances
## 0.8574247
test de variance: accepté
Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon
t.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Stade_.dyspnee_III)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Stade_.dyspnee_III
## t = 0.22691, df = 4.3837, p-value = 0.8307
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -67.66974 80.17224
## sample estimates:
## mean in group Non mean in group Oui
## -35.41625 -41.66750
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_.dyspnee_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.83028, p-value = 0.02113
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_.dyspnee_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.91939, p-value = 0.4249
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Stade_.dyspnee_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Stade_.dyspnee_IV
## F = 0.45472, num df = 11, denom df = 7, p-value = 0.2338
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.09655393 1.70911968
## sample estimates:
## ratio of variances
## 0.4547178
test de variance: acceptée
wilcox.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Stade_.dyspnee_IV,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Stade_.dyspnee_IV
## W = 51.5, p-value = 0.8109
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_.dyspnee_II=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.93874, p-value = 0.5058
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_.dyspnee_II=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.85391, p-value = 0.1334
la normalité:acceptée -> Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Stade_.dyspnee_II)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Stade_.dyspnee_II
## F = 0.4806, num df = 10, denom df = 6, p-value = 0.2924
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.08799985 1.95704864
## sample estimates:
## ratio of variances
## 0.4805957
test de variance: accepté
t.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
##
## Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Stade_.dyspnee_II
## t = -1.4408, df = 16, p-value = 0.1689
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -66.51755 12.68716
## sample estimates:
## mean in group Non mean in group Oui
## -34.850909 -7.935714
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_.dyspnee_III=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.9495, p-value = 0.6296
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_.dyspnee_III=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.90669, p-value = 0.415
la normalité: acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Stade_.dyspnee_III)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Stade_.dyspnee_III
## F = 2.9009, num df = 11, denom df = 5, p-value = 0.2496
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.4416783 11.7310841
## sample estimates:
## ratio of variances
## 2.900863
test de variance: accepté
Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon
t.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Stade_.dyspnee_III,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Stade_.dyspnee_III
## t = 0.45765, df = 15.347, p-value = 0.6536
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -28.71773 44.46107
## sample estimates:
## mean in group Non mean in group Oui
## -21.76000 -29.63167
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_.dyspnee_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.86004, p-value = 0.03857
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_.dyspnee_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.92855, p-value = 0.5865
la normalité: non acceptée -> test de Wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Stade_.dyspnee_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Stade_.dyspnee_IV
## F = 0.92372, num df = 12, denom df = 4, p-value = 0.8159
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1055541 3.8068469
## sample estimates:
## ratio of variances
## 0.923721
test de variance: acceptée
wilcox.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Stade_.dyspnee_IV,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Stade_.dyspnee_IV
## W = 40, p-value = 0.4866
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_.dyspnee_II=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.89398, p-value = 0.2547
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_.dyspnee_II=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.90428, p-value = 0.3577
la normalité: acceptée -> t.test
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Stade_.dyspnee_II)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Stade_.dyspnee_II
## F = 0.64484, num df = 7, denom df = 6, p-value = 0.5768
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1132203 3.3006898
## sample estimates:
## ratio of variances
## 0.6448427
test de variance: accepté
t.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
##
## Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Stade_.dyspnee_II
## t = -0.30547, df = 13, p-value = 0.7648
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -50.47438 37.96866
## sample estimates:
## mean in group Non mean in group Oui
## 4.86000 11.11286
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_.dyspnee_III=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.97532, p-value = 0.9578
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_.dyspnee_III=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 1, p-value = 1
la normalité: acceptée -> t. test
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Stade_.dyspnee_III)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Stade_.dyspnee_III
## F = 14.736, num df = 11, denom df = 2, p-value = 0.1304
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3739384 77.4497782
## sample estimates:
## ratio of variances
## 14.73581
test de variance: accepté
t.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Stade_.dyspnee_III, var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Stade_.dyspnee_III
## t = 0.70036, df = 12.654, p-value = 0.4964
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -20.3518 39.7968
## sample estimates:
## mean in group Non mean in group Oui
## 9.7225 0.0000
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_.dyspnee_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.92228, p-value = 0.3763
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_.dyspnee_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.85455, p-value = 0.2093
la normalité: acceptée -> t.test ( test de student)
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Stade_.dyspnee_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Stade_.dyspnee_IV
## F = 0.64307, num df = 9, denom df = 4, p-value = 0.5338
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.07221726 3.03406275
## sample estimates:
## ratio of variances
## 0.6430717
test de variance: accepté
t.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Stade_.dyspnee_IV,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Stade_.dyspnee_IV
## t = 0.00012756, df = 6.6789, p-value = 0.9999
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -56.15399 56.15999
## sample estimates:
## mean in group Non mean in group Oui
## 7.779 7.776
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_.dyspnee_II=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.93909, p-value = 0.4864
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_.dyspnee_II=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.92215, p-value = 0.4476
la normalité: accepté
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Stade_.dyspnee_II)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Stade_.dyspnee_II
## F = 1.3196, num df = 11, denom df = 7, p-value = 0.7351
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.280201 4.959891
## sample estimates:
## ratio of variances
## 1.319598
test de variance: accepté
t.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
##
## Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Stade_.dyspnee_II
## t = -0.31894, df = 18, p-value = 0.7534
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -49.16868 36.20784
## sample estimates:
## mean in group Non mean in group Oui
## -39.81417 -33.33375
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_.dyspnee_III=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.93707, p-value = 0.3146
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_.dyspnee_III=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.75264, p-value = 0.04088
la normalité: non acceptée -> test de wilcoxon sera realisé
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Stade_.dyspnee_III)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Stade_.dyspnee_III
## F = 1.6504, num df = 15, denom df = 3, p-value = 0.7574
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1157927 6.8536229
## sample estimates:
## ratio of variances
## 1.65036
test de variance: accepté
Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon
wilcox.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Stade_.dyspnee_III, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Stade_.dyspnee_III
## W = 20.5, p-value = 0.2935
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_.dyspnee_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.87074, p-value = 0.06678
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_.dyspnee_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.88775, p-value = 0.223
la normalité: non acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Stade_.dyspnee_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Stade_.dyspnee_IV
## F = 0.52338, num df = 11, denom df = 7, p-value = 0.324
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.111133 1.967187
## sample estimates:
## ratio of variances
## 0.5233777
test de variance: acceptée
t.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Stade_.dyspnee_IV,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Stade_.dyspnee_IV
## t = 0.77999, df = 11.821, p-value = 0.4507
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -29.96563 63.29646
## sample estimates:
## mean in group Non mean in group Oui
## -30.55583 -47.22125
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_.dyspnee_II=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.92886, p-value = 0.3994
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_.dyspnee_II=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.83341, p-value = 0.08619
la normalité: acceptée -> t-test sera realisé
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Stade_.dyspnee_II)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_3_vs_1 by BP_C$Stade_.dyspnee_II
## F = 0.32355, num df = 10, denom df = 6, p-value = 0.1117
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.05924476 1.31755770
## sample estimates:
## ratio of variances
## 0.3235548
test de variance: accepté
t.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
##
## Two Sample t-test
##
## data: BP_C$Del_total_QLC30_3_vs_1 by BP_C$Stade_.dyspnee_II
## t = 0.81742, df = 16, p-value = 0.4257
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -16.14829 36.41712
## sample estimates:
## mean in group Non mean in group Oui
## 20.31727 10.18286
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_.dyspnee_III=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.86898, p-value = 0.06344
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_.dyspnee_III=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.88102, p-value = 0.2738
la normalité: acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Stade_.dyspnee_III)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_3_vs_1 by BP_C$Stade_.dyspnee_III
## F = 3.2534, num df = 11, denom df = 5, p-value = 0.2032
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.4953526 13.1566872
## sample estimates:
## ratio of variances
## 3.253386
test de variance: non accepté
t.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Stade_.dyspnee_III,var.test=FALSE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_QLC30_3_vs_1 by BP_C$Stade_.dyspnee_III
## t = 0.064238, df = 15.661, p-value = 0.9496
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -22.33453 23.72786
## sample estimates:
## mean in group Non mean in group Oui
## 16.60833 15.91167
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_.dyspnee_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.84284, p-value = 0.02304
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_.dyspnee_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_1[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.89762, p-value = 0.3969
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Stade_.dyspnee_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_3_vs_1 by BP_C$Stade_.dyspnee_IV
## F = 1.3236, num df = 12, denom df = 4, p-value = 0.853
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1512517 5.4549464
## sample estimates:
## ratio of variances
## 1.323628
test de variance: rejetée
wilcox.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Stade_.dyspnee_IV,var.test=TRUE)
##
## Wilcoxon rank sum exact test
##
## data: BP_C$Del_total_QLC30_3_vs_1 by BP_C$Stade_.dyspnee_IV
## W = 23, p-value = 0.3873
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_.dyspnee_II=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.82239, p-value = 0.04944
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_.dyspnee_II=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.87655, p-value = 0.2116
la normalité: non acceptée -> wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Stade_.dyspnee_II)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_3_vs_2 by BP_C$Stade_.dyspnee_II
## F = 0.78588, num df = 7, denom df = 6, p-value = 0.7521
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.137983 4.022593
## sample estimates:
## ratio of variances
## 0.785878
test de variance: accepté
t.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
##
## Two Sample t-test
##
## data: BP_C$Del_total_QLC30_3_vs_2 by BP_C$Stade_.dyspnee_II
## t = 0.24456, df = 13, p-value = 0.8106
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -27.67527 34.74098
## sample estimates:
## mean in group Non mean in group Oui
## 0.450000 -3.082857
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_.dyspnee_III=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.94657, p-value = 0.5874
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_.dyspnee_III=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.90167, p-value = 0.3908
la normalité: acceptée -> t. test
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Stade_.dyspnee_III)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_3_vs_2 by BP_C$Stade_.dyspnee_III
## F = 1.4225, num df = 11, denom df = 2, p-value = 0.9679
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.0360966 7.4762960
## sample estimates:
## ratio of variances
## 1.422461
test de variance: accepté
t.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Stade_.dyspnee_III)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_QLC30_3_vs_2 by BP_C$Stade_.dyspnee_III
## t = 0.17089, df = 3.5928, p-value = 0.8735
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -44.09261 49.60428
## sample estimates:
## mean in group Non mean in group Oui
## -0.647500 -3.403333
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_.dyspnee_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.91897, p-value = 0.3484
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_.dyspnee_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_2[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.78064, p-value = 0.05582
la normalité: acceptée -> t.test ( test de student)
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Stade_.dyspnee_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_3_vs_2 by BP_C$Stade_.dyspnee_IV
## F = 0.7896, num df = 9, denom df = 4, p-value = 0.7027
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.08867281 3.72540968
## sample estimates:
## ratio of variances
## 0.7896032
test de variance: accepté
t.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Stade_.dyspnee_IV,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_QLC30_3_vs_2 by BP_C$Stade_.dyspnee_IV
## t = -0.3738, df = 7.2777, p-value = 0.7192
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -43.23398 31.35198
## sample estimates:
## mean in group Non mean in group Oui
## -3.179 2.762
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_.dyspnee_II=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.91294, p-value = 0.2327
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_.dyspnee_II=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.91909, p-value = 0.4225
la normalité: rejetée -> Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Stade_.dyspnee_II)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_2_vs_1 by BP_C$Stade_.dyspnee_II
## F = 0.90097, num df = 11, denom df = 7, p-value = 0.8413
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1913092 3.3864017
## sample estimates:
## ratio of variances
## 0.9009651
test de variance: accepté
t.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
##
## Two Sample t-test
##
## data: BP_C$Del_total_QLC30_2_vs_1 by BP_C$Stade_.dyspnee_II
## t = 0.6451, df = 18, p-value = 0.527
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -14.53428 27.41511
## sample estimates:
## mean in group Non mean in group Oui
## 19.50667 13.06625
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_.dyspnee_III=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.89345, p-value = 0.06318
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_.dyspnee_III=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.93975, p-value = 0.6528
la normalité: non acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Stade_.dyspnee_III)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_2_vs_1 by BP_C$Stade_.dyspnee_III
## F = 2.1341, num df = 15, denom df = 3, p-value = 0.5828
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1497324 8.8624714
## sample estimates:
## ratio of variances
## 2.134093
test de variance: accepté
Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon
t.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Stade_.dyspnee_III,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_QLC30_2_vs_1 by BP_C$Stade_.dyspnee_III
## t = -0.6792, df = 6.6751, p-value = 0.5199
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -29.88818 16.65193
## sample estimates:
## mean in group Non mean in group Oui
## 15.60688 22.22500
significativité: les resultats sont à la limite de la significativité, on peut en deduire ( avec precaution car nombre de patient non suffisant) que l’evolution du score QL30 entre la V2 et la V3 pour les patients inclus au Stade IIIB tend à etre dépendant
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_.dyspnee_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.95938, p-value = 0.775
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_.dyspnee_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_2_vs_1[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.87996, p-value = 0.1882
la normalité: non acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Stade_.dyspnee_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_2_vs_1 by BP_C$Stade_.dyspnee_IV
## F = 0.67696, num df = 11, denom df = 7, p-value = 0.5403
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1437434 2.5444298
## sample estimates:
## ratio of variances
## 0.6769553
test de variance: acceptée
t.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Stade_.dyspnee_IV,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_QLC30_2_vs_1 by BP_C$Stade_.dyspnee_IV
## t = -0.19305, df = 13.052, p-value = 0.8499
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -24.71770 20.66103
## sample estimates:
## mean in group Non mean in group Oui
## 16.11917 18.14750
significativité: les resultats sont à la limite de la significativité, on peut en deduire ( avec precaution car nombre de patient non suffisant) que l’evolution du score QL30 entre la V2 et la V1 pour les patients inclus au Stade IIIB tend à etre dépendant
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_.dyspnee_II=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.88724, p-value = 0.1284
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_.dyspnee_II=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.90828, p-value = 0.3841
la normalité: acceptée -> Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Stade_.dyspnee_II)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_3_vs_1 by BP_C$Stade_.dyspnee_II
## F = 0.3164, num df = 10, denom df = 6, p-value = 0.105
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.05793548 1.28844031
## sample estimates:
## ratio of variances
## 0.3164044
test de variance: accepté
t.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
##
## Two Sample t-test
##
## data: BP_C$Del_total_LC13_3_vs_1 by BP_C$Stade_.dyspnee_II
## t = -0.48838, df = 16, p-value = 0.6319
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -26.36220 16.48999
## sample estimates:
## mean in group Non mean in group Oui
## 9.218182 14.154286
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_.dyspnee_III=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.90942, p-value = 0.2097
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_.dyspnee_III=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.75142, p-value = 0.02057
la normalité: acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Stade_.dyspnee_III)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_3_vs_1 by BP_C$Stade_.dyspnee_III
## F = 2.5738, num df = 11, denom df = 5, p-value = 0.3068
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3918771 10.4083523
## sample estimates:
## ratio of variances
## 2.573778
test de variance: accepté
wilcox.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Stade_.dyspnee_III)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_total_LC13_3_vs_1 by BP_C$Stade_.dyspnee_III
## W = 31.5, p-value = 0.7075
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_.dyspnee_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.87006, p-value = 0.05239
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_.dyspnee_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_1[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.83105, p-value = 0.1417
la normalité: non acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Stade_.dyspnee_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_3_vs_1 by BP_C$Stade_.dyspnee_IV
## F = 2.63, num df = 12, denom df = 4, p-value = 0.3629
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3005335 10.8388463
## sample estimates:
## ratio of variances
## 2.630016
test de variance: rejetée
t.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Stade_.dyspnee_IV,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_LC13_3_vs_1 by BP_C$Stade_.dyspnee_IV
## t = 1.7157, df = 12.069, p-value = 0.1117
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -3.908504 32.957120
## sample estimates:
## mean in group Non mean in group Oui
## 15.17231 0.64800
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_.dyspnee_II=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.84505, p-value = 0.08484
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_.dyspnee_II=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.95908, p-value = 0.8108
la normalité: acceptée -> t.test
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Stade_.dyspnee_II)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_3_vs_2 by BP_C$Stade_.dyspnee_II
## F = 0.11218, num df = 7, denom df = 6, p-value = 0.01081
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.01969602 0.57419446
## sample estimates:
## ratio of variances
## 0.1121781
test de variance: rejeté
t.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Stade_.dyspnee_II, var.equal=FALSE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_LC13_3_vs_2 by BP_C$Stade_.dyspnee_II
## t = -0.79541, df = 7.1764, p-value = 0.4519
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -40.74089 20.15481
## sample estimates:
## mean in group Non mean in group Oui
## -2.488750 7.804286
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_.dyspnee_III=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.92863, p-value = 0.3658
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_.dyspnee_III=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.99999, p-value = 0.994
la normalité: acceptée -> t. test
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Stade_.dyspnee_III)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_3_vs_2 by BP_C$Stade_.dyspnee_III
## F = 810.61, num df = 11, denom df = 2, p-value = 0.002465
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 20.57009 4260.45799
## sample estimates:
## ratio of variances
## 810.6065
test de variance: rejetée
t.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Stade_.dyspnee_III, var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_LC13_3_vs_2 by BP_C$Stade_.dyspnee_III
## t = -0.22831, df = 11.107, p-value = 0.8236
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -18.49454 15.01454
## sample estimates:
## mean in group Non mean in group Oui
## 1.966667 3.706667
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_.dyspnee_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.93223, p-value = 0.4702
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_.dyspnee_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_2[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.94996, p-value = 0.7369
la normalité: acceptée -> t.test ( test de student)
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Stade_.dyspnee_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_3_vs_2 by BP_C$Stade_.dyspnee_IV
## F = 4.3893, num df = 9, denom df = 4, p-value = 0.1681
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.4929211 20.7090855
## sample estimates:
## ratio of variances
## 4.389305
test de variance: accepté
t.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Stade_.dyspnee_IV,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_LC13_3_vs_2 by BP_C$Stade_.dyspnee_IV
## t = 1.2522, df = 12.998, p-value = 0.2326
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -9.27053 34.83253
## sample estimates:
## mean in group Non mean in group Oui
## 6.575 -6.206
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_.dyspnee_II=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.84331, p-value = 0.03038
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_.dyspnee_II=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.91421, p-value = 0.3847
la normalité: rejetée
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Stade_.dyspnee_II)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_2_vs_1 by BP_C$Stade_.dyspnee_II
## F = 0.075733, num df = 11, denom df = 7, p-value = 0.0002956
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.01608106 0.28465400
## sample estimates:
## ratio of variances
## 0.07573329
test de variance: accepté
wilcox.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_total_LC13_2_vs_1 by BP_C$Stade_.dyspnee_II
## W = 63.5, p-value = 0.2466
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_.dyspnee_III=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.85607, p-value = 0.01676
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_.dyspnee_III=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.87373, p-value = 0.3125
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Stade_.dyspnee_III)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_2_vs_1 by BP_C$Stade_.dyspnee_III
## F = 3.2484, num df = 15, denom df = 3, p-value = 0.3613
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2279132 13.4898927
## sample estimates:
## ratio of variances
## 3.248382
test de variance: accepté
Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon
t.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Stade_.dyspnee_III,test.var=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_LC13_2_vs_1 by BP_C$Stade_.dyspnee_III
## t = -1.0888, df = 8.7031, p-value = 0.3055
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -35.74764 12.59889
## sample estimates:
## mean in group Non mean in group Oui
## 4.860625 16.435000
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_.dyspnee_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.93778, p-value = 0.4698
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_.dyspnee_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_2_vs_1[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.91986, p-value = 0.4287
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Stade_.dyspnee_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_2_vs_1 by BP_C$Stade_.dyspnee_IV
## F = 25.991, num df = 11, denom df = 7, p-value = 0.0002569
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 5.518815 97.689596
## sample estimates:
## ratio of variances
## 25.99069
test de variance: acceptée
wilcox.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Stade_.dyspnee_IV,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_total_LC13_2_vs_1 by BP_C$Stade_.dyspnee_IV
## W = 48, p-value = 1
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Hist_ADK=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Hist_ADK == "Non"]
## W = 0.84545, p-value = 0.03227
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Hist_ADK=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Hist_ADK == "Oui"]
## W = 0.86588, p-value = 0.2103
la normalité: non acceptée -> test de wilcoxon sera realisé
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Hist_ADK)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Hist_ADK
## F = 0.51074, num df = 11, denom df = 5, p-value = 0.328
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.07776378 2.06542511
## sample estimates:
## ratio of variances
## 0.5107384
test de variance: accepté
wilcox.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Hist_ADK,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Hist_ADK
## W = 23, p-value = 0.226
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Hist_Epiderm=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Hist_Epiderm == "Non"]
## W = 0.86913, p-value = 0.09765
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Hist_Epiderm=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Hist_Epiderm == "Oui"]
## W = 0.78088, p-value = 0.01781
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Hist_Epiderm)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Hist_Epiderm
## F = 1.4257, num df = 9, denom df = 7, p-value = 0.6546
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2955852 5.9836094
## sample estimates:
## ratio of variances
## 1.425671
test de variance: acceptée
t.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Hist_Epiderm,var.test=FALSE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Hist_Epiderm
## t = 0.4633, df = 15.943, p-value = 0.6494
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -38.75277 60.42077
## sample estimates:
## mean in group Non mean in group Oui
## -26.666 -37.500
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Hist_ADK=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Hist_ADK == "Non"]
## W = 0.83021, p-value = 0.0449
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Hist_ADK=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Hist_ADK == "Oui"]
## W = 0.75467, p-value = 0.02212
la normalité: rejetée -> wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Hist_ADK)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Hist_ADK
## F = 0.47437, num df = 8, denom df = 5, p-value = 0.3329
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.0702025 2.2851726
## sample estimates:
## ratio of variances
## 0.4743703
test de variance: non accepté
wilcox.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Hist_ADK, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Hist_ADK
## W = 11, p-value = 0.04686
## alternative hypothesis: true location shift is not equal to 0
significativité: Oui D’apres les resultats le delta des dyspnée QLO30 entre la V3 et V2 est fortement relié au type histologique ADK
Pour verifier si le type histologique ADK et les la données initiales de la question dysppnée, à V3 ensuite à V2 sont independants j’ai realisé un X² test qui a montré l’independance de ces resulats , donc c’est la difference entre v3 et V2 qui est statistqument significative
chisq.test(BP_C$symp_QLC30_dyspnée_2_.,BP_C$Hist_ADK)
## Warning in chisq.test(BP_C$symp_QLC30_dyspnée_2_., BP_C$Hist_ADK):
## L’approximation du Chi-2 est peut-être incorrecte
##
## Pearson's Chi-squared test
##
## data: BP_C$symp_QLC30_dyspnée_2_. and BP_C$Hist_ADK
## X-squared = 3.4857, df = 3, p-value = 0.3226
chisq.test(BP_C$symp_QLC30_dyspnée_3_.,BP_C$Hist_ADK)
## Warning in chisq.test(BP_C$symp_QLC30_dyspnée_3_., BP_C$Hist_ADK):
## L’approximation du Chi-2 est peut-être incorrecte
##
## Pearson's Chi-squared test
##
## data: BP_C$symp_QLC30_dyspnée_3_. and BP_C$Hist_ADK
## X-squared = 2.025, df = 3, p-value = 0.5672
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Hist_Epiderm=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Hist_Epiderm == "Non"]
## W = 0.90865, p-value = 0.2719
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Hist_Epiderm=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Hist_Epiderm == "Oui"]
## W = 0.55218, p-value = 0.000131
la normalité: rejetée -> wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Hist_Epiderm)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Hist_Epiderm
## F = 3.1247, num df = 9, denom df = 4, p-value = 0.2846
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3509039 14.7425209
## sample estimates:
## ratio of variances
## 3.124688
test de variance: accepté
wilcox.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Hist_Epiderm,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Hist_Epiderm
## W = 33.5, p-value = 0.2864
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Hist_ADK=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Hist_ADK == "Non"]
## W = 0.91557, p-value = 0.3215
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Hist_ADK=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Hist_ADK == "Oui"]
## W = 0.87802, p-value = 0.1238
la normalité: acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Hist_ADK)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Hist_ADK
## F = 1.7419, num df = 9, denom df = 9, p-value = 0.421
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.4326684 7.0129617
## sample estimates:
## ratio of variances
## 1.74192
test de variance: accepté
t.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Hist_ADK)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Hist_ADK
## t = 0.97622, df = 16.772, p-value = 0.3428
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -23.27023 63.27223
## sample estimates:
## mean in group Non mean in group Oui
## -26.666 -46.667
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Hist_Epiderm=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Hist_Epiderm == "Non"]
## W = 0.83841, p-value = 0.01552
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Hist_Epiderm=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Hist_Epiderm == "Oui"]
## W = 0.95138, p-value = 0.7515
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Hist_Epiderm)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Hist_Epiderm
## F = 0.54742, num df = 13, denom df = 5, p-value = 0.3534
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.08438002 2.06196064
## sample estimates:
## ratio of variances
## 0.5474221
test de variance: acceptée
wilcox.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Hist_Epiderm,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Hist_Epiderm
## W = 29.5, p-value = 0.3061
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Hist_ADK=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Hist_ADK == "Non"]
## W = 0.95702, p-value = 0.7406
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Hist_ADK=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Hist_ADK == "Oui"]
## W = 0.88446, p-value = 0.2902
la normalité: acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Hist_ADK)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Hist_ADK
## F = 0.54006, num df = 11, denom df = 5, p-value = 0.3664
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.08222763 2.18398606
## sample estimates:
## ratio of variances
## 0.5400561
test de variance: accepté
t.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Hist_ADK,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Hist_ADK
## t = -1.2434, df = 7.8061, p-value = 0.2497
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -76.86243 23.16077
## sample estimates:
## mean in group Non mean in group Oui
## -33.334167 -6.483333
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Hist_Epiderm=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Hist_Epiderm == "Non"]
## W = 0.89059, p-value = 0.1722
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Hist_Epiderm=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Hist_Epiderm == "Oui"]
## W = 0.97458, p-value = 0.9313
la normalité: non acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Hist_Epiderm)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Hist_Epiderm
## F = 1.5802, num df = 9, denom df = 7, p-value = 0.5594
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3276168 6.6320342
## sample estimates:
## ratio of variances
## 1.580167
test de variance: acceptée
t.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Hist_Epiderm,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Hist_Epiderm
## t = 1.4609, df = 15.999, p-value = 0.1634
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -11.7799 64.0019
## sample estimates:
## mean in group Non mean in group Oui
## -12.779 -38.890
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Hist_ADK=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Hist_ADK == "Non"]
## W = 0.98173, p-value = 0.9726
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Hist_ADK=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Hist_ADK == "Oui"]
## W = 0.9732, p-value = 0.9132
la normalité: acceptée -> t. test
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Hist_ADK)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Hist_ADK
## F = 1.0661, num df = 8, denom df = 5, p-value = 0.9897
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1577698 5.1355900
## sample estimates:
## ratio of variances
## 1.066078
test de variance: accepté
t.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Hist_ADK, var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Hist_ADK
## t = -1.8932, df = 11.122, p-value = 0.08464
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -75.36790 5.61679
## sample estimates:
## mean in group Non mean in group Oui
## -6.172222 28.703333
significativité: Non mais à la limoté de la significativité
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Hist_Epiderm=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Hist_Epiderm == "Non"]
## W = 0.93762, p-value = 0.5268
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Hist_Epiderm=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Hist_Epiderm == "Oui"]
## W = 0.932, p-value = 0.6101
la normalité: acceptée -> t.test ( test de student)
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Hist_Epiderm)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Hist_Epiderm
## F = 0.6943, num df = 9, denom df = 4, p-value = 0.5948
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.07796984 3.27574578
## sample estimates:
## ratio of variances
## 0.6942966
test de variance: accepté
t.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Hist_Epiderm,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Hist_Epiderm
## t = 0.81261, df = 6.8902, p-value = 0.4436
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -35.18744 71.85344
## sample estimates:
## mean in group Non mean in group Oui
## 13.889 -4.444
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Hist_ADK=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Hist_ADK == "Non"]
## W = 0.90097, p-value = 0.2245
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Hist_ADK=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Hist_ADK == "Oui"]
## W = 0.96475, p-value = 0.8383
la normalité: acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Hist_ADK)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Hist_ADK
## F = 1.4855, num df = 9, denom df = 9, p-value = 0.5649
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3689666 5.9804422
## sample estimates:
## ratio of variances
## 1.485457
test de variance: accepté
t.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Hist_ADK,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Hist_ADK
## t = 0.2789, df = 17.339, p-value = 0.7836
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -36.41221 47.52421
## sample estimates:
## mean in group Non mean in group Oui
## -34.444 -40.000
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Hist_Epiderm=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Hist_Epiderm == "Non"]
## W = 0.93636, p-value = 0.3736
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Hist_Epiderm=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Hist_Epiderm == "Oui"]
## W = 0.91335, p-value = 0.4588
la normalité: non acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Hist_Epiderm)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Hist_Epiderm
## F = 0.37386, num df = 13, denom df = 5, p-value = 0.142
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.05762633 1.40819147
## sample estimates:
## ratio of variances
## 0.3738554
test de variance: acceptée
t.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Hist_Epiderm,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Hist_Epiderm
## t = -0.0099821, df = 6.6648, p-value = 0.9923
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -63.62812 63.09860
## sample estimates:
## mean in group Non mean in group Oui
## -37.30143 -37.03667
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Hist_ADK=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_1[BP_C$Hist_ADK == "Non"]
## W = 0.96714, p-value = 0.8787
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Hist_ADK=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_1[BP_C$Hist_ADK == "Oui"]
## W = 0.83486, p-value = 0.1181
la normalité: acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Hist_ADK)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_3_vs_1 by BP_C$Hist_ADK
## F = 0.28329, num df = 11, denom df = 5, p-value = 0.0757
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.04313308 1.14562536
## sample estimates:
## ratio of variances
## 0.2832903
test de variance: accepté
t.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Hist_ADK,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_QLC30_3_vs_1 by BP_C$Hist_ADK
## t = 1.1821, df = 6.4579, p-value = 0.2789
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -18.43956 54.07289
## sample estimates:
## mean in group Non mean in group Oui
## 22.315000 4.498333
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Hist_Epiderm=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_1[BP_C$Hist_Epiderm == "Non"]
## W = 0.83638, p-value = 0.03992
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Hist_Epiderm=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_1[BP_C$Hist_Epiderm == "Oui"]
## W = 0.94645, p-value = 0.6755
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Hist_Epiderm)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_3_vs_1 by BP_C$Hist_Epiderm
## F = 2.21, num df = 9, denom df = 7, p-value = 0.3084
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.4581917 9.2752975
## sample estimates:
## ratio of variances
## 2.209958
test de variance: acceptée
wilcox.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Hist_Epiderm,var.test=FALSE)
##
## Wilcoxon rank sum exact test
##
## data: BP_C$Del_total_QLC30_3_vs_1 by BP_C$Hist_Epiderm
## W = 36, p-value = 0.7618
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Hist_ADK=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_2[BP_C$Hist_ADK == "Non"]
## W = 0.88473, p-value = 0.176
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Hist_ADK=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_2[BP_C$Hist_ADK == "Oui"]
## W = 0.85574, p-value = 0.175
la normalité: acceptée -> t. test
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Hist_ADK)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_3_vs_2 by BP_C$Hist_ADK
## F = 0.92976, num df = 8, denom df = 5, p-value = 0.8805
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1375955 4.4788940
## sample estimates:
## ratio of variances
## 0.9297567
test de variance: accepté
t.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Hist_ADK,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_QLC30_3_vs_2 by BP_C$Hist_ADK
## t = 2.4346, df = 10.579, p-value = 0.03394
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## 2.738381 57.082730
## sample estimates:
## mean in group Non mean in group Oui
## 10.76556 -19.14500
significativité: Oui significativité de del total QLC entre V3 et V2 en fonction dype histo ADK
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Hist_Epiderm=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_2[BP_C$Hist_Epiderm == "Non"]
## W = 0.93885, p-value = 0.5403
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Hist_Epiderm=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_2[BP_C$Hist_Epiderm == "Oui"]
## W = 0.91043, p-value = 0.4702
la normalité: acceptée -> t.test ( test de student)
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Hist_Epiderm)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_3_vs_2 by BP_C$Hist_Epiderm
## F = 0.86065, num df = 9, denom df = 4, p-value = 0.7779
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.09665132 4.06061078
## sample estimates:
## ratio of variances
## 0.8606493
test de variance: accepté
t.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Hist_Epiderm,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_QLC30_3_vs_2 by BP_C$Hist_Epiderm
## t = -1.4335, df = 7.561, p-value = 0.1917
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -54.83774 13.05774
## sample estimates:
## mean in group Non mean in group Oui
## -8.162 12.728
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Hist_ADK=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_2_vs_1[BP_C$Hist_ADK == "Non"]
## W = 0.883, p-value = 0.1412
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Hist_ADK=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_2_vs_1[BP_C$Hist_ADK == "Oui"]
## W = 0.86422, p-value = 0.08555
la normalité: non acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Hist_ADK)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_2_vs_1 by BP_C$Hist_ADK
## F = 2.1781, num df = 9, denom df = 9, p-value = 0.2617
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.5410134 8.7690849
## sample estimates:
## ratio of variances
## 2.178117
test de variance: accepté
Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon
t.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Hist_ADK,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_QLC30_2_vs_1 by BP_C$Hist_ADK
## t = -0.56787, df = 15.825, p-value = 0.5781
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -26.37722 15.23922
## sample estimates:
## mean in group Non mean in group Oui
## 14.146 19.715
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Hist_Epiderm=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_2_vs_1[BP_C$Hist_Epiderm == "Non"]
## W = 0.93973, p-value = 0.4149
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Hist_Epiderm=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_2_vs_1[BP_C$Hist_Epiderm == "Oui"]
## W = 0.87633, p-value = 0.2526
la normalité: non acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Hist_Epiderm)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_2_vs_1 by BP_C$Hist_Epiderm
## F = 0.80302, num df = 13, denom df = 5, p-value = 0.6874
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1237775 3.0247008
## sample estimates:
## ratio of variances
## 0.8030163
test de variance: acceptée
t.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Hist_Epiderm,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_QLC30_2_vs_1 by BP_C$Hist_Epiderm
## t = 0.61889, df = 8.6401, p-value = 0.552
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -18.52854 32.36330
## sample estimates:
## mean in group Non mean in group Oui
## 19.00571 12.08833
significativité: non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Hist_ADK=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_1[BP_C$Hist_ADK == "Non"]
## W = 0.69171, p-value = 0.000702
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Hist_ADK=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_1[BP_C$Hist_ADK == "Oui"]
## W = 0.95604, p-value = 0.7887
la normalité: acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Hist_ADK)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_3_vs_1 by BP_C$Hist_ADK
## F = 0.34551, num df = 11, denom df = 5, p-value = 0.1318
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.05260719 1.39726000
## sample estimates:
## ratio of variances
## 0.3455145
test de variance: accepté
wilcox.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Hist_ADK)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_total_LC13_3_vs_1 by BP_C$Hist_ADK
## W = 44, p-value = 0.4817
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Hist_Epiderm=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_1[BP_C$Hist_Epiderm == "Non"]
## W = 0.92396, p-value = 0.3912
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Hist_Epiderm=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_1[BP_C$Hist_Epiderm == "Oui"]
## W = 0.8563, p-value = 0.1103
la normalité: non acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Hist_Epiderm)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_3_vs_1 by BP_C$Hist_Epiderm
## F = 25.947, num df = 9, denom df = 7, p-value = 0.0002892
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 5.379706 108.902815
## sample estimates:
## ratio of variances
## 25.94749
test de variance: rejetée
t.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Hist_Epiderm,var.test=FALSE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_LC13_3_vs_1 by BP_C$Hist_Epiderm
## t = 0.33153, df = 9.8586, p-value = 0.7472
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -16.98111 22.90411
## sample estimates:
## mean in group Non mean in group Oui
## 12.4540 9.4925
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Hist_ADK=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_2[BP_C$Hist_ADK == "Non"]
## W = 0.8798, p-value = 0.1563
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Hist_ADK=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_2[BP_C$Hist_ADK == "Oui"]
## W = 0.90638, p-value = 0.413
la normalité: acceptée -> t. test
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Hist_ADK)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_3_vs_2 by BP_C$Hist_ADK
## F = 2.0504, num df = 8, denom df = 5, p-value = 0.4452
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3034357 9.8771840
## sample estimates:
## ratio of variances
## 2.050367
test de variance: accepté
t.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Hist_ADK, var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_LC13_3_vs_2 by BP_C$Hist_ADK
## t = 1.8933, df = 12.922, p-value = 0.08093
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -2.862682 43.244904
## sample estimates:
## mean in group Non mean in group Oui
## 10.39111 -9.80000
significativité: Non, mais à la limote de la significativité
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Hist_Epiderm=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_2[BP_C$Hist_Epiderm == "Non"]
## W = 0.95984, p-value = 0.784
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Hist_Epiderm=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_2[BP_C$Hist_Epiderm == "Oui"]
## W = 0.68644, p-value = 0.006871
la normalité: non acceptée -> test de Wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Hist_Epiderm)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_3_vs_2 by BP_C$Hist_Epiderm
## F = 0.46186, num df = 9, denom df = 4, p-value = 0.3088
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.05186654 2.17906841
## sample estimates:
## ratio of variances
## 0.4618551
test de variance: accepté
wilcox.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Hist_Epiderm,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_total_LC13_3_vs_2 by BP_C$Hist_Epiderm
## W = 15, p-value = 0.2442
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Hist_ADK=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_2_vs_1[BP_C$Hist_ADK == "Non"]
## W = 0.92035, p-value = 0.3599
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Hist_ADK=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_2_vs_1[BP_C$Hist_ADK == "Oui"]
## W = 0.82948, p-value = 0.03298
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Hist_ADK)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_2_vs_1 by BP_C$Hist_ADK
## F = 9.1001, num df = 9, denom df = 9, p-value = 0.002983
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 2.260326 36.636781
## sample estimates:
## ratio of variances
## 9.100058
test de variance: rejetée
Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon
wilcox.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Hist_ADK,test.var=FALSE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_total_LC13_2_vs_1 by BP_C$Hist_ADK
## W = 39, p-value = 0.4268
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Hist_Epiderm=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_2_vs_1[BP_C$Hist_Epiderm == "Non"]
## W = 0.8472, p-value = 0.02035
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Hist_Epiderm=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_2_vs_1[BP_C$Hist_Epiderm == "Oui"]
## W = 0.7456, p-value = 0.01803
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Hist_Epiderm)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_2_vs_1 by BP_C$Hist_Epiderm
## F = 0.76927, num df = 13, denom df = 5, p-value = 0.6454
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1185759 2.8975916
## sample estimates:
## ratio of variances
## 0.7692706
test de variance: acceptée
wilcox.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Hist_Epiderm,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_total_LC13_2_vs_1 by BP_C$Hist_Epiderm
## W = 55, p-value = 0.302
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$lignes_ttt_jamais=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.88746, p-value = 0.2617
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$lignes_ttt_jamais=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.85537, p-value = 0.05014
la normalité: non acceptée -> test de wilcoxon sera realisé
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$lignes_ttt_jamais)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$lignes_ttt_jamais
## F = 2.3167, num df = 6, denom df = 10, p-value = 0.2303
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.5689209 12.6523601
## sample estimates:
## ratio of variances
## 2.31672
test de variance: accepté
wilcox.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$lignes_ttt_jamais)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$lignes_ttt_jamais
## W = 48, p-value = 0.3992
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$lignes_ttt_une=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$lignes_ttt_une == "Non"]
## W = 0.86912, p-value = 0.0637
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$lignes_ttt_une=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$lignes_ttt_une == "Oui"]
## W = 0.92409, p-value = 0.5353
la normalité: acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$lignes_ttt_une)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$lignes_ttt_une
## F = 0.33505, num df = 11, denom df = 5, p-value = 0.1215
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.05101391 1.35494192
## sample estimates:
## ratio of variances
## 0.3350501
test de variance: acceptée
t.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$lignes_ttt_une,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$lignes_ttt_une
## t = -1.0568, df = 6.7297, p-value = 0.327
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -99.48696 38.37363
## sample estimates:
## mean in group Non mean in group Oui
## -41.66667 -11.11000
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$lignes_ttt_jamais=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.89318, p-value = 0.2917
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$lignes_ttt_jamais=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.82602, p-value = 0.05397
la normalité: acceptée -> t. test
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$lignes_ttt_jamais)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$lignes_ttt_jamais
## F = 4.1214, num df = 6, denom df = 7, p-value = 0.08586
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.8051724 23.4730420
## sample estimates:
## ratio of variances
## 4.121353
test de variance: accepté
t.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$lignes_ttt_jamais,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$lignes_ttt_jamais
## t = 1.2876, df = 8.4901, p-value = 0.2319
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -24.84777 89.13242
## sample estimates:
## mean in group Non mean in group Oui
## 23.80857 -8.33375
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$lignes_ttt_une=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$lignes_ttt_une == "Non"]
## W = 0.78645, p-value = 0.01429
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$lignes_ttt_une=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$lignes_ttt_une == "Oui"]
## W = 0.91237, p-value = 0.4522
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$lignes_ttt_une)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$lignes_ttt_une
## F = 0.18436, num df = 8, denom df = 5, p-value = 0.03596
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.02728347 0.88810852
## sample estimates:
## ratio of variances
## 0.1843591
test de variance: non accepté
t.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$lignes_ttt_une,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$lignes_ttt_une
## t = -1.2572, df = 6.2456, p-value = 0.2537
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -103.01910 32.65021
## sample estimates:
## mean in group Non mean in group Oui
## -7.407778 27.776667
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$lignes_ttt_jamais=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.93001, p-value = 0.4815
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$lignes_ttt_jamais=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.81365, p-value = 0.01423
la normalité: non acceptée -> test de wilcoxon sera realisé
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$lignes_ttt_jamais)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$lignes_ttt_jamais
## F = 1.7514, num df = 8, denom df = 10, p-value = 0.4004
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.4543303 7.5224584
## sample estimates:
## ratio of variances
## 1.751394
test de variance: accepté
Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon
wilcox.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$lignes_ttt_jamais,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$lignes_ttt_jamais
## W = 46, p-value = 0.8137
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$lignes_ttt_une=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$lignes_ttt_une == "Non"]
## W = 0.80685, p-value = 0.00823
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$lignes_ttt_une=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$lignes_ttt_une == "Oui"]
## W = 0.89317, p-value = 0.2916
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$lignes_ttt_une)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$lignes_ttt_une
## F = 0.41175, num df = 12, denom df = 6, p-value = 0.1799
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.07673036 1.53513847
## sample estimates:
## ratio of variances
## 0.4117538
test de variance: acceptée
wilcox.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$lignes_ttt_une,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$lignes_ttt_une
## W = 54.5, p-value = 0.4861
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$lignes_ttt_jamais=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.85381, p-value = 0.1331
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$lignes_ttt_jamais=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.94997, p-value = 0.6436
la normalité: acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$lignes_ttt_jamais)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$lignes_ttt_jamais
## F = 2.5677, num df = 6, denom df = 10, p-value = 0.1804
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.6305636 14.0232476
## sample estimates:
## ratio of variances
## 2.567738
test de variance: accepté
Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon
t.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$lignes_ttt_jamais,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$lignes_ttt_jamais
## t = 0.89338, df = 9.0104, p-value = 0.3949
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -29.28462 67.52280
## sample estimates:
## mean in group Non mean in group Oui
## -12.70000 -31.81909
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$lignes_ttt_une=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$lignes_ttt_une == "Non"]
## W = 0.94701, p-value = 0.5938
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$lignes_ttt_une=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$lignes_ttt_une == "Oui"]
## W = 0.86544, p-value = 0.2086
la normalité: non acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$lignes_ttt_une)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$lignes_ttt_une
## F = 0.30492, num df = 11, denom df = 5, p-value = 0.09364
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.04642627 1.23309316
## sample estimates:
## ratio of variances
## 0.3049193
test de variance: acceptée
t.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$lignes_ttt_une,var.test=FALSE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$lignes_ttt_une
## t = -0.94751, df = 6.5714, p-value = 0.3769
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -80.04935 34.68268
## sample estimates:
## mean in group Non mean in group Oui
## -31.945000 -9.261667
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$lignes_ttt_jamais=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.96263, p-value = 0.841
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$lignes_ttt_jamais=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.94479, p-value = 0.6587
la normalité: acceptée -> t. test
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$lignes_ttt_jamais)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$lignes_ttt_jamais
## F = 3.5941, num df = 6, denom df = 7, p-value = 0.1185
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.7021691 20.4702059
## sample estimates:
## ratio of variances
## 3.59412
test de variance: accepté
t.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$lignes_ttt_jamais, var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$lignes_ttt_jamais
## t = 0.87517, df = 8.8285, p-value = 0.4047
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -28.90964 65.21714
## sample estimates:
## mean in group Non mean in group Oui
## 17.46000 -0.69375
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$lignes_ttt_une=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$lignes_ttt_une == "Non"]
## W = 0.9394, p-value = 0.5756
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$lignes_ttt_une=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$lignes_ttt_une == "Oui"]
## W = 0.98693, p-value = 0.9804
la normalité: acceptée -> t.test ( test de student)
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$lignes_ttt_une)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$lignes_ttt_une
## F = 0.36656, num df = 8, denom df = 5, p-value = 0.1997
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.05424727 1.76581160
## sample estimates:
## ratio of variances
## 0.3665581
test de variance: accepté
t.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$lignes_ttt_une,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$lignes_ttt_une
## t = -0.24064, df = 7.4637, p-value = 0.8163
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -59.44376 48.33709
## sample estimates:
## mean in group Non mean in group Oui
## 5.556667 11.110000
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$lignes_ttt_jamais=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.90242, p-value = 0.2664
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$lignes_ttt_jamais=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.91315, p-value = 0.2656
la normalité: acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$lignes_ttt_jamais)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$lignes_ttt_jamais
## F = 3.2589, num df = 8, denom df = 10, p-value = 0.08406
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.845393 13.997380
## sample estimates:
## ratio of variances
## 3.258898
test de variance: rejetée
Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon
t.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$lignes_ttt_jamais)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$lignes_ttt_jamais
## t = 0.015876, df = 11.92, p-value = 0.9876
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -45.94283 46.61677
## sample estimates:
## mean in group Non mean in group Oui
## -37.03667 -37.37364
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$lignes_ttt_une=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$lignes_ttt_une == "Non"]
## W = 0.88613, p-value = 0.08639
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$lignes_ttt_une=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$lignes_ttt_une == "Oui"]
## W = 0.91548, p-value = 0.4351
la normalité: non acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$lignes_ttt_une)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$lignes_ttt_une
## F = 0.32512, num df = 12, denom df = 6, p-value = 0.09242
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.06058679 1.21215542
## sample estimates:
## ratio of variances
## 0.3251235
test de variance: acceptée
t.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$lignes_ttt_une,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$lignes_ttt_une
## t = -0.44398, df = 8.1596, p-value = 0.6686
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -67.11610 45.38248
## sample estimates:
## mean in group Non mean in group Oui
## -41.02538 -30.15857
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$lignes_ttt_jamais=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_1[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.81479, p-value = 0.05719
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$lignes_ttt_jamais=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_1[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.95976, p-value = 0.7687
la normalité: acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$lignes_ttt_jamais)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_3_vs_1 by BP_C$lignes_ttt_jamais
## F = 4.315, num df = 6, denom df = 10, p-value = 0.04169
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 1.05964 23.56557
## sample estimates:
## ratio of variances
## 4.314992
test de variance: non accepté
t.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$lignes_ttt_jamais,var.test=FALSE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_QLC30_3_vs_1 by BP_C$lignes_ttt_jamais
## t = -0.0068836, df = 7.7985, p-value = 0.9947
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -34.14588 33.94354
## sample estimates:
## mean in group Non mean in group Oui
## 16.31429 16.41545
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$lignes_ttt_une=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_1[BP_C$lignes_ttt_une == "Non"]
## W = 0.9681, p-value = 0.8899
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$lignes_ttt_une=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_1[BP_C$lignes_ttt_une == "Oui"]
## W = 0.74886, p-value = 0.01942
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$lignes_ttt_une)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_3_vs_1 by BP_C$lignes_ttt_une
## F = 0.18619, num df = 11, denom df = 5, p-value = 0.01929
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.02834909 0.75295871
## sample estimates:
## ratio of variances
## 0.1861917
test de variance: rejetée
wilcox.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$lignes_ttt_une,var.test=FALSE)
##
## Wilcoxon rank sum exact test
##
## data: BP_C$Del_total_QLC30_3_vs_1 by BP_C$lignes_ttt_une
## W = 23, p-value = 0.2496
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$lignes_ttt_jamais=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_2[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.9266, p-value = 0.5224
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$lignes_ttt_jamais=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_2[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.90327, p-value = 0.3091
la normalité: acceptée -> t. test
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$lignes_ttt_jamais)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_3_vs_2 by BP_C$lignes_ttt_jamais
## F = 2.9661, num df = 6, denom df = 7, p-value = 0.1809
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.5794834 16.8935725
## sample estimates:
## ratio of variances
## 2.966142
test de variance: accepté
t.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$lignes_ttt_jamais, var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_QLC30_3_vs_2 by BP_C$lignes_ttt_jamais
## t = -0.48445, df = 9.3636, p-value = 0.6392
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -40.62142 26.22177
## sample estimates:
## mean in group Non mean in group Oui
## -5.038571 2.161250
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$lignes_ttt_une=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_2[BP_C$lignes_ttt_une == "Non"]
## W = 0.93304, p-value = 0.5108
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$lignes_ttt_une=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_2[BP_C$lignes_ttt_une == "Oui"]
## W = 0.92067, p-value = 0.5102
la normalité: acceptée -> t.test ( test de student)
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$lignes_ttt_une)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_3_vs_2 by BP_C$lignes_ttt_une
## F = 0.25312, num df = 8, denom df = 5, p-value = 0.08421
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.03746019 1.21937274
## sample estimates:
## ratio of variances
## 0.253125
test de variance: accepté
t.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$lignes_ttt_une,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_QLC30_3_vs_2 by BP_C$lignes_ttt_une
## t = 0.58507, df = 6.7105, p-value = 0.5776
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -29.73665 49.06332
## sample estimates:
## mean in group Non mean in group Oui
## 2.666667 -6.996667
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$lignes_ttt_jamais=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_2_vs_1[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.9337, p-value = 0.5174
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$lignes_ttt_jamais=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_2_vs_1[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.90439, p-value = 0.209
la normalité: non acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$lignes_ttt_jamais)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_2_vs_1 by BP_C$lignes_ttt_jamais
## F = 1.5232, num df = 8, denom df = 10, p-value = 0.5236
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3951425 6.5424710
## sample estimates:
## ratio of variances
## 1.523231
test de variance: accepté
Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon
t.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$lignes_ttt_jamais,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_QLC30_2_vs_1 by BP_C$lignes_ttt_jamais
## t = 0.47989, df = 15.358, p-value = 0.6381
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -16.63261 26.32372
## sample estimates:
## mean in group Non mean in group Oui
## 19.59556 14.75000
significativité: les resultats sont à la limite de la significativité, on peut en deduire ( avec precaution car nombre de patient non suffisant) que l’evolution du score QL30 entre la V2 et la V3 pour les patients inclus au Stade IIIB tend à etre dépendant
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$lignes_ttt_une=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_2_vs_1[BP_C$lignes_ttt_une == "Non"]
## W = 0.88149, p-value = 0.0747
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$lignes_ttt_une=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_2_vs_1[BP_C$lignes_ttt_une == "Oui"]
## W = 0.94439, p-value = 0.6785
la normalité: non acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$lignes_ttt_une)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_2_vs_1 by BP_C$lignes_ttt_une
## F = 0.54655, num df = 12, denom df = 6, p-value = 0.3514
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1018488 2.0376823
## sample estimates:
## ratio of variances
## 0.5465458
test de variance: acceptée
t.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$lignes_ttt_une,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_QLC30_2_vs_1 by BP_C$lignes_ttt_une
## t = -1.1137, df = 9.634, p-value = 0.2924
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -36.69888 12.32240
## sample estimates:
## mean in group Non mean in group Oui
## 12.66462 24.85286
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$lignes_ttt_jamais=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_1[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.91059, p-value = 0.4
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$lignes_ttt_jamais=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_1[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.87925, p-value = 0.1018
la normalité: acceptée -> test de Student Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_3_vs_1~BP_C$lignes_ttt_jamais)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_3_vs_1 by BP_C$lignes_ttt_jamais
## F = 3.1742, num df = 6, denom df = 10, p-value = 0.1038
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.7794957 17.3353830
## sample estimates:
## ratio of variances
## 3.174209
test de variance: accepté
t.test(BP_C$Del_total_LC13_3_vs_1~BP_C$lignes_ttt_jamais)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_LC13_3_vs_1 by BP_C$lignes_ttt_jamais
## t = 0.43141, df = 8.4433, p-value = 0.677
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -21.21965 31.09654
## sample estimates:
## mean in group Non mean in group Oui
## 14.155714 9.217273
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$lignes_ttt_une=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_1[BP_C$lignes_ttt_une == "Non"]
## W = 0.88621, p-value = 0.1053
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$lignes_ttt_une=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_1[BP_C$lignes_ttt_une == "Oui"]
## W = 0.90394, p-value = 0.3977
la normalité: non acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_3_vs_1~BP_C$lignes_ttt_une)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_3_vs_1 by BP_C$lignes_ttt_une
## F = 0.25069, num df = 11, denom df = 5, p-value = 0.0522
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.03816908 1.01378009
## sample estimates:
## ratio of variances
## 0.2506876
test de variance: rejetée
t.test(BP_C$Del_total_LC13_3_vs_1~BP_C$lignes_ttt_une,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_LC13_3_vs_1 by BP_C$lignes_ttt_une
## t = -0.57155, df = 6.2871, p-value = 0.5875
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -38.58048 23.83881
## sample estimates:
## mean in group Non mean in group Oui
## 8.680833 16.051667
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$lignes_ttt_jamais=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_2[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.88505, p-value = 0.2498
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$lignes_ttt_jamais=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_2[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.93156, p-value = 0.5304
la normalité: acceptée -> t. test
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_3_vs_2~BP_C$lignes_ttt_jamais)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_3_vs_2 by BP_C$lignes_ttt_jamais
## F = 3.8726, num df = 6, denom df = 7, p-value = 0.0996
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.7565762 22.0563260
## sample estimates:
## ratio of variances
## 3.872608
test de variance: accepté
t.test(BP_C$Del_total_LC13_3_vs_2~BP_C$lignes_ttt_jamais, var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_LC13_3_vs_2 by BP_C$lignes_ttt_jamais
## t = 0.02839, df = 8.6396, p-value = 0.978
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -29.42769 30.17090
## sample estimates:
## mean in group Non mean in group Oui
## 2.512857 2.141250
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$lignes_ttt_une=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_2[BP_C$lignes_ttt_une == "Non"]
## W = 0.90268, p-value = 0.2679
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$lignes_ttt_une=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_2[BP_C$lignes_ttt_une == "Oui"]
## W = 0.92541, p-value = 0.5451
la normalité: acceptée -> t.test ( test de student)
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_3_vs_2~BP_C$lignes_ttt_une)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_3_vs_2 by BP_C$lignes_ttt_une
## F = 2.4529, num df = 8, denom df = 5, p-value = 0.3379
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3630001 11.8160731
## sample estimates:
## ratio of variances
## 2.452854
test de variance: accepté
t.test(BP_C$Del_total_LC13_3_vs_2~BP_C$lignes_ttt_une,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_LC13_3_vs_2 by BP_C$lignes_ttt_une
## t = 1.5646, df = 12.999, p-value = 0.1417
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -6.46480 40.41924
## sample estimates:
## mean in group Non mean in group Oui
## 9.105556 -7.871667
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$lignes_ttt_jamais=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_2_vs_1[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.86731, p-value = 0.115
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$lignes_ttt_jamais=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_2_vs_1[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.92916, p-value = 0.4024
la normalité: non acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_2_vs_1~BP_C$lignes_ttt_jamais)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_2_vs_1 by BP_C$lignes_ttt_jamais
## F = 6.0777, num df = 8, denom df = 10, p-value = 0.01024
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 1.576628 26.104624
## sample estimates:
## ratio of variances
## 6.077731
test de variance: non accepté
Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon
t.test(BP_C$Del_total_LC13_2_vs_1~BP_C$lignes_ttt_jamais,test.var=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_LC13_2_vs_1 by BP_C$lignes_ttt_jamais
## t = 0.41677, df = 10.152, p-value = 0.6855
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -23.71833 34.65994
## sample estimates:
## mean in group Non mean in group Oui
## 10.184444 4.713636
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$lignes_ttt_une=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_2_vs_1[BP_C$lignes_ttt_une == "Non"]
## W = 0.86945, p-value = 0.05142
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$lignes_ttt_une=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_2_vs_1[BP_C$lignes_ttt_une == "Oui"]
## W = 0.76032, p-value = 0.01624
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_2_vs_1~BP_C$lignes_ttt_une)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_2_vs_1 by BP_C$lignes_ttt_une
## F = 0.66693, num df = 12, denom df = 6, p-value = 0.5176
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1242817 2.4864946
## sample estimates:
## ratio of variances
## 0.6669259
test de variance: acceptée
wilcox.test(BP_C$Del_total_LC13_2_vs_1~BP_C$lignes_ttt_une,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_total_LC13_2_vs_1 by BP_C$lignes_ttt_une
## W = 26.5, p-value = 0.1422
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$typ_stent_Métallique=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$typ_stent_Métallique == "Non"]
## W = 0.88632, p-value = 0.05902
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$typ_stent_Métallique=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$typ_stent_Métallique == "Oui"]
## W = 1, p-value = 0.9998
la normalité: acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$typ_stent_Métallique)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$typ_stent_Métallique
## F = 2.495, num df = 14, denom df = 2, p-value = 0.6455
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.06328269 12.11753518
## sample estimates:
## ratio of variances
## 2.495015
test de variance: accepté
Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon
t.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$typ_stent_Métallique,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$typ_stent_Métallique
## t = 0.094326, df = 4.3397, p-value = 0.929
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -61.22954 65.67487
## sample estimates:
## mean in group Non mean in group Oui
## -31.11067 -33.33333
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$typ_stent_Silicone=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$typ_stent_Silicone == "Non"]
## W = 0.92157, p-value = 0.4817
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$typ_stent_Silicone=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.89411, p-value = 0.1564
la normalité: non acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$typ_stent_Silicone)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$typ_stent_Silicone
## F = 0.43935, num df = 6, denom df = 10, p-value = 0.3263
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.107891 2.399413
## sample estimates:
## ratio of variances
## 0.4393464
test de variance: acceptée
t.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$typ_stent_Silicone,var.test=FALSE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$typ_stent_Silicone
## t = -0.84861, df = 15.924, p-value = 0.4087
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -65.13613 27.90549
## sample estimates:
## mean in group Non mean in group Oui
## -42.85714 -24.24182
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$typ_stent_Métallique=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$typ_stent_Métallique == "Non"]
## W = 0.77603, p-value = 0.005066
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$typ_stent_Métallique=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.98685, p-value = 0.7805
la normalité: non acceptée -> Wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$typ_stent_Métallique)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$typ_stent_Métallique
## F = 0.21411, num df = 11, denom df = 2, p-value = 0.06802
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.00543322 1.12532366
## sample estimates:
## ratio of variances
## 0.2141072
test de variance: non accepté
wilcox.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$typ_stent_Métallique,var.test=FALSE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$typ_stent_Métallique
## W = 13.5, p-value = 0.5299
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$typ_stent_Silicone=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$typ_stent_Silicone == "Non"]
## W = 0.91237, p-value = 0.4522
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$typ_stent_Silicone=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.58021, p-value = 5.605e-05
la normalité: rejetée -> wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$typ_stent_Silicone)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$typ_stent_Silicone
## F = 3.1537, num df = 5, denom df = 8, p-value = 0.145
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.654656 21.309812
## sample estimates:
## ratio of variances
## 3.153658
test de variance: accepté
wilcox.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$typ_stent_Silicone,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$typ_stent_Silicone
## W = 29, p-value = 0.8475
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$typ_stent_Métallique=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$typ_stent_Métallique == "Non"]
## W = 0.91634, p-value = 0.1472
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$typ_stent_Métallique=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.8494, p-value = 0.2242
la normalité: acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$typ_stent_Métallique)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$typ_stent_Métallique
## F = 0.85742, num df = 15, denom df = 3, p-value = 0.7107
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.0601587 3.5607165
## sample estimates:
## ratio of variances
## 0.8574247
test de variance: accepté
Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon
t.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$typ_stent_Métallique)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$typ_stent_Métallique
## t = 0.22691, df = 4.3837, p-value = 0.8307
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -67.66974 80.17224
## sample estimates:
## mean in group Non mean in group Oui
## -35.41625 -41.66750
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$typ_stent_Silicone=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$typ_stent_Silicone == "Non"]
## W = 0.91939, p-value = 0.4249
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$typ_stent_Silicone=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.83028, p-value = 0.02113
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$typ_stent_Silicone)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$typ_stent_Silicone
## F = 2.1992, num df = 7, denom df = 11, p-value = 0.2338
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.5850965 10.3569061
## sample estimates:
## ratio of variances
## 2.199166
test de variance: acceptée
wilcox.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$typ_stent_Silicone,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$typ_stent_Silicone
## W = 44.5, p-value = 0.8109
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$typ_stent_Métallique=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$typ_stent_Métallique == "Non"]
## W = 0.92571, p-value = 0.2352
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$typ_stent_Métallique=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.85473, p-value = 0.2532
la normalité: acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$typ_stent_Métallique)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$typ_stent_Métallique
## F = 0.93314, num df = 14, denom df = 2, p-value = 0.7379
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.02366795 4.53200104
## sample estimates:
## ratio of variances
## 0.9331445
test de variance: accepté
Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon
t.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$typ_stent_Métallique)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$typ_stent_Métallique
## t = -0.43396, df = 2.8022, p-value = 0.6955
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -99.13822 76.17688
## sample estimates:
## mean in group Non mean in group Oui
## -26.29733 -14.81667
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$typ_stent_Silicone=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$typ_stent_Silicone == "Non"]
## W = 0.80045, p-value = 0.04138
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$typ_stent_Silicone=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.94457, p-value = 0.5756
la normalité: non acceptée -> test de Wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$typ_stent_Silicone)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$typ_stent_Silicone
## F = 0.57346, num df = 6, denom df = 10, p-value = 0.5123
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1408265 3.1318726
## sample estimates:
## ratio of variances
## 0.573464
test de variance: acceptée
t.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$typ_stent_Silicone,var.test=FALSE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$typ_stent_Silicone
## t = -0.58267, df = 15.358, p-value = 0.5686
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -50.01295 28.50515
## sample estimates:
## mean in group Non mean in group Oui
## -30.95571 -20.20182
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$typ_stent_Métallique=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$typ_stent_Métallique == "Non"]
## W = 0.99095, p-value = 0.9999
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$typ_stent_Métallique=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.99324, p-value = 0.8428
la normalité: acceptée -> t. test
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$typ_stent_Métallique)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$typ_stent_Métallique
## F = 1.0412, num df = 11, denom df = 2, p-value = 0.8253
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.02642258 5.47262087
## sample estimates:
## ratio of variances
## 1.041236
test de variance: accepté
t.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$typ_stent_Métallique, var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$typ_stent_Métallique
## t = 0.018354, df = 3.1381, p-value = 0.9865
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -78.04985 78.97818
## sample estimates:
## mean in group Non mean in group Oui
## 7.870833 7.406667
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$typ_stent_Silicone=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$typ_stent_Silicone == "Non"]
## W = 0.91223, p-value = 0.4512
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$typ_stent_Silicone=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.94773, p-value = 0.6652
la normalité: acceptée -> t.test ( test de student)
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$typ_stent_Silicone)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$typ_stent_Silicone
## F = 1.1283, num df = 5, denom df = 8, p-value = 0.8354
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2342117 7.6238620
## sample estimates:
## ratio of variances
## 1.128262
test de variance: accepté
t.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$typ_stent_Silicone,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$typ_stent_Silicone
## t = -0.85371, df = 10.388, p-value = 0.4125
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -63.28165 28.09388
## sample estimates:
## mean in group Non mean in group Oui
## -2.778333 14.815556
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$typ_stent_Métallique=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$typ_stent_Métallique == "Non"]
## W = 0.9491, p-value = 0.4755
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$typ_stent_Métallique=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.73729, p-value = 0.02915
la normalité: non acceptée -> test de wilcoxon sera realisé
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$typ_stent_Métallique)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$typ_stent_Métallique
## F = 1.2168, num df = 15, denom df = 3, p-value = 0.9962
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.08537203 5.05306095
## sample estimates:
## ratio of variances
## 1.216783
test de variance: accepté
wilcox.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$typ_stent_Métallique,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$typ_stent_Métallique
## W = 34, p-value = 0.8861
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$typ_stent_Silicone=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$typ_stent_Silicone == "Non"]
## W = 0.95229, p-value = 0.7343
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$typ_stent_Silicone=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.91379, p-value = 0.2386
la normalité: non acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$typ_stent_Silicone)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$typ_stent_Silicone
## F = 1.3397, num df = 7, denom df = 11, p-value = 0.6377
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3564293 6.3092232
## sample estimates:
## ratio of variances
## 1.339689
test de variance: acceptée
t.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$typ_stent_Silicone,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$typ_stent_Silicone
## t = 0.87879, df = 13.563, p-value = 0.3948
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -26.14742 62.26242
## sample estimates:
## mean in group Non mean in group Oui
## -26.3875 -44.4450
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$typ_stent_Métallique=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_1[BP_C$typ_stent_Métallique == "Non"]
## W = 0.90542, p-value = 0.1152
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$typ_stent_Métallique=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_1[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.93162, p-value = 0.4947
la normalité: acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$typ_stent_Métallique)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_3_vs_1 by BP_C$typ_stent_Métallique
## F = 12.433, num df = 14, denom df = 2, p-value = 0.1537
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3153349 60.3811607
## sample estimates:
## ratio of variances
## 12.43255
test de variance: accepté
t.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$typ_stent_Métallique,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_QLC30_3_vs_1 by BP_C$typ_stent_Métallique
## t = -1.4886, df = 12.909, p-value = 0.1606
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -30.498217 5.624883
## sample estimates:
## mean in group Non mean in group Oui
## 14.30333 26.74000
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$typ_stent_Silicone=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_1[BP_C$typ_stent_Silicone == "Non"]
## W = 0.96093, p-value = 0.8267
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$typ_stent_Silicone=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_1[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.92764, p-value = 0.3875
la normalité: acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$typ_stent_Silicone)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_3_vs_1 by BP_C$typ_stent_Silicone
## F = 0.085891, num df = 6, denom df = 10, p-value = 0.007098
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.02109234 0.46907735
## sample estimates:
## ratio of variances
## 0.08589078
test de variance: rejetée
wilcox.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$typ_stent_Silicone,var.test=FALSE)
##
## Wilcoxon rank sum exact test
##
## data: BP_C$Del_total_QLC30_3_vs_1 by BP_C$typ_stent_Silicone
## W = 54, p-value = 0.1791
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$typ_stent_Métallique=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_2[BP_C$typ_stent_Métallique == "Non"]
## W = 0.95561, p-value = 0.7199
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$typ_stent_Métallique=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_2[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.89813, p-value = 0.3796
la normalité: acceptée -> t. test
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$typ_stent_Métallique)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_3_vs_2 by BP_C$typ_stent_Métallique
## F = 1.2576, num df = 11, denom df = 2, p-value = 0.9516
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.03191188 6.60955986
## sample estimates:
## ratio of variances
## 1.257553
test de variance: accepté
t.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$typ_stent_Métallique,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_QLC30_3_vs_2 by BP_C$typ_stent_Métallique
## t = -0.17315, df = 3.3942, p-value = 0.8724
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -52.90921 47.10421
## sample estimates:
## mean in group Non mean in group Oui
## -1.779167 1.123333
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$typ_stent_Silicone=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_2[BP_C$typ_stent_Silicone == "Non"]
## W = 0.90261, p-value = 0.3896
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$typ_stent_Silicone=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_2[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.8865, p-value = 0.1836
la normalité: acceptée -> t.test ( test de student)
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$typ_stent_Silicone)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_3_vs_2 by BP_C$typ_stent_Silicone
## F = 1.3982, num df = 5, denom df = 8, p-value = 0.6404
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2902494 9.4479555
## sample estimates:
## ratio of variances
## 1.398211
test de variance: accepté
t.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$typ_stent_Silicone,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_QLC30_3_vs_2 by BP_C$typ_stent_Silicone
## t = 0.87549, df = 9.548, p-value = 0.4028
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -20.26060 46.21172
## sample estimates:
## mean in group Non mean in group Oui
## 6.586667 -6.388889
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$typ_stent_Métallique=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_2_vs_1[BP_C$typ_stent_Métallique == "Non"]
## W = 0.91986, p-value = 0.1678
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$typ_stent_Métallique=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_2_vs_1[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.94883, p-value = 0.7088
la normalité: non acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$typ_stent_Métallique)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_2_vs_1 by BP_C$typ_stent_Métallique
## F = 0.63548, num df = 15, denom df = 3, p-value = 0.4745
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.04458669 2.63902896
## sample estimates:
## ratio of variances
## 0.6354812
test de variance: accepté
t.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$typ_stent_Métallique,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_QLC30_2_vs_1 by BP_C$typ_stent_Métallique
## t = -0.29298, df = 4.0087, p-value = 0.7841
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -43.63402 35.29777
## sample estimates:
## mean in group Non mean in group Oui
## 16.09688 20.26500
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$typ_stent_Silicone=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_2_vs_1[BP_C$typ_stent_Silicone == "Non"]
## W = 0.97256, p-value = 0.9173
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$typ_stent_Silicone=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_2_vs_1[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.86058, p-value = 0.04971
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$typ_stent_Silicone)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_2_vs_1 by BP_C$typ_stent_Silicone
## F = 1.2365, num df = 7, denom df = 11, p-value = 0.7224
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3289753 5.8232548
## sample estimates:
## ratio of variances
## 1.236499
test de variance: acceptée
wilcox.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$typ_stent_Silicone,var.test=TRUE)
##
## Wilcoxon rank sum exact test
##
## data: BP_C$Del_total_QLC30_2_vs_1 by BP_C$typ_stent_Silicone
## W = 51, p-value = 0.8506
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$typ_stent_Métallique=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_1[BP_C$typ_stent_Métallique == "Non"]
## W = 0.91009, p-value = 0.1358
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$typ_stent_Métallique=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_1[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.76792, p-value = 0.04003
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_3_vs_1~BP_C$typ_stent_Métallique)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_3_vs_1 by BP_C$typ_stent_Métallique
## F = 0.79494, num df = 14, denom df = 2, p-value = 0.6289
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.02016249 3.86076611
## sample estimates:
## ratio of variances
## 0.7949364
test de variance: accepté
wilcox.test(BP_C$Del_total_LC13_3_vs_1~BP_C$typ_stent_Métallique)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_total_LC13_3_vs_1 by BP_C$typ_stent_Métallique
## W = 8, p-value = 0.09668
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$typ_stent_Silicone=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_1[BP_C$typ_stent_Silicone == "Non"]
## W = 0.93533, p-value = 0.5971
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$typ_stent_Silicone=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_1[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.84718, p-value = 0.03921
la normalité: non acceptée -> test de Wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_3_vs_1~BP_C$typ_stent_Silicone)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_3_vs_1 by BP_C$typ_stent_Silicone
## F = 1.2284, num df = 6, denom df = 10, p-value = 0.7363
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3016483 6.7084251
## sample estimates:
## ratio of variances
## 1.228351
test de variance: acceptée
wilcox.test(BP_C$Del_total_LC13_3_vs_1~BP_C$typ_stent_Silicone,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_total_LC13_3_vs_1 by BP_C$typ_stent_Silicone
## W = 55.5, p-value = 0.1345
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$typ_stent_Métallique=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_2[BP_C$typ_stent_Métallique == "Non"]
## W = 0.8909, p-value = 0.121
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$typ_stent_Métallique=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_2[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.99122, p-value = 0.8208
la normalité: acceptée -> t. test
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_3_vs_2~BP_C$typ_stent_Métallique)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_3_vs_2 by BP_C$typ_stent_Métallique
## F = 1.5544, num df = 11, denom df = 2, p-value = 0.9116
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.03944472 8.16975432
## sample estimates:
## ratio of variances
## 1.5544
test de variance: accepté
t.test(BP_C$Del_total_LC13_3_vs_2~BP_C$typ_stent_Métallique, var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_LC13_3_vs_2 by BP_C$typ_stent_Métallique
## t = 0.099372, df = 3.7534, p-value = 0.9259
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -37.41287 40.11620
## sample estimates:
## mean in group Non mean in group Oui
## 2.585000 1.233333
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$typ_stent_Silicone=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_2[BP_C$typ_stent_Silicone == "Non"]
## W = 0.9891, p-value = 0.9869
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$typ_stent_Silicone=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_2[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.91679, p-value = 0.3663
la normalité: acceptée -> t.test ( test de student)
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_3_vs_2~BP_C$typ_stent_Silicone)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_3_vs_2 by BP_C$typ_stent_Silicone
## F = 0.23632, num df = 5, denom df = 8, p-value = 0.1288
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.04905703 1.59686335
## sample estimates:
## ratio of variances
## 0.2363213
test de variance: accepté
t.test(BP_C$Del_total_LC13_3_vs_2~BP_C$typ_stent_Silicone,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_LC13_3_vs_2 by BP_C$typ_stent_Silicone
## t = -0.17264, df = 12.22, p-value = 0.8658
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -26.23962 22.37962
## sample estimates:
## mean in group Non mean in group Oui
## 1.156667 3.086667
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$typ_stent_Métallique=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_2_vs_1[BP_C$typ_stent_Métallique == "Non"]
## W = 0.86615, p-value = 0.02376
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$typ_stent_Métallique=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_2_vs_1[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.87314, p-value = 0.3102
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_2_vs_1~BP_C$typ_stent_Métallique)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_2_vs_1 by BP_C$typ_stent_Métallique
## F = 0.51499, num df = 15, denom df = 3, p-value = 0.3325
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.03613283 2.13865592
## sample estimates:
## ratio of variances
## 0.5149908
test de variance: accepté
t.test(BP_C$Del_total_LC13_2_vs_1~BP_C$typ_stent_Métallique,test.var=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_LC13_2_vs_1 by BP_C$typ_stent_Métallique
## t = -0.74279, df = 3.8096, p-value = 0.5008
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -65.44973 38.25098
## sample estimates:
## mean in group Non mean in group Oui
## 4.455625 18.055000
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$typ_stent_Silicone=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_2_vs_1[BP_C$typ_stent_Silicone == "Non"]
## W = 0.86786, p-value = 0.1436
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$typ_stent_Silicone=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_2_vs_1[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.83605, p-value = 0.0248
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_2_vs_1~BP_C$typ_stent_Silicone)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_2_vs_1 by BP_C$typ_stent_Silicone
## F = 0.95401, num df = 7, denom df = 11, p-value = 0.9877
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2538183 4.4928858
## sample estimates:
## ratio of variances
## 0.9540109
test de variance: acceptée
wilcox.test(BP_C$Del_total_LC13_2_vs_1~BP_C$typ_stent_Silicone,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_total_LC13_2_vs_1 by BP_C$typ_stent_Silicone
## W = 58.5, p-value = 0.4399
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Site_Trachée_ou.Carène=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.93661, p-value = 0.6084
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Site_Trachée_ou.Carène=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.85978, p-value = 0.0572
la normalité: non acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Site_Trachée_ou.Carène)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Site_Trachée_ou.Carène
## F = 0.35637, num df = 6, denom df = 10, p-value = 0.2191
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.08751362 1.94623520
## sample estimates:
## ratio of variances
## 0.3563669
test de variance: accepté
t.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Site_Trachée_ou.Carène)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Site_Trachée_ou.Carène
## t = -1.6665, df = 15.982, p-value = 0.1151
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -77.709175 9.308136
## sample estimates:
## mean in group Non mean in group Oui
## -52.38143 -18.18091
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Site_Trachée_ou.Carène=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.8519, p-value = 0.2006
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Site_Trachée_ou.Carène=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.74528, p-value = 0.003126
la normalité:non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Site_Trachée_ou.Carène)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Site_Trachée_ou.Carène
## F = 0.98786, num df = 4, denom df = 9, p-value = 0.9225
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.209378 8.796596
## sample estimates:
## ratio of variances
## 0.9878619
test de variance: accepté
wilcox.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Site_Trachée_ou.Carène, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Site_Trachée_ou.Carène
## W = 15.5, p-value = 0.2304
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Site_Trachée_ou.Carène=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.94179, p-value = 0.6008
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Site_Trachée_ou.Carène=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.78532, p-value = 0.006031
la normalité: non acceptée -> test de wilcoxon sera realisé
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Site_Trachée_ou.Carène)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Site_Trachée_ou.Carène
## F = 1.1612, num df = 8, denom df = 10, p-value = 0.8085
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.301216 4.987307
## sample estimates:
## ratio of variances
## 1.161155
test de variance: accepté
Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon
wilcox.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Site_Trachée_ou.Carène,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Site_Trachée_ou.Carène
## W = 54, p-value = 0.7534
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Site_Trachée_ou.Carène=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.85113, p-value = 0.1259
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Site_Trachée_ou.Carène=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.98655, p-value = 0.9917
la normalité: acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Site_Trachée_ou.Carène)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Site_Trachée_ou.Carène
## F = 0.1253, num df = 6, denom df = 10, p-value = 0.01932
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.03076951 0.68429008
## sample estimates:
## ratio of variances
## 0.1252975
test de variance: rejetée
t.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Site_Trachée_ou.Carène,var.test=FALSE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Site_Trachée_ou.Carène
## t = -1.7837, df = 13.456, p-value = 0.09704
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -60.989706 5.721395
## sample estimates:
## mean in group Non mean in group Oui
## -41.27143 -13.63727
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Site_Trachée_ou.Carène=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.97858, p-value = 0.9269
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Site_Trachée_ou.Carène=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.97454, p-value = 0.9294
la normalité: acceptée -> t. test
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Site_Trachée_ou.Carène)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Site_Trachée_ou.Carène
## F = 2.1222, num df = 4, denom df = 9, p-value = 0.3204
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.4498119 18.8979395
## sample estimates:
## ratio of variances
## 2.122248
test de variance: accepté
t.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Site_Trachée_ou.Carène, var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Site_Trachée_ou.Carène
## t = -1.2261, df = 5.9598, p-value = 0.2664
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -84.966 28.302
## sample estimates:
## mean in group Non mean in group Oui
## -11.110 17.222
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Site_Trachée_ou.Carène=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.94971, p-value = 0.6868
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Site_Trachée_ou.Carène=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.90566, p-value = 0.2165
la normalité: non acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Site_Trachée_ou.Carène)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Site_Trachée_ou.Carène
## F = 1.5257, num df = 8, denom df = 10, p-value = 0.522
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3957912 6.5532118
## sample estimates:
## ratio of variances
## 1.525732
test de variance: accepté
t.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Site_Trachée_ou.Carène,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Site_Trachée_ou.Carène
## t = 0.12591, df = 15.349, p-value = 0.9014
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -41.03097 46.19380
## sample estimates:
## mean in group Non mean in group Oui
## -35.80222 -38.38364
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Site_Trachée_ou.Carène=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_1[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.94696, p-value = 0.702
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Site_Trachée_ou.Carène=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_1[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.92111, p-value = 0.328
la normalité: acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Site_Trachée_ou.Carène)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_3_vs_1 by BP_C$Site_Trachée_ou.Carène
## F = 0.11944, num df = 6, denom df = 10, p-value = 0.01706
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.02933156 0.65231118
## sample estimates:
## ratio of variances
## 0.119442
test de variance: non accepté
t.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Site_Trachée_ou.Carène,var.test=FALSE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_QLC30_3_vs_1 by BP_C$Site_Trachée_ou.Carène
## t = 1.1521, df = 13.324, p-value = 0.2695
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -10.25053 33.79885
## sample estimates:
## mean in group Non mean in group Oui
## 23.57143 11.79727
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Site_Trachée_ou.Carène=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_2[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.98018, p-value = 0.9356
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Site_Trachée_ou.Carène=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_2[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.88132, p-value = 0.1351
la normalité: acceptée -> t. test
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Site_Trachée_ou.Carène)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_3_vs_2 by BP_C$Site_Trachée_ou.Carène
## F = 1.501, num df = 4, denom df = 9, p-value = 0.5616
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3181451 13.3662260
## sample estimates:
## ratio of variances
## 1.501034
test de variance: accepté
t.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Site_Trachée_ou.Carène)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_QLC30_3_vs_2 by BP_C$Site_Trachée_ou.Carène
## t = 1.5121, df = 6.7746, p-value = 0.1757
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -13.04474 58.46074
## sample estimates:
## mean in group Non mean in group Oui
## 13.940 -8.768
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Site_Trachée_ou.Carène=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_2_vs_1[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.96453, p-value = 0.8444
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Site_Trachée_ou.Carène=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_2_vs_1[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.85842, p-value = 0.05493
la normalité: non acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Site_Trachée_ou.Carène)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_2_vs_1 by BP_C$Site_Trachée_ou.Carène
## F = 0.559, num df = 8, denom df = 10, p-value = 0.4215
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1450095 2.4009586
## sample estimates:
## ratio of variances
## 0.5589959
test de variance: accepté
t.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Site_Trachée_ou.Carène,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_QLC30_2_vs_1 by BP_C$Site_Trachée_ou.Carène
## t = -0.95654, df = 17.892, p-value = 0.3515
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -28.83689 10.79871
## sample estimates:
## mean in group Non mean in group Oui
## 11.97000 20.98909
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Site_Trachée_ou.Carène=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_1[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.80572, p-value = 0.04664
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Site_Trachée_ou.Carène=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_1[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.9096, p-value = 0.2412
la normalité: acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Site_Trachée_ou.Carène)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_3_vs_1 by BP_C$Site_Trachée_ou.Carène
## F = 0.32196, num df = 6, denom df = 10, p-value = 0.1784
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.07906432 1.75832944
## sample estimates:
## ratio of variances
## 0.3219603
test de variance: accepté
wilcox.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Site_Trachée_ou.Carène)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_total_LC13_3_vs_1 by BP_C$Site_Trachée_ou.Carène
## W = 47.5, p-value = 0.4407
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Site_Trachée_ou.Carène=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_2[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.74955, p-value = 0.02948
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Site_Trachée_ou.Carène=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_2[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.9781, p-value = 0.9542
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Site_Trachée_ou.Carène)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_3_vs_2 by BP_C$Site_Trachée_ou.Carène
## F = 2.4267, num df = 4, denom df = 9, p-value = 0.2479
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.5143309 21.6085792
## sample estimates:
## ratio of variances
## 2.426654
test de variance: accepté
wilcox.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Site_Trachée_ou.Carène, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_total_LC13_3_vs_2 by BP_C$Site_Trachée_ou.Carène
## W = 46.5, p-value = 0.01005
## alternative hypothesis: true location shift is not equal to 0
significativité: Oui Je teste quand meme un test de Student pour voir la difference les donnée du t-test ne sont pas à retranscrire mais justepour verification
t.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Site_Trachée_ou.Carène, var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_LC13_3_vs_2 by BP_C$Site_Trachée_ou.Carène
## t = 2.326, df = 5.7104, p-value = 0.06113
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -1.870411 59.372411
## sample estimates:
## mean in group Non mean in group Oui
## 21.482 -7.269
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Site_Trachée_ou.Carène=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_2_vs_1[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.87506, p-value = 0.1392
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Site_Trachée_ou.Carène=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_2_vs_1[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.79649, p-value = 0.008458
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Site_Trachée_ou.Carène)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_2_vs_1 by BP_C$Site_Trachée_ou.Carène
## F = 1.164, num df = 8, denom df = 10, p-value = 0.8058
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3019426 4.9993378
## sample estimates:
## ratio of variances
## 1.163956
test de variance: accepté
Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon
wilcox.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Site_Trachée_ou.Carène,test.var=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_total_LC13_2_vs_1 by BP_C$Site_Trachée_ou.Carène
## W = 36.5, p-value = 0.3417
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Type_intervention=="urgente"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Type_intervention == "urgente"]
## W = 0.72863, p-value = 0.02386
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Type_intervention=="programmée"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Type_intervention == "programmée"]
## W = 0.87054, p-value = 0.04269
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Type_intervention)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Type_intervention
## F = 0.67584, num df = 13, denom df = 3, p-value = 0.5322
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.04724655 2.93798538
## sample estimates:
## ratio of variances
## 0.6758374
test de variance: accepté
wilcox.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Type_intervention)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Type_intervention
## W = 33, p-value = 0.6211
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Type_intervention=="urgente"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Type_intervention == "urgente"]
## W = 0.75, p-value < 2.2e-16
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Type_intervention=="programmée"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Type_intervention == "programmée"]
## W = 0.88367, p-value = 0.09768
la normalité:non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Type_intervention)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Type_intervention
## F = 0.60607, num df = 11, denom df = 2, p-value = 0.4724
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.01537965 3.18541932
## sample estimates:
## ratio of variances
## 0.6060667
test de variance: accepté
wilcox.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Type_intervention, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Type_intervention
## W = 12.5, p-value = 0.4323
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Type_intervention=="urgente"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Type_intervention == "urgente"]
## W = 0.80298, p-value = 0.08568
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Type_intervention=="programmée"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Type_intervention == "programmée"]
## W = 0.91917, p-value = 0.1871
la normalité: acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Type_intervention)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Type_intervention
## F = 0.80749, num df = 14, denom df = 4, p-value = 0.6789
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.09298837 3.14268150
## sample estimates:
## ratio of variances
## 0.8074899
test de variance: acceptée
t.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Type_intervention,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Type_intervention
## t = 0.52348, df = 6.3124, p-value = 0.6185
## alternative hypothesis: true difference in means between group programmée and group urgente is not equal to 0
## 95 percent confidence interval:
## -48.24851 74.91385
## sample estimates:
## mean in group programmée mean in group urgente
## -33.33333 -46.66600
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Type_intervention=="urgente"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Type_intervention == "urgente"]
## W = 0.984, p-value = 0.9251
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Type_intervention=="programmée"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Type_intervention == "programmée"]
## W = 0.87709, p-value = 0.05284
la normalité: acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Type_intervention)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Type_intervention
## F = 0.84563, num df = 13, denom df = 3, p-value = 0.7089
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.05911636 3.67609870
## sample estimates:
## ratio of variances
## 0.8456287
test de variance: acceptée
t.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Type_intervention,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Type_intervention
## t = 1.4393, df = 4.5633, p-value = 0.215
## alternative hypothesis: true difference in means between group programmée and group urgente is not equal to 0
## 95 percent confidence interval:
## -27.62380 93.50023
## sample estimates:
## mean in group programmée mean in group urgente
## -17.06429 -50.00250
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Type_intervention=="urgente"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Type_intervention == "urgente"]
## W = 0.75, p-value < 2.2e-16
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Type_intervention=="programmée"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Type_intervention == "programmée"]
## W = 0.97624, p-value = 0.9641
la normalité: rejetée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Type_intervention)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Type_intervention
## F = 2.3994, num df = 11, denom df = 2, p-value = 0.6617
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.06088653 12.61076221
## sample estimates:
## ratio of variances
## 2.399358
test de variance: accepté
wilcox.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Type_intervention, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Type_intervention
## W = 10.5, p-value = 0.3106
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Type_intervention=="urgente"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Type_intervention == "urgente"]
## W = 0.86153, p-value = 0.2338
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Type_intervention=="programmée"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Type_intervention == "programmée"]
## W = 0.93743, p-value = 0.3511
la normalité: acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Type_intervention)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Type_intervention
## F = 1.4127, num df = 14, denom df = 4, p-value = 0.8004
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1626825 5.4980988
## sample estimates:
## ratio of variances
## 1.412698
test de variance: accepté
t.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Type_intervention,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Type_intervention
## t = 1.683, df = 8.1386, p-value = 0.1302
## alternative hypothesis: true difference in means between group programmée and group urgente is not equal to 0
## 95 percent confidence interval:
## -12.20353 78.87020
## sample estimates:
## mean in group programmée mean in group urgente
## -28.88867 -62.22200
significativité:Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Type_intervention=="urgente"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_1[BP_C$Type_intervention == "urgente"]
## W = 0.86491, p-value = 0.2782
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Type_intervention=="programmée"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_1[BP_C$Type_intervention == "programmée"]
## W = 0.85735, p-value = 0.02799
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Type_intervention)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_3_vs_1 by BP_C$Type_intervention
## F = 1.1259, num df = 13, denom df = 3, p-value = 0.946
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.07870991 4.89450665
## sample estimates:
## ratio of variances
## 1.125904
test de variance: accepté
wilcox.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Type_intervention,var.test=TRUE)
##
## Wilcoxon rank sum exact test
##
## data: BP_C$Del_total_QLC30_3_vs_1 by BP_C$Type_intervention
## W = 19, p-value = 0.3817
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Type_intervention=="urgente"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_2[BP_C$Type_intervention == "urgente"]
## W = 0.84631, p-value = 0.2306
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Type_intervention=="programmée"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_2[BP_C$Type_intervention == "programmée"]
## W = 0.96324, p-value = 0.8289
la normalité: acceptée -> t. test
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Type_intervention)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_3_vs_2 by BP_C$Type_intervention
## F = 34.019, num df = 11, denom df = 2, p-value = 0.05778
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.8632787 178.8014991
## sample estimates:
## ratio of variances
## 34.01927
test de variance: accepté
t.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Type_intervention)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_QLC30_3_vs_2 by BP_C$Type_intervention
## t = 1.8917, df = 12.768, p-value = 0.08143
## alternative hypothesis: true difference in means between group programmée and group urgente is not equal to 0
## 95 percent confidence interval:
## -2.437204 36.257204
## sample estimates:
## mean in group programmée mean in group urgente
## 2.183333 -14.726667
significativité: non , mais à la limite de la significativité
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Type_intervention=="urgente"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_2_vs_1[BP_C$Type_intervention == "urgente"]
## W = 0.77095, p-value = 0.04599
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Type_intervention=="programmée"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_2_vs_1[BP_C$Type_intervention == "programmée"]
## W = 0.95809, p-value = 0.6592
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Type_intervention)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_2_vs_1 by BP_C$Type_intervention
## F = 0.59702, num df = 14, denom df = 4, p-value = 0.4228
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.06875129 2.32355320
## sample estimates:
## ratio of variances
## 0.5970206
test de variance: accepté
wilcox.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Type_intervention,var.test=TRUE)
##
## Wilcoxon rank sum exact test
##
## data: BP_C$Del_total_QLC30_2_vs_1 by BP_C$Type_intervention
## W = 27, p-value = 0.3949
## alternative hypothesis: true location shift is not equal to 0
significativité: Urgente
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Type_intervention=="urgente"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_1[BP_C$Type_intervention == "urgente"]
## W = 0.85382, p-value = 0.2388
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Type_intervention=="programmée"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_1[BP_C$Type_intervention == "programmée"]
## W = 0.8686, p-value = 0.04011
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Type_intervention)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_3_vs_1 by BP_C$Type_intervention
## F = 1.7725, num df = 13, denom df = 3, p-value = 0.7037
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1239097 7.7052155
## sample estimates:
## ratio of variances
## 1.772464
test de variance: accepté
wilcox.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Type_intervention, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_total_LC13_3_vs_1 by BP_C$Type_intervention
## W = 24, p-value = 0.7097
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Type_intervention=="urgente"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_2[BP_C$Type_intervention == "urgente"]
## W = 0.80517, p-value = 0.1269
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Type_intervention=="programmée"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_2[BP_C$Type_intervention == "programmée"]
## W = 0.91851, p-value = 0.2738
la normalité: urgente acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Type_intervention)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_3_vs_2 by BP_C$Type_intervention
## F = 3.1352, num df = 11, denom df = 2, p-value = 0.5332
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.07956058 16.47851495
## sample estimates:
## ratio of variances
## 3.135248
test de variance: accepté
t.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Type_intervention, var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_LC13_3_vs_2 by BP_C$Type_intervention
## t = 1.4191, df = 5.7245, p-value = 0.208
## alternative hypothesis: true difference in means between group programmée and group urgente is not equal to 0
## 95 percent confidence interval:
## -11.35069 41.83736
## sample estimates:
## mean in group programmée mean in group urgente
## 5.363333 -9.880000
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Type_intervention=="urgente"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_2_vs_1[BP_C$Type_intervention == "urgente"]
## W = 0.8873, p-value = 0.3437
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Type_intervention=="programmée"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_2_vs_1[BP_C$Type_intervention == "programmée"]
## W = 0.89763, p-value = 0.08758
la normalité: acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Type_intervention)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_2_vs_1 by BP_C$Type_intervention
## F = 11.954, num df = 14, denom df = 4, p-value = 0.02779
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 1.376592 46.524003
## sample estimates:
## ratio of variances
## 11.95401
test de variance: non accepté
wilcox.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Type_intervention,test.var=FALSE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_total_LC13_2_vs_1 by BP_C$Type_intervention
## W = 32.5, p-value = 0.6941
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Atelectasie_RT=="Absent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Atelectasie_RT == "Absent"]
## W = 0.86119, p-value = 0.1234
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Atelectasie_RT=="Présent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Atelectasie_RT == "Présent"]
## W = 0.79137, p-value = 0.01139
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Atelectasie_RT)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Atelectasie_RT
## F = 3.5993, num df = 7, denom df = 9, p-value = 0.07818
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.8575885 17.3603930
## sample estimates:
## ratio of variances
## 3.599339
test de variance: accepté
wilcox.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Atelectasie_RT)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Atelectasie_RT
## W = 28.5, p-value = 0.3121
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Atelectasie_RT=="Absent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Atelectasie_RT == "Absent"]
## W = 0.80442, p-value = 0.04529
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Atelectasie_RT=="Présent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Atelectasie_RT == "Présent"]
## W = 0.87746, p-value = 0.1781
la normalité:non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Atelectasie_RT)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Atelectasie_RT
## F = 0.62958, num df = 6, denom df = 7, p-value = 0.5893
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1229991 3.5857698
## sample estimates:
## ratio of variances
## 0.6295827
test de variance: accepté
wilcox.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Atelectasie_RT, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Atelectasie_RT
## W = 32, p-value = 0.6594
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Atelectasie_RT=="Absent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Atelectasie_RT == "Absent"]
## W = 0.77596, p-value = 0.01082
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Atelectasie_RT=="Présent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Atelectasie_RT == "Présent"]
## W = 0.93365, p-value = 0.4489
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Atelectasie_RT)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Atelectasie_RT
## F = 1.0576, num df = 8, denom df = 10, p-value = 0.9152
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.274363 4.542696
## sample estimates:
## ratio of variances
## 1.057639
test de variance: acceptée
wilcox.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Atelectasie_RT,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Atelectasie_RT
## W = 43.5, p-value = 0.6657
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Atelectasie_RT=="Absent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Atelectasie_RT == "Absent"]
## W = 0.94005, p-value = 0.6115
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Atelectasie_RT=="Présent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Atelectasie_RT == "Présent"]
## W = 0.94017, p-value = 0.5549
la normalité: acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Atelectasie_RT)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Atelectasie_RT
## F = 3.7017, num df = 7, denom df = 9, p-value = 0.0722
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.8819888 17.8543355
## sample estimates:
## ratio of variances
## 3.701748
test de variance: acceptée
t.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Atelectasie_RT,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Atelectasie_RT
## t = -0.17333, df = 9.9896, p-value = 0.8659
## alternative hypothesis: true difference in means between group Absent and group Présent is not equal to 0
## 95 percent confidence interval:
## -50.03639 42.81439
## sample estimates:
## mean in group Absent mean in group Présent
## -26.390 -22.779
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Atelectasie_RT=="Absent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Atelectasie_RT == "Absent"]
## W = 0.90684, p-value = 0.3744
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Atelectasie_RT=="Présent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Atelectasie_RT == "Présent"]
## W = 0.93224, p-value = 0.5367
la normalité: acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Atelectasie_RT)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Atelectasie_RT
## F = 0.72216, num df = 6, denom df = 7, p-value = 0.7075
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1410847 4.1130154
## sample estimates:
## ratio of variances
## 0.7221555
test de variance: accepté
t.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Atelectasie_RT, var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Atelectasie_RT
## t = 0.014695, df = 12.995, p-value = 0.9885
## alternative hypothesis: true difference in means between group Absent and group Présent is not equal to 0
## 95 percent confidence interval:
## -43.57209 44.16887
## sample estimates:
## mean in group Absent mean in group Présent
## 7.937143 7.638750
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Atelectasie_RT=="Absent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Atelectasie_RT == "Absent"]
## W = 0.92224, p-value = 0.4111
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Atelectasie_RT=="Présent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Atelectasie_RT == "Présent"]
## W = 0.93462, p-value = 0.4595
la normalité: acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Atelectasie_RT)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Atelectasie_RT
## F = 0.74253, num df = 8, denom df = 10, p-value = 0.6867
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1926193 3.1892446
## sample estimates:
## ratio of variances
## 0.7425263
test de variance: accepté
t.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Atelectasie_RT,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Atelectasie_RT
## t = -0.096684, df = 17.929, p-value = 0.924
## alternative hypothesis: true difference in means between group Absent and group Présent is not equal to 0
## 95 percent confidence interval:
## -43.41407 39.59508
## sample estimates:
## mean in group Absent mean in group Présent
## -38.27222 -36.36273
significativité:Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Atelectasie_RT=="Absent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_1[BP_C$Atelectasie_RT == "Absent"]
## W = 0.78789, p-value = 0.02121
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Atelectasie_RT=="Présent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_1[BP_C$Atelectasie_RT == "Présent"]
## W = 0.93904, p-value = 0.5424
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Atelectasie_RT)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_3_vs_1 by BP_C$Atelectasie_RT
## F = 3.5883, num df = 7, denom df = 9, p-value = 0.07886
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.8549516 17.3070127
## sample estimates:
## ratio of variances
## 3.588272
test de variance: accepté
wilcox.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Atelectasie_RT,var.test=TRUE)
##
## Wilcoxon rank sum exact test
##
## data: BP_C$Del_total_QLC30_3_vs_1 by BP_C$Atelectasie_RT
## W = 49, p-value = 0.4598
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Atelectasie_RT=="Absent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_2[BP_C$Atelectasie_RT == "Absent"]
## W = 0.91396, p-value = 0.424
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Atelectasie_RT=="Présent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_2[BP_C$Atelectasie_RT == "Présent"]
## W = 0.86453, p-value = 0.1332
la normalité: acceptée -> t. test
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Atelectasie_RT)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_3_vs_2 by BP_C$Atelectasie_RT
## F = 1.2878, num df = 6, denom df = 7, p-value = 0.741
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2515983 7.3347998
## sample estimates:
## ratio of variances
## 1.28783
test de variance: accepté
t.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Atelectasie_RT)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_QLC30_3_vs_2 by BP_C$Atelectasie_RT
## t = -0.91945, df = 12.125, p-value = 0.3758
## alternative hypothesis: true difference in means between group Absent and group Présent is not equal to 0
## 95 percent confidence interval:
## -43.80336 17.78407
## sample estimates:
## mean in group Absent mean in group Présent
## -8.137143 4.872500
significativité: non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Atelectasie_RT=="Absent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_2_vs_1[BP_C$Atelectasie_RT == "Absent"]
## W = 0.87518, p-value = 0.1396
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Atelectasie_RT=="Présent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_2_vs_1[BP_C$Atelectasie_RT == "Présent"]
## W = 0.95989, p-value = 0.7703
la normalité: acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Atelectasie_RT)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_2_vs_1 by BP_C$Atelectasie_RT
## F = 1.8775, num df = 8, denom df = 10, p-value = 0.3463
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.4870506 8.0642167
## sample estimates:
## ratio of variances
## 1.877527
test de variance: accepté
t.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Atelectasie_RT,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_QLC30_2_vs_1 by BP_C$Atelectasie_RT
## t = 0.67632, df = 14.317, p-value = 0.5096
## alternative hypothesis: true difference in means between group Absent and group Présent is not equal to 0
## 95 percent confidence interval:
## -14.83598 28.54325
## sample estimates:
## mean in group Absent mean in group Présent
## 20.70000 13.84636
significativité: Absent
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Atelectasie_RT=="Absent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_1[BP_C$Atelectasie_RT == "Absent"]
## W = 0.84885, p-value = 0.09275
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Atelectasie_RT=="Présent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_1[BP_C$Atelectasie_RT == "Présent"]
## W = 0.8953, p-value = 0.1944
la normalité: non acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Atelectasie_RT)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_3_vs_1 by BP_C$Atelectasie_RT
## F = 1.7765, num df = 7, denom df = 9, p-value = 0.4147
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.4232629 8.5682245
## sample estimates:
## ratio of variances
## 1.776454
test de variance: accepté
t.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Atelectasie_RT, var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_LC13_3_vs_1 by BP_C$Atelectasie_RT
## t = 0.44233, df = 12.718, p-value = 0.6657
## alternative hypothesis: true difference in means between group Absent and group Présent is not equal to 0
## 95 percent confidence interval:
## -17.67487 26.75037
## sample estimates:
## mean in group Absent mean in group Présent
## 13.65875 9.12100
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Atelectasie_RT=="Absent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_2[BP_C$Atelectasie_RT == "Absent"]
## W = 0.93505, p-value = 0.5946
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Atelectasie_RT=="Présent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_2[BP_C$Atelectasie_RT == "Présent"]
## W = 0.89769, p-value = 0.2754
la normalité: Absent acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Atelectasie_RT)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_3_vs_2 by BP_C$Atelectasie_RT
## F = 0.38482, num df = 6, denom df = 7, p-value = 0.2651
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.07518012 2.19171226
## sample estimates:
## ratio of variances
## 0.3848167
test de variance: accepté
t.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Atelectasie_RT, var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_LC13_3_vs_2 by BP_C$Atelectasie_RT
## t = -0.58898, df = 11.839, p-value = 0.5669
## alternative hypothesis: true difference in means between group Absent and group Présent is not equal to 0
## 95 percent confidence interval:
## -33.26092 19.12200
## sample estimates:
## mean in group Absent mean in group Présent
## -1.455714 5.613750
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Atelectasie_RT=="Absent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_2_vs_1[BP_C$Atelectasie_RT == "Absent"]
## W = 0.86623, p-value = 0.112
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Atelectasie_RT=="Présent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_2_vs_1[BP_C$Atelectasie_RT == "Présent"]
## W = 0.85743, p-value = 0.05333
la normalité: acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Atelectasie_RT)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_2_vs_1 by BP_C$Atelectasie_RT
## F = 0.53349, num df = 8, denom df = 10, p-value = 0.385
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1383928 2.2914033
## sample estimates:
## ratio of variances
## 0.5334891
test de variance: accepté
t.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Atelectasie_RT,test.var=FALSE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_LC13_2_vs_1 by BP_C$Atelectasie_RT
## t = 0.77394, df = 17.821, p-value = 0.4491
## alternative hypothesis: true difference in means between group Absent and group Présent is not equal to 0
## 95 percent confidence interval:
## -15.49737 33.55414
## sample estimates:
## mean in group Absent mean in group Présent
## 12.141111 3.112727
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Sexe=="Homme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Sexe == "Homme"]
## W = 0.88659, p-value = 0.126
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Sexe=="Femme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1[BP_C$Sexe == "Femme"]
## W = 0.85856, p-value = 0.1469
la normalité: non acceptée -> test de S
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Sexe)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Sexe
## F = 0.53417, num df = 6, denom df = 10, p-value = 0.4572
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1311766 2.9172672
## sample estimates:
## ratio of variances
## 0.5341685
test de variance: accepté
wilcox.test(BP_C$Del_dyspnée_QLQ30_3_vs_1~BP_C$Sexe,vartest=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1 by BP_C$Sexe
## W = 36.5, p-value = 0.8883
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Sexe=="Homme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Sexe == "Homme"]
## W = 0.76266, p-value = 0.007599
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Sexe=="Femme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2[BP_C$Sexe == "Femme"]
## W = 0.95138, p-value = 0.7515
la normalité:non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Sexe)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Sexe
## F = 1.5429, num df = 5, denom df = 8, p-value = 0.5572
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3202784 10.4254338
## sample estimates:
## ratio of variances
## 1.542869
test de variance: accepté
wilcox.test(BP_C$Del_dyspnée_QLQ30_3_vs_2~BP_C$Sexe, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_2 by BP_C$Sexe
## W = 35, p-value = 0.3362
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Sexe=="Homme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Sexe == "Homme"]
## W = 0.93131, p-value = 0.3942
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Sexe=="Femme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1[BP_C$Sexe == "Femme"]
## W = 0.77983, p-value = 0.01735
la normalité: acceptée -> test de W
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Sexe)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Sexe
## F = 1.1947, num df = 7, denom df = 11, p-value = 0.7598
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3178475 5.6262789
## sample estimates:
## ratio of variances
## 1.194674
test de variance: acceptée
wilcox.test(BP_C$Del_dyspnée_QLQ30_2_vs_1~BP_C$Sexe,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1 by BP_C$Sexe
## W = 32.5, p-value = 0.2315
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Sexe=="Homme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Sexe == "Homme"]
## W = 0.93796, p-value = 0.4969
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Sexe=="Femme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1[BP_C$Sexe == "Femme"]
## W = 0.90685, p-value = 0.3745
la normalité: acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Sexe)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Sexe
## F = 0.53172, num df = 6, denom df = 10, p-value = 0.4538
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1305755 2.9038992
## sample estimates:
## ratio of variances
## 0.5317208
test de variance: acceptée
t.test(BP_C$Del_dyspnée_LC13_3_vs_1~BP_C$Sexe,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1 by BP_C$Sexe
## t = 0.050703, df = 15.573, p-value = 0.9602
## alternative hypothesis: true difference in means between group Femme and group Homme is not equal to 0
## 95 percent confidence interval:
## -38.31678 40.19029
## sample estimates:
## mean in group Femme mean in group Homme
## -23.81143 -24.74818
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Sexe=="Homme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Sexe == "Homme"]
## W = 0.96654, p-value = 0.8636
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Sexe=="Femme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2[BP_C$Sexe == "Femme"]
## W = 0.88053, p-value = 0.2715
la normalité: rejetée -> test de S
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Sexe)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Sexe
## F = 0.42528, num df = 5, denom df = 8, p-value = 0.3613
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.08828318 2.87371991
## sample estimates:
## ratio of variances
## 0.4252844
test de variance: accepté
t.test(BP_C$Del_dyspnée_LC13_3_vs_2~BP_C$Sexe, var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_2 by BP_C$Sexe
## t = 0.78735, df = 12.999, p-value = 0.4452
## alternative hypothesis: true difference in means between group Femme and group Homme is not equal to 0
## 95 percent confidence interval:
## -25.82986 55.45319
## sample estimates:
## mean in group Femme mean in group Homme
## 16.665000 1.853333
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Sexe=="Homme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Sexe == "Homme"]
## W = 0.93734, p-value = 0.4644
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Sexe=="Femme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1[BP_C$Sexe == "Femme"]
## W = 0.8908, p-value = 0.2381
la normalité: acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Sexe)
##
## F test to compare two variances
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Sexe
## F = 0.57527, num df = 7, denom df = 11, p-value = 0.4746
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1530515 2.7091947
## sample estimates:
## ratio of variances
## 0.5752653
test de variance: accepté
t.test(BP_C$Del_dyspnée_LC13_2_vs_1~BP_C$Sexe,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1 by BP_C$Sexe
## t = -0.50822, df = 17.591, p-value = 0.6176
## alternative hypothesis: true difference in means between group Femme and group Homme is not equal to 0
## 95 percent confidence interval:
## -49.97660 30.53327
## sample estimates:
## mean in group Femme mean in group Homme
## -43.05500 -33.33333
significativité:Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Sexe=="Homme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_1[BP_C$Sexe == "Homme"]
## W = 0.82919, p-value = 0.02278
shapiro.test(BP_C$Del_total_QLC30_3_vs_1[BP_C$Sexe=="Femme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_1[BP_C$Sexe == "Femme"]
## W = 0.90582, p-value = 0.3677
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Sexe)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_3_vs_1 by BP_C$Sexe
## F = 0.58264, num df = 6, denom df = 10, p-value = 0.5251
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.143079 3.181966
## sample estimates:
## ratio of variances
## 0.5826365
test de variance: accepté
wilcox.test(BP_C$Del_total_QLC30_3_vs_1~BP_C$Sexe,var.test=TRUE)
##
## Wilcoxon rank sum exact test
##
## data: BP_C$Del_total_QLC30_3_vs_1 by BP_C$Sexe
## W = 41, p-value = 0.8601
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Sexe=="Homme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_2[BP_C$Sexe == "Homme"]
## W = 0.93595, p-value = 0.54
shapiro.test(BP_C$Del_total_QLC30_3_vs_2[BP_C$Sexe=="Femme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_2[BP_C$Sexe == "Femme"]
## W = 0.75039, p-value = 0.0201
la normalité: acceptée -> wilcox test
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Sexe)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_3_vs_2 by BP_C$Sexe
## F = 0.36035, num df = 5, denom df = 8, p-value = 0.2759
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.07480451 2.43497355
## sample estimates:
## ratio of variances
## 0.3603539
test de variance: accepté
t.test(BP_C$Del_total_QLC30_3_vs_2~BP_C$Sexe)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_QLC30_3_vs_2 by BP_C$Sexe
## t = -0.77635, df = 12.938, p-value = 0.4515
## alternative hypothesis: true difference in means between group Femme and group Homme is not equal to 0
## 95 percent confidence interval:
## -38.43799 18.12244
## sample estimates:
## mean in group Femme mean in group Homme
## -7.293333 2.864444
significativité: non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Sexe=="Homme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_2_vs_1[BP_C$Sexe == "Homme"]
## W = 0.90426, p-value = 0.18
shapiro.test(BP_C$Del_total_QLC30_2_vs_1[BP_C$Sexe=="Femme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_2_vs_1[BP_C$Sexe == "Femme"]
## W = 0.9373, p-value = 0.5847
la normalité: non acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Sexe)
##
## F test to compare two variances
##
## data: BP_C$Del_total_QLC30_2_vs_1 by BP_C$Sexe
## F = 1.6416, num df = 7, denom df = 11, p-value = 0.4439
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.4367521 7.7310330
## sample estimates:
## ratio of variances
## 1.641593
test de variance: accepté
t.test(BP_C$Del_total_QLC30_2_vs_1~BP_C$Sexe,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_QLC30_2_vs_1 by BP_C$Sexe
## t = 1.6572, df = 12.525, p-value = 0.1223
## alternative hypothesis: true difference in means between group Femme and group Homme is not equal to 0
## 95 percent confidence interval:
## -5.029103 37.619103
## sample estimates:
## mean in group Femme mean in group Homme
## 26.7075 10.4125
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Sexe=="Homme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_1[BP_C$Sexe == "Homme"]
## W = 0.78122, p-value = 0.005328
shapiro.test(BP_C$Del_total_LC13_3_vs_1[BP_C$Sexe=="Femme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_1[BP_C$Sexe == "Femme"]
## W = 0.89287, p-value = 0.2899
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Sexe)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_3_vs_1 by BP_C$Sexe
## F = 3.1656, num df = 6, denom df = 10, p-value = 0.1046
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.7773768 17.2882603
## sample estimates:
## ratio of variances
## 3.165581
test de variance: accepté
wilcox.test(BP_C$Del_total_LC13_3_vs_1~BP_C$Sexe, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_total_LC13_3_vs_1 by BP_C$Sexe
## W = 55, p-value = 0.1467
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Sexe=="Homme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_2[BP_C$Sexe == "Homme"]
## W = 0.89517, p-value = 0.2253
shapiro.test(BP_C$Del_total_LC13_3_vs_2[BP_C$Sexe=="Femme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_2[BP_C$Sexe == "Femme"]
## W = 0.98107, p-value = 0.9567
la normalité: Homme acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Sexe)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_3_vs_2 by BP_C$Sexe
## F = 0.41469, num df = 5, denom df = 8, p-value = 0.3472
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.08608476 2.80215887
## sample estimates:
## ratio of variances
## 0.414694
test de variance: accepté
t.test(BP_C$Del_total_LC13_3_vs_2~BP_C$Sexe, var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_total_LC13_3_vs_2 by BP_C$Sexe
## t = -1.0232, df = 13, p-value = 0.3249
## alternative hypothesis: true difference in means between group Femme and group Homme is not equal to 0
## 95 percent confidence interval:
## -36.02161 12.86717
## sample estimates:
## mean in group Femme mean in group Homme
## -4.631667 6.945556
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Sexe=="Homme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_2_vs_1[BP_C$Sexe == "Homme"]
## W = 0.68473, p-value = 0.000603
shapiro.test(BP_C$Del_total_LC13_2_vs_1[BP_C$Sexe=="Femme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_2_vs_1[BP_C$Sexe == "Femme"]
## W = 0.92896, p-value = 0.5066
la normalité: non acceptée -> test de wilcox
Evaluation de l’égalité des variances
var.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Sexe)
##
## F test to compare two variances
##
## data: BP_C$Del_total_LC13_2_vs_1 by BP_C$Sexe
## F = 1.9443, num df = 7, denom df = 11, p-value = 0.3118
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.5172754 9.1563907
## sample estimates:
## ratio of variances
## 1.944251
test de variance: accepté
wilcox.test(BP_C$Del_total_LC13_2_vs_1~BP_C$Sexe,test.var=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_total_LC13_2_vs_1 by BP_C$Sexe
## W = 78.5, p-value = 0.02049
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_IIIA=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_IIIA == "Non"]
## W = 0.79888, p-value = 0.009099
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_IIIA=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_IIIA == "Oui"]
## W = 0.66578, p-value = 0.002641
la normalité: non acceptée -> Wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Stade_IIIA)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_3_vs_1 by BP_C$Stade_IIIA
## F = 0.99166, num df = 11, denom df = 5, p-value = 0.9143
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1509874 4.0102623
## sample estimates:
## ratio of variances
## 0.9916578
test de variance: accepté
wilcox.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Stade_IIIA, var.equal=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_3_vs_1 by BP_C$Stade_IIIA
## W = 49.5, p-value = 0.1962
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_IIIB=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_IIIB == "Non"]
## W = 0.80604, p-value = 0.01098
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_IIIB=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_IIIB == "Oui"]
## W = 0.82162, p-value = 0.09114
la normalité: non acceptée -> test de wilcoxon sera realisé
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Stade_IIIB)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_3_vs_1 by BP_C$Stade_IIIB
## F = 2.5913, num df = 11, denom df = 5, p-value = 0.3033
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3945478 10.4792864
## sample estimates:
## ratio of variances
## 2.591318
test de variance:accepté
wilcox.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Stade_IIIB,var.test=FALSE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_3_vs_1 by BP_C$Stade_IIIB
## W = 22, p-value = 0.1796
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_IV == "Non"]
## W = 0.80843, p-value = 0.0117
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_IV == "Oui"]
## W = 0.86625, p-value = 0.2116
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Stade_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_3_vs_1 by BP_C$Stade_IV
## F = 0.54812, num df = 11, denom df = 5, p-value = 0.3771
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.08345528 2.21659283
## sample estimates:
## ratio of variances
## 0.5481191
test de variance: acceptée
wilcox.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Stade_IV,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_3_vs_1 by BP_C$Stade_IV
## W = 36.5, p-value = 1
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_IIIA=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_IIIA == "Non"]
## W = 0.80615, p-value = 0.01101
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_IIIA=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_IIIA == "Oui"]
## W = 0.75, p-value < 2.2e-16
la normalité: non acceptée -> wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Stade_IIIA)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_3_vs_2 by BP_C$Stade_IIIA
## F = 2.796, num df = 11, denom df = 2, p-value = 0.5857
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.07095246 14.69561037
## sample estimates:
## ratio of variances
## 2.796027
test de variance: accepté
wilcox.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Stade_IIIA, var.equal=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_3_vs_2 by BP_C$Stade_IIIA
## W = 24, p-value = 0.3677
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_IIIB=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_IIIB == "Non"]
## W = 0.72819, p-value = 0.003025
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_IIIB=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_IIIB == "Oui"]
## W = 0.91545, p-value = 0.4732
la normalité: acceptée -> wilcox. test
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Stade_IIIB)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_3_vs_2 by BP_C$Stade_IIIB
## F = 0.70313, num df = 8, denom df = 5, p-value = 0.6256
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1040574 3.3871892
## sample estimates:
## ratio of variances
## 0.7031338
test de variance: accepté
wilcox.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Stade_IIIB,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_3_vs_2 by BP_C$Stade_IIIB
## W = 21.5, p-value = 0.5038
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_IV == "Non"]
## W = 0.8463, p-value = 0.06783
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_IV == "Oui"]
## W = 0.76978, p-value = 0.0309
la normalité: acceptée -> wilcox
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Stade_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_3_vs_2 by BP_C$Stade_IV
## F = 0.89075, num df = 8, denom df = 5, p-value = 0.8401
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1318227 4.2909806
## sample estimates:
## ratio of variances
## 0.8907484
test de variance: accepté
wilcox.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Stade_IV,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_3_vs_2 by BP_C$Stade_IV
## W = 26.5, p-value = 1
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_IIIA=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_IIIA == "Non"]
## W = 0.88034, p-value = 0.03928
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_IIIA=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_IIIA == "Oui"]
## W = 0.97136, p-value = 0.8499
la normalité: rejetée -> wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Stade_IIIA)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_2_vs_1 by BP_C$Stade_IIIA
## F = 0.40571, num df = 15, denom df = 3, p-value = 0.2046
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.02846546 1.68483402
## sample estimates:
## ratio of variances
## 0.40571
test de variance: accepté
wilcox.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Stade_IIIA, var.equal=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_2_vs_1 by BP_C$Stade_IIIA
## W = 35.5, p-value = 0.7668
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_IIIB=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_IIIB == "Non"]
## W = 0.89548, p-value = 0.1387
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_IIIB=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_IIIB == "Oui"]
## W = 0.81042, p-value = 0.03697
la normalité: non acceptée -> test de wilcoxon sera realisé
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Stade_IIIB)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_2_vs_1 by BP_C$Stade_IIIB
## F = 5.0179, num df = 11, denom df = 7, p-value = 0.0421
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 1.065497 18.860562
## sample estimates:
## ratio of variances
## 5.017925
test de variance: non accepté
wilcox.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Stade_IIIB,var.test=FALSE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_2_vs_1 by BP_C$Stade_IIIB
## W = 39, p-value = 0.4926
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_IV == "Non"]
## W = 0.83298, p-value = 0.02277
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_IV == "Oui"]
## W = 0.93443, p-value = 0.5573
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Stade_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_2_vs_1 by BP_C$Stade_IV
## F = 0.58092, num df = 11, denom df = 7, p-value = 0.404
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1233523 2.1834821
## sample estimates:
## ratio of variances
## 0.5809238
test de variance: acceptée
wilcox.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Stade_IV,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_2_vs_1 by BP_C$Stade_IV
## W = 53.5, p-value = 0.6865
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Stade_IIIA=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_1[BP_C$Stade_IIIA == "Non"]
## W = 0.90457, p-value = 0.1817
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Stade_IIIA=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_1[BP_C$Stade_IIIA == "Oui"]
## W = 0.77516, p-value = 0.03473
la normalité: rejetée -> Wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_3_vs_1~BP_C$Stade_IIIA)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_3_vs_1 by BP_C$Stade_IIIA
## F = 1.4732, num df = 11, denom df = 5, p-value = 0.7026
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2242987 5.9574289
## sample estimates:
## ratio of variances
## 1.473153
test de variance: accepté
wilcox.test(BP_C$Del_toux_3_vs_1~BP_C$Stade_IIIA, var.equal=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_toux_3_vs_1 by BP_C$Stade_IIIA
## W = 46.5, p-value = 0.3327
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Stade_IIIB=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_1[BP_C$Stade_IIIB == "Non"]
## W = 0.89138, p-value = 0.1228
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Stade_IIIB=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_1[BP_C$Stade_IIIB == "Oui"]
## W = 0.96005, p-value = 0.8201
la normalité: acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_3_vs_1~BP_C$Stade_IIIB)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_3_vs_1 by BP_C$Stade_IIIB
## F = 0.79894, num df = 11, denom df = 5, p-value = 0.7
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1216448 3.2309156
## sample estimates:
## ratio of variances
## 0.7989409
test de variance: accepté
Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon
t.test(BP_C$Del_toux_3_vs_1~BP_C$Stade_IIIB)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_toux_3_vs_1 by BP_C$Stade_IIIB
## t = -2.6323, df = 9.1303, p-value = 0.02694
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -82.555320 -6.333014
## sample estimates:
## mean in group Non mean in group Oui
## -27.77750 16.66667
significativité: Oui
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Stade_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_1[BP_C$Stade_IV == "Non"]
## W = 0.92919, p-value = 0.3717
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Stade_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_1[BP_C$Stade_IV == "Oui"]
## W = 0.76984, p-value = 0.03094
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_3_vs_1~BP_C$Stade_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_3_vs_1 by BP_C$Stade_IV
## F = 1.4735, num df = 11, denom df = 5, p-value = 0.7024
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2243469 5.9587101
## sample estimates:
## ratio of variances
## 1.47347
test de variance: acceptée
wilcox.test(BP_C$Del_toux_3_vs_1~BP_C$Stade_IV,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_toux_3_vs_1 by BP_C$Stade_IV
## W = 49, p-value = 0.226
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Stade_IIIA=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_2[BP_C$Stade_IIIA == "Non"]
## W = 0.88134, p-value = 0.07436
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Stade_IIIA=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_2[BP_C$Stade_IIIA == "Oui"]
## W = 0.75, p-value < 2.2e-16
la normalité: non acceptée -> wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_3_vs_2~BP_C$Stade_IIIA)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_3_vs_2 by BP_C$Stade_IIIA
## F = 7.0784, num df = 12, denom df = 2, p-value = 0.2607
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1795888 36.0707050
## sample estimates:
## ratio of variances
## 7.078423
test de variance: accepté
wilcox.test(BP_C$Del_toux_3_vs_2~BP_C$Stade_IIIA, var.equal=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_toux_3_vs_2 by BP_C$Stade_IIIA
## W = 14.5, p-value = 0.5164
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Stade_IIIB=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_2[BP_C$Stade_IIIB == "Non"]
## W = 0.71765, p-value = 0.00228
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Stade_IIIB=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_2[BP_C$Stade_IIIB == "Oui"]
## W = 0.92025, p-value = 0.4714
la normalité: non acceptée -> wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_3_vs_2~BP_C$Stade_IIIB)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_3_vs_2 by BP_C$Stade_IIIB
## F = 0.3977, num df = 8, denom df = 6, p-value = 0.2274
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.07102338 1.84999854
## sample estimates:
## ratio of variances
## 0.3977041
test de variance: accepté
wilcox.test(BP_C$Del_toux_3_vs_2~BP_C$Stade_IIIB, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_toux_3_vs_2 by BP_C$Stade_IIIB
## W = 24.5, p-value = 0.4609
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Stade_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_2[BP_C$Stade_IV == "Non"]
## W = 0.89684, p-value = 0.2022
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Stade_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_2[BP_C$Stade_IV == "Oui"]
## W = 0.66578, p-value = 0.002641
la normalité: non acceptée -> wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_3_vs_2~BP_C$Stade_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_3_vs_2 by BP_C$Stade_IV
## F = 1.4849, num df = 9, denom df = 5, p-value = 0.6917
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2222515 6.6587862
## sample estimates:
## ratio of variances
## 1.484874
test de variance: accepté
wilcox.test(BP_C$Del_toux_3_vs_2~BP_C$Stade_IV,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_toux_3_vs_2 by BP_C$Stade_IV
## W = 42, p-value = 0.1813
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Stade_IIIA=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_2_vs_1[BP_C$Stade_IIIA == "Non"]
## W = 0.90945, p-value = 0.114
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Stade_IIIA=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_2_vs_1[BP_C$Stade_IIIA == "Oui"]
## W = 0.94466, p-value = 0.683
la normalité: accepté
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_2_vs_1~BP_C$Stade_IIIA)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_2_vs_1 by BP_C$Stade_IIIA
## F = 1.9436, num df = 15, denom df = 3, p-value = 0.643
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1363677 8.0714288
## sample estimates:
## ratio of variances
## 1.943609
test de variance: accepté
t.test(BP_C$Del_toux_2_vs_1~BP_C$Stade_IIIA, var.equal=TRUE)
##
## Two Sample t-test
##
## data: BP_C$Del_toux_2_vs_1 by BP_C$Stade_IIIA
## t = 1.1269, df = 18, p-value = 0.2746
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -19.80838 65.63963
## sample estimates:
## mean in group Non mean in group Oui
## -10.41688 -33.33250
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Stade_IIIB=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_2_vs_1[BP_C$Stade_IIIB == "Non"]
## W = 0.90274, p-value = 0.1721
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Stade_IIIB=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_2_vs_1[BP_C$Stade_IIIB == "Oui"]
## W = 0.82602, p-value = 0.05397
la normalité: acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_2_vs_1~BP_C$Stade_IIIB)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_2_vs_1 by BP_C$Stade_IIIB
## F = 1.9574, num df = 11, denom df = 7, p-value = 0.3825
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.4156309 7.3571616
## sample estimates:
## ratio of variances
## 1.957401
test de variance: accepté
t.test(BP_C$Del_toux_2_vs_1~BP_C$Stade_IIIB,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_toux_2_vs_1 by BP_C$Stade_IIIB
## t = -0.70055, df = 17.848, p-value = 0.4926
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -44.45061 22.22978
## sample estimates:
## mean in group Non mean in group Oui
## -19.44417 -8.33375
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Stade_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_2_vs_1[BP_C$Stade_IV == "Non"]
## W = 0.86692, p-value = 0.05974
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Stade_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_2_vs_1[BP_C$Stade_IV == "Oui"]
## W = 0.93445, p-value = 0.5574
la normalité: non acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_2_vs_1~BP_C$Stade_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_2_vs_1 by BP_C$Stade_IV
## F = 0.41276, num df = 11, denom df = 7, p-value = 0.1832
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.08764438 1.55140999
## sample estimates:
## ratio of variances
## 0.4127586
test de variance: acceptée
t.test(BP_C$Del_toux_2_vs_1~BP_C$Stade_IV,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_toux_2_vs_1 by BP_C$Stade_IV
## t = -0.22238, df = 10.859, p-value = 0.8281
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -45.47138 37.13805
## sample estimates:
## mean in group Non mean in group Oui
## -16.66667 -12.50000
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_.dyspnee_II=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.75846, p-value = 0.002681
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_.dyspnee_II=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.8959, p-value = 0.3069
la normalité: acceptée -> wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Stade_.dyspnee_II)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_3_vs_1 by BP_C$Stade_.dyspnee_II
## F = 0.6612, num df = 10, denom df = 6, p-value = 0.5365
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1210695 2.6924918
## sample estimates:
## ratio of variances
## 0.6611997
test de variance: accepté
wilcox.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_3_vs_1 by BP_C$Stade_.dyspnee_II
## W = 44.5, p-value = 0.597
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_.dyspnee_III=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.79888, p-value = 0.009099
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_.dyspnee_III=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.66578, p-value = 0.002641
la normalité: non acceptée -> test de wilcoxon sera realisé
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Stade_.dyspnee_III)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_3_vs_1 by BP_C$Stade_.dyspnee_III
## F = 0.99166, num df = 11, denom df = 5, p-value = 0.9143
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1509874 4.0102623
## sample estimates:
## ratio of variances
## 0.9916578
test de variance: non accepté
Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon
t.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Stade_.dyspnee_III)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_hemoptysie_3_vs_1 by BP_C$Stade_.dyspnee_III
## t = 1.1024, df = 10.063, p-value = 0.2959
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -22.65181 67.09348
## sample estimates:
## mean in group Non mean in group Oui
## -8.333333e-04 -2.222167e+01
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_.dyspnee_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.83019, p-value = 0.01593
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_.dyspnee_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_1[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.68403, p-value = 0.00647
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Stade_.dyspnee_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_3_vs_1 by BP_C$Stade_.dyspnee_IV
## F = 5.3427, num df = 12, denom df = 4, p-value = 0.1189
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.6105135 22.0183853
## sample estimates:
## ratio of variances
## 5.342701
test de variance: acceptée
wilcox.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Stade_.dyspnee_IV)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_3_vs_1 by BP_C$Stade_.dyspnee_IV
## W = 13, p-value = 0.04681
## alternative hypothesis: true location shift is not equal to 0
significativité: Oui
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_.dyspnee_II=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.81042, p-value = 0.03697
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_.dyspnee_II=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.79428, p-value = 0.03594
la normalité: non acceptée -> wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Stade_.dyspnee_II)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_3_vs_2 by BP_C$Stade_.dyspnee_II
## F = 0.31937, num df = 7, denom df = 6, p-value = 0.1611
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.05607375 1.63470759
## sample estimates:
## ratio of variances
## 0.3193664
test de variance: accepté
wilcox.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_3_vs_2 by BP_C$Stade_.dyspnee_II
## W = 21, p-value = 0.3934
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_.dyspnee_III=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.80615, p-value = 0.01101
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_.dyspnee_III=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.75, p-value < 2.2e-16
la normalité: acceptée -> wilcox
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Stade_.dyspnee_III)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_3_vs_2 by BP_C$Stade_.dyspnee_III
## F = 2.796, num df = 11, denom df = 2, p-value = 0.5857
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.07095246 14.69561037
## sample estimates:
## ratio of variances
## 2.796027
test de variance: non accepté
wilcox.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Stade_.dyspnee_III)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_3_vs_2 by BP_C$Stade_.dyspnee_III
## W = 24, p-value = 0.3677
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_.dyspnee_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.76389, p-value = 0.005269
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_.dyspnee_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_2[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.88349, p-value = 0.3254
la normalité: acceptée -> wilcox
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Stade_.dyspnee_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_3_vs_2 by BP_C$Stade_.dyspnee_IV
## F = 2.1338, num df = 9, denom df = 4, p-value = 0.4842
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2396283 10.0674991
## sample estimates:
## ratio of variances
## 2.133813
test de variance: accepté
wilcox.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Stade_.dyspnee_IV,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_3_vs_2 by BP_C$Stade_.dyspnee_IV
## W = 26, p-value = 0.9446
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_.dyspnee_II=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.82399, p-value = 0.01779
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_.dyspnee_II=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.77385, p-value = 0.01493
la normalité: accepté -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Stade_.dyspnee_II)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_2_vs_1 by BP_C$Stade_.dyspnee_II
## F = 1.6352, num df = 11, denom df = 7, p-value = 0.5271
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.347219 6.146191
## sample estimates:
## ratio of variances
## 1.635218
test de variance: accepté
wilcox.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_2_vs_1 by BP_C$Stade_.dyspnee_II
## W = 69, p-value = 0.09797
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_.dyspnee_III=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.89752, p-value = 0.07336
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_.dyspnee_III=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.83969, p-value = 0.1945
la normalité: acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Stade_.dyspnee_III)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_2_vs_1 by BP_C$Stade_.dyspnee_III
## F = 0.3986, num df = 15, denom df = 3, p-value = 0.1966
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.02796659 1.65530635
## sample estimates:
## ratio of variances
## 0.3985997
test de variance: accepté
t.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Stade_.dyspnee_III)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_hemoptysie_2_vs_1 by BP_C$Stade_.dyspnee_III
## t = 0.068857, df = 3.6205, p-value = 0.9487
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -85.55294 89.72169
## sample estimates:
## mean in group Non mean in group Oui
## -14.58312 -16.66750
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_.dyspnee_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.8441, p-value = 0.03107
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_.dyspnee_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_2_vs_1[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.85994, p-value = 0.1199
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Stade_.dyspnee_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_2_vs_1 by BP_C$Stade_.dyspnee_IV
## F = 1.2926, num df = 11, denom df = 7, p-value = 0.7568
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2744756 4.8585451
## sample estimates:
## ratio of variances
## 1.292635
test de variance: acceptée
wilcox.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Stade_.dyspnee_IV,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_2_vs_1 by BP_C$Stade_.dyspnee_IV
## W = 30, p-value = 0.1578
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Stade_.dyspnee_II=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_1[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.78484, p-value = 0.005943
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Stade_.dyspnee_II=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_1[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.80655, p-value = 0.04753
la normalité:acceptée -> wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_3_vs_1~BP_C$Stade_.dyspnee_II)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_3_vs_1 by BP_C$Stade_.dyspnee_II
## F = 0.48603, num df = 10, denom df = 6, p-value = 0.2995
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.08899542 1.97918930
## sample estimates:
## ratio of variances
## 0.4860328
test de variance: accepté
wilcox.test(BP_C$Del_toux_3_vs_1~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_toux_3_vs_1 by BP_C$Stade_.dyspnee_II
## W = 19.5, p-value = 0.08314
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Stade_.dyspnee_III=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_1[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.85809, p-value = 0.04627
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Stade_.dyspnee_III=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_1[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.63989, p-value = 0.001351
la normalité: acceptée -> Wilcox
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_3_vs_1~BP_C$Stade_.dyspnee_III)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_3_vs_1 by BP_C$Stade_.dyspnee_III
## F = 1.3847, num df = 11, denom df = 5, p-value = 0.7588
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2108359 5.5998548
## sample estimates:
## ratio of variances
## 1.384732
test de variance: accepté
wilcox.test(BP_C$Del_toux_3_vs_1~BP_C$Stade_.dyspnee_III,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_toux_3_vs_1 by BP_C$Stade_.dyspnee_III
## W = 41, p-value = 0.6629
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Stade_.dyspnee_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_1[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.93848, p-value = 0.4376
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Stade_.dyspnee_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_1[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.88349, p-value = 0.3254
la normalité: non acceptée -> Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_3_vs_1~BP_C$Stade_.dyspnee_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_3_vs_1 by BP_C$Stade_.dyspnee_IV
## F = 2.9484, num df = 12, denom df = 4, p-value = 0.3072
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3369174 12.1510455
## sample estimates:
## ratio of variances
## 2.948418
test de variance: acceptée
t.test(BP_C$Del_toux_3_vs_1~BP_C$Stade_.dyspnee_IV,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_toux_3_vs_1 by BP_C$Stade_.dyspnee_IV
## t = 1.8315, df = 12.75, p-value = 0.09048
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -5.130751 61.537828
## sample estimates:
## mean in group Non mean in group Oui
## -5.128462 -33.332000
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Stade_.dyspnee_II=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_2[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.86653, p-value = 0.1128
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Stade_.dyspnee_II=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_2[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.93222, p-value = 0.5699
la normalité: acceptée -> t.test
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_3_vs_2~BP_C$Stade_.dyspnee_II)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_3_vs_2 by BP_C$Stade_.dyspnee_II
## F = 0.7516, num df = 8, denom df = 6, p-value = 0.6895
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1342237 3.4962248
## sample estimates:
## ratio of variances
## 0.7516022
test de variance: accepté
t.test(BP_C$Del_toux_3_vs_2~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
##
## Two Sample t-test
##
## data: BP_C$Del_toux_3_vs_2 by BP_C$Stade_.dyspnee_II
## t = 0.043212, df = 14, p-value = 0.9661
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -51.45933 53.57552
## sample estimates:
## mean in group Non mean in group Oui
## -3.703333 -4.761429
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Stade_.dyspnee_III=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_2[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.88134, p-value = 0.07436
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Stade_.dyspnee_III=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_2[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.75, p-value < 2.2e-16
la normalité: acceptée -> wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_3_vs_2~BP_C$Stade_.dyspnee_III)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_3_vs_2 by BP_C$Stade_.dyspnee_III
## F = 7.0784, num df = 12, denom df = 2, p-value = 0.2607
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1795888 36.0707050
## sample estimates:
## ratio of variances
## 7.078423
test de variance: accepté
t.test(BP_C$Del_toux_3_vs_2~BP_C$Stade_.dyspnee_III, var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_toux_3_vs_2 by BP_C$Stade_.dyspnee_III
## t = -1.0428, df = 9.6009, p-value = 0.3226
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -59.20089 21.59782
## sample estimates:
## mean in group Non mean in group Oui
## -7.691538 11.110000
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Stade_.dyspnee_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_2[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.87463, p-value = 0.1131
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Stade_.dyspnee_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_2[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.91642, p-value = 0.48
la normalité: acceptée -> t.test ( test de student)
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_3_vs_2~BP_C$Stade_.dyspnee_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_3_vs_2 by BP_C$Stade_.dyspnee_IV
## F = 0.66664, num df = 9, denom df = 5, p-value = 0.562
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.09978091 2.98949544
## sample estimates:
## ratio of variances
## 0.6666417
test de variance: accepté
wilcox.test(BP_C$Del_toux_3_vs_2~BP_C$Stade_.dyspnee_IV,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_toux_3_vs_2 by BP_C$Stade_.dyspnee_IV
## W = 35, p-value = 0.6009
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Stade_.dyspnee_II=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_2_vs_1[BP_C$Stade_.dyspnee_II == "Non"]
## W = 0.81079, p-value = 0.01246
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Stade_.dyspnee_II=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_2_vs_1[BP_C$Stade_.dyspnee_II == "Oui"]
## W = 0.90559, p-value = 0.324
la normalité: non acceptée
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_2_vs_1~BP_C$Stade_.dyspnee_II)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_2_vs_1 by BP_C$Stade_.dyspnee_II
## F = 0.86665, num df = 11, denom df = 7, p-value = 0.7981
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1840237 3.2574381
## sample estimates:
## ratio of variances
## 0.8666539
test de variance: accepté
wilcox.test(BP_C$Del_toux_2_vs_1~BP_C$Stade_.dyspnee_II, var.equal=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_toux_2_vs_1 by BP_C$Stade_.dyspnee_II
## W = 14, p-value = 0.006848
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Stade_.dyspnee_III=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_2_vs_1[BP_C$Stade_.dyspnee_III == "Non"]
## W = 0.91919, p-value = 0.1637
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Stade_.dyspnee_III=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_2_vs_1[BP_C$Stade_.dyspnee_III == "Oui"]
## W = 0.86337, p-value = 0.2725
la normalité: non acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_2_vs_1~BP_C$Stade_.dyspnee_III)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_2_vs_1 by BP_C$Stade_.dyspnee_III
## F = 1.2362, num df = 15, denom df = 3, p-value = 0.9831
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.08673507 5.13373758
## sample estimates:
## ratio of variances
## 1.23621
test de variance: accepté
Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon
t.test(BP_C$Del_toux_2_vs_1~BP_C$Stade_.dyspnee_III, var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_toux_2_vs_1 by BP_C$Stade_.dyspnee_III
## t = 1.8257, df = 5.0445, p-value = 0.127
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -13.47588 80.14463
## sample estimates:
## mean in group Non mean in group Oui
## -8.333125 -41.667500
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Stade_.dyspnee_IV=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_2_vs_1[BP_C$Stade_.dyspnee_IV == "Non"]
## W = 0.92919, p-value = 0.3717
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Stade_.dyspnee_IV=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_2_vs_1[BP_C$Stade_.dyspnee_IV == "Oui"]
## W = 0.83521, p-value = 0.06723
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_2_vs_1~BP_C$Stade_.dyspnee_IV)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_2_vs_1 by BP_C$Stade_.dyspnee_IV
## F = 2.045, num df = 11, denom df = 7, p-value = 0.3519
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.4342222 7.6862514
## sample estimates:
## ratio of variances
## 2.044957
test de variance: acceptée
wilcox.test(BP_C$Del_toux_2_vs_1~BP_C$Stade_.dyspnee_IV,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_toux_2_vs_1 by BP_C$Stade_.dyspnee_IV
## W = 65.5, p-value = 0.17
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Hist_ADK=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_1[BP_C$Hist_ADK == "Non"]
## W = 0.7125, p-value = 0.001115
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Hist_ADK=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_1[BP_C$Hist_ADK == "Oui"]
## W = 0.70126, p-value = 0.006373
la normalité: non acceptée -> test de wilcoxon sera realisé
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Hist_ADK)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_3_vs_1 by BP_C$Hist_ADK
## F = 0.34633, num df = 11, denom df = 5, p-value = 0.1326
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.05273102 1.40054888
## sample estimates:
## ratio of variances
## 0.3463278
test de variance: accepté
wilcox.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Hist_ADK,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_3_vs_1 by BP_C$Hist_ADK
## W = 23.5, p-value = 0.2329
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Hist_Epiderm=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_1[BP_C$Hist_Epiderm == "Non"]
## W = 0.74827, p-value = 0.0034
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Hist_Epiderm=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_1[BP_C$Hist_Epiderm == "Oui"]
## W = 0.56594, p-value = 6.323e-05
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Hist_Epiderm)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_3_vs_1 by BP_C$Hist_Epiderm
## F = 12.239, num df = 9, denom df = 7, p-value = 0.003291
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 2.537472 51.366728
## sample estimates:
## ratio of variances
## 12.23878
test de variance: rejetée
wilcox.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Hist_Epiderm,var.test=FALSE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_3_vs_1 by BP_C$Hist_Epiderm
## W = 51, p-value = 0.322
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Hist_ADK=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_2[BP_C$Hist_ADK == "Non"]
## W = 0.76018, p-value = 0.007112
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Hist_ADK=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_2[BP_C$Hist_ADK == "Oui"]
## W = 0.70125, p-value = 0.006372
la normalité: rejetée -> wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Hist_ADK)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_3_vs_2 by BP_C$Hist_ADK
## F = 1.2301, num df = 8, denom df = 5, p-value = 0.8558
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.182039 5.925579
## sample estimates:
## ratio of variances
## 1.230069
test de variance: accepté
wilcox.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Hist_ADK, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_3_vs_2 by BP_C$Hist_ADK
## W = 15.5, p-value = 0.1413
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Hist_Epiderm=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_2[BP_C$Hist_Epiderm == "Non"]
## W = 0.62757, p-value = 0.0001181
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Hist_Epiderm=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_2[BP_C$Hist_Epiderm == "Oui"]
## W = 0.68403, p-value = 0.00647
la normalité: rejetée -> wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Hist_Epiderm)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_3_vs_2 by BP_C$Hist_Epiderm
## F = 2.4081, num df = 9, denom df = 4, p-value = 0.4123
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2704279 11.3614830
## sample estimates:
## ratio of variances
## 2.408074
test de variance: accepté
wilcox.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Hist_Epiderm,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_3_vs_2 by BP_C$Hist_Epiderm
## W = 43, p-value = 0.01502
## alternative hypothesis: true location shift is not equal to 0
significativité: Oui
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Hist_ADK=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_2_vs_1[BP_C$Hist_ADK == "Non"]
## W = 0.82897, p-value = 0.03252
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Hist_ADK=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_2_vs_1[BP_C$Hist_ADK == "Oui"]
## W = 0.92973, p-value = 0.4452
la normalité: acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Hist_ADK)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_2_vs_1 by BP_C$Hist_ADK
## F = 0.84026, num df = 9, denom df = 9, p-value = 0.7997
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.208708 3.382871
## sample estimates:
## ratio of variances
## 0.8402572
test de variance: accepté
wilcox.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Hist_ADK)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_2_vs_1 by BP_C$Hist_ADK
## W = 58, p-value = 0.5531
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Hist_Epiderm=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_2_vs_1[BP_C$Hist_Epiderm == "Non"]
## W = 0.89504, p-value = 0.09557
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Hist_Epiderm=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_2_vs_1[BP_C$Hist_Epiderm == "Oui"]
## W = 0.86626, p-value = 0.2117
la normalité: non acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Hist_Epiderm)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_2_vs_1 by BP_C$Hist_Epiderm
## F = 2.8318, num df = 13, denom df = 5, p-value = 0.2576
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.43649 10.66633
## sample estimates:
## ratio of variances
## 2.831763
test de variance: acceptée
t.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Hist_Epiderm,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_hemoptysie_2_vs_1 by BP_C$Hist_Epiderm
## t = -1.9268, df = 15.64, p-value = 0.07237
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -61.731328 3.002757
## sample estimates:
## mean in group Non mean in group Oui
## -23.80929 5.55500
significativité: Non mais à la limite de la significativité
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Hist_ADK=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_1[BP_C$Hist_ADK == "Non"]
## W = 0.93977, p-value = 0.4951
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Hist_ADK=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_1[BP_C$Hist_ADK == "Oui"]
## W = 0.91548, p-value = 0.4734
la normalité: acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_3_vs_1~BP_C$Hist_ADK)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_3_vs_1 by BP_C$Hist_ADK
## F = 1.385, num df = 11, denom df = 5, p-value = 0.7586
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2108812 5.6010567
## sample estimates:
## ratio of variances
## 1.385029
test de variance: accepté
t.test(BP_C$Del_toux_3_vs_1~BP_C$Hist_ADK,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_toux_3_vs_1 by BP_C$Hist_ADK
## t = 0.75959, df = 11.76, p-value = 0.4625
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -26.03975 53.81642
## sample estimates:
## mean in group Non mean in group Oui
## -8.333333 -22.221667
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Hist_Epiderm=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_1[BP_C$Hist_Epiderm == "Non"]
## W = 0.82581, p-value = 0.02979
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Hist_Epiderm=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_1[BP_C$Hist_Epiderm == "Oui"]
## W = 0.87745, p-value = 0.178
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_3_vs_1~BP_C$Hist_Epiderm)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_3_vs_1 by BP_C$Hist_Epiderm
## F = 0.68104, num df = 9, denom df = 7, p-value = 0.5788
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1412001 2.8583520
## sample estimates:
## ratio of variances
## 0.6810389
test de variance: acceptée
wilcox.test(BP_C$Del_toux_3_vs_1~BP_C$Hist_Epiderm,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_toux_3_vs_1 by BP_C$Hist_Epiderm
## W = 39.5, p-value = 1
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Hist_ADK=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_2[BP_C$Hist_ADK == "Non"]
## W = 0.80675, p-value = 0.02438
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Hist_ADK=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_2[BP_C$Hist_ADK == "Oui"]
## W = 0.92394, p-value = 0.5006
la normalité:non acceptée -> wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_3_vs_2~BP_C$Hist_ADK)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_3_vs_2 by BP_C$Hist_ADK
## F = 0.81422, num df = 8, denom df = 6, p-value = 0.766
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1454066 3.7875131
## sample estimates:
## ratio of variances
## 0.8142221
test de variance: accepté
wilcox.test(BP_C$Del_toux_3_vs_2~BP_C$Hist_ADK, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_toux_3_vs_2 by BP_C$Hist_ADK
## W = 41.5, p-value = 0.2812
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Hist_Epiderm=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_2[BP_C$Hist_Epiderm == "Non"]
## W = 0.88918, p-value = 0.1358
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Hist_Epiderm=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_2[BP_C$Hist_Epiderm == "Oui"]
## W = 0.7709, p-value = 0.04595
la normalité: non acceptée -> t de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_3_vs_2~BP_C$Hist_Epiderm)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_3_vs_2 by BP_C$Hist_Epiderm
## F = 2.8407, num df = 10, denom df = 4, p-value = 0.3262
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3212084 12.6933487
## sample estimates:
## ratio of variances
## 2.840729
test de variance: accepté
wilcox.test(BP_C$Del_toux_3_vs_2~BP_C$Hist_Epiderm,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_toux_3_vs_2 by BP_C$Hist_Epiderm
## W = 15.5, p-value = 0.1626
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Hist_ADK=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_2_vs_1[BP_C$Hist_ADK == "Non"]
## W = 0.93308, p-value = 0.4789
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Hist_ADK=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_2_vs_1[BP_C$Hist_ADK == "Oui"]
## W = 0.87374, p-value = 0.1105
la normalité: acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_2_vs_1~BP_C$Hist_ADK)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_2_vs_1 by BP_C$Hist_ADK
## F = 1.1485, num df = 9, denom df = 9, p-value = 0.84
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2852678 4.6237995
## sample estimates:
## ratio of variances
## 1.148486
test de variance: accepté
t.test(BP_C$Del_toux_2_vs_1~BP_C$Hist_ADK,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_toux_2_vs_1 by BP_C$Hist_ADK
## t = 1.0183, df = 17.914, p-value = 0.3221
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -17.73133 51.06733
## sample estimates:
## mean in group Non mean in group Oui
## -6.666 -23.334
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Hist_Epiderm=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_2_vs_1[BP_C$Hist_Epiderm == "Non"]
## W = 0.92249, p-value = 0.2388
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Hist_Epiderm=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_2_vs_1[BP_C$Hist_Epiderm == "Oui"]
## W = 0.82161, p-value = 0.09112
la normalité: non acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_2_vs_1~BP_C$Hist_Epiderm)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_2_vs_1 by BP_C$Hist_Epiderm
## F = 2.217, num df = 13, denom df = 5, p-value = 0.3895
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3417307 8.3507362
## sample estimates:
## ratio of variances
## 2.217005
test de variance: acceptée
t.test(BP_C$Del_toux_2_vs_1~BP_C$Hist_Epiderm,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_toux_2_vs_1 by BP_C$Hist_Epiderm
## t = 0.66487, df = 14.114, p-value = 0.5168
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -22.93806 43.57139
## sample estimates:
## mean in group Non mean in group Oui
## -11.90500 -22.22167
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$lignes_ttt_jamais=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_1[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.85111, p-value = 0.1258
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$lignes_ttt_jamais=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_1[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.72426, p-value = 0.0009618
la normalité: non acceptée -> test de wilcoxon sera realisé
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$lignes_ttt_jamais)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_3_vs_1 by BP_C$lignes_ttt_jamais
## F = 1.9233, num df = 6, denom df = 10, p-value = 0.3444
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.4723121 10.5038560
## sample estimates:
## ratio of variances
## 1.923317
test de variance: accepté
wilcox.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$lignes_ttt_jamais)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_3_vs_1 by BP_C$lignes_ttt_jamais
## W = 39, p-value = 1
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$lignes_ttt_une=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_1[BP_C$lignes_ttt_une == "Non"]
## W = 0.77913, p-value = 0.005478
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$lignes_ttt_une=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_1[BP_C$lignes_ttt_une == "Oui"]
## W = 0.8087, p-value = 0.07028
la normalité: acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$lignes_ttt_une)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_3_vs_1 by BP_C$lignes_ttt_une
## F = 0.43389, num df = 11, denom df = 5, p-value = 0.2309
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.06606231 1.75463124
## sample estimates:
## ratio of variances
## 0.4338853
test de variance: acceptée
wilcox.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$lignes_ttt_une,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_3_vs_1 by BP_C$lignes_ttt_une
## W = 30, p-value = 0.5845
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$lignes_ttt_jamais=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_2[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.79428, p-value = 0.03594
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$lignes_ttt_jamais=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_2[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.81042, p-value = 0.03697
la normalité: non acceptée -> Wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$lignes_ttt_jamais)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_3_vs_2 by BP_C$lignes_ttt_jamais
## F = 3.1312, num df = 6, denom df = 7, p-value = 0.1611
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.6117302 17.8336579
## sample estimates:
## ratio of variances
## 3.1312
test de variance: accepté
wilcox.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$lignes_ttt_jamais,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_3_vs_2 by BP_C$lignes_ttt_jamais
## W = 35, p-value = 0.3934
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$lignes_ttt_une=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_2[BP_C$lignes_ttt_une == "Non"]
## W = 0.81259, p-value = 0.02841
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$lignes_ttt_une=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_2[BP_C$lignes_ttt_une == "Oui"]
## W = 0.63989, p-value = 0.001351
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$lignes_ttt_une)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_3_vs_2 by BP_C$lignes_ttt_une
## F = 0.41654, num df = 8, denom df = 5, p-value = 0.2598
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.06164438 2.00659606
## sample estimates:
## ratio of variances
## 0.4165417
test de variance: non accepté
wilcox.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$lignes_ttt_une,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_3_vs_2 by BP_C$lignes_ttt_une
## W = 14, p-value = 0.09463
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$lignes_ttt_jamais=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_2_vs_1[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.94039, p-value = 0.5861
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$lignes_ttt_jamais=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_2_vs_1[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.82548, p-value = 0.02036
la normalité: non acceptée -> test de wilcoxon sera realisé
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$lignes_ttt_jamais)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_2_vs_1 by BP_C$lignes_ttt_jamais
## F = 1.0593, num df = 8, denom df = 10, p-value = 0.9133
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2747983 4.5499026
## sample estimates:
## ratio of variances
## 1.059317
test de variance: accepté
Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon
wilcox.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$lignes_ttt_jamais,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_2_vs_1 by BP_C$lignes_ttt_jamais
## W = 33.5, p-value = 0.2179
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$lignes_ttt_une=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_2_vs_1[BP_C$lignes_ttt_une == "Non"]
## W = 0.7906, p-value = 0.005283
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$lignes_ttt_une=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_2_vs_1[BP_C$lignes_ttt_une == "Oui"]
## W = 0.96005, p-value = 0.8192
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$lignes_ttt_une)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_2_vs_1 by BP_C$lignes_ttt_une
## F = 0.68458, num df = 12, denom df = 6, p-value = 0.5419
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1275711 2.5523050
## sample estimates:
## ratio of variances
## 0.6845775
test de variance: acceptée
wilcox.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$lignes_ttt_une,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_2_vs_1 by BP_C$lignes_ttt_une
## W = 65.5, p-value = 0.1059
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$lignes_ttt_jamais=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_1[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.76046, p-value = 0.0163
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$lignes_ttt_jamais=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_1[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.85808, p-value = 0.05438
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_3_vs_1~BP_C$lignes_ttt_jamais)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_3_vs_1 by BP_C$lignes_ttt_jamais
## F = 1.5803, num df = 6, denom df = 10, p-value = 0.4979
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3880723 8.6304292
## sample estimates:
## ratio of variances
## 1.580282
test de variance: accepté
wilcox.test(BP_C$Del_toux_3_vs_1~BP_C$lignes_ttt_jamais,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_toux_3_vs_1 by BP_C$lignes_ttt_jamais
## W = 48, p-value = 0.3992
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$lignes_ttt_une=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_1[BP_C$lignes_ttt_une == "Non"]
## W = 0.90273, p-value = 0.172
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$lignes_ttt_une=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_1[BP_C$lignes_ttt_une == "Oui"]
## W = 0.63989, p-value = 0.001351
la normalité: non acceptée -> test de Wilcox
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_3_vs_1~BP_C$lignes_ttt_une)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_3_vs_1 by BP_C$lignes_ttt_une
## F = 1.4421, num df = 11, denom df = 5, p-value = 0.7217
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2195749 5.8319627
## sample estimates:
## ratio of variances
## 1.442128
test de variance: acceptée
wilcox.test(BP_C$Del_toux_3_vs_1~BP_C$lignes_ttt_une,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_toux_3_vs_1 by BP_C$lignes_ttt_une
## W = 35, p-value = 0.9614
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$lignes_ttt_jamais=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_2[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.89951, p-value = 0.2861
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$lignes_ttt_jamais=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_2[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.89951, p-value = 0.2861
la normalité: acceptée -> t. test
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_3_vs_2~BP_C$lignes_ttt_jamais)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_3_vs_2 by BP_C$lignes_ttt_jamais
## F = 1, num df = 7, denom df = 7, p-value = 1
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2002038 4.9949092
## sample estimates:
## ratio of variances
## 1
test de variance: accepté
t.test(BP_C$Del_toux_3_vs_2~BP_C$lignes_ttt_jamais, var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_toux_3_vs_2 by BP_C$lignes_ttt_jamais
## t = 0, df = 14, p-value = 1
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -52.10899 52.10899
## sample estimates:
## mean in group Non mean in group Oui
## -4.16625 -4.16625
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$lignes_ttt_une=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_2[BP_C$lignes_ttt_une == "Non"]
## W = 0.88495, p-value = 0.1487
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$lignes_ttt_une=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_2[BP_C$lignes_ttt_une == "Oui"]
## W = 0.82682, p-value = 0.101
la normalité: acceptée -> t.test ( test de student)
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_3_vs_2~BP_C$lignes_ttt_une)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_3_vs_2 by BP_C$lignes_ttt_une
## F = 7.6683, num df = 9, denom df = 5, p-value = 0.0372
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 1.147773 34.387962
## sample estimates:
## ratio of variances
## 7.668334
test de variance: non accepté
t.test(BP_C$Del_toux_3_vs_2~BP_C$lignes_ttt_une,var.test=FALSE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_toux_3_vs_2 by BP_C$lignes_ttt_une
## t = -0.3273, df = 12.292, p-value = 0.7489
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -50.92472 37.59272
## sample estimates:
## mean in group Non mean in group Oui
## -6.666 0.000
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$lignes_ttt_jamais=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_2_vs_1[BP_C$lignes_ttt_jamais == "Non"]
## W = 0.81259, p-value = 0.02841
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$lignes_ttt_jamais=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_2_vs_1[BP_C$lignes_ttt_jamais == "Oui"]
## W = 0.88139, p-value = 0.1083
la normalité: acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_2_vs_1~BP_C$lignes_ttt_jamais)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_2_vs_1 by BP_C$lignes_ttt_jamais
## F = 0.23959, num df = 8, denom df = 10, p-value = 0.05431
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.06215187 1.02906384
## sample estimates:
## ratio of variances
## 0.2395887
test de variance: acceptée
wilcox.test(BP_C$Del_toux_2_vs_1~BP_C$lignes_ttt_jamais)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_toux_2_vs_1 by BP_C$lignes_ttt_jamais
## W = 62, p-value = 0.3402
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$lignes_ttt_une=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_2_vs_1[BP_C$lignes_ttt_une == "Non"]
## W = 0.88645, p-value = 0.08725
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$lignes_ttt_une=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_2_vs_1[BP_C$lignes_ttt_une == "Oui"]
## W = 0.83338, p-value = 0.08614
la normalité: non acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_2_vs_1~BP_C$lignes_ttt_une)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_2_vs_1 by BP_C$lignes_ttt_une
## F = 2.8052, num df = 12, denom df = 6, p-value = 0.2147
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.5227532 10.4586832
## sample estimates:
## ratio of variances
## 2.805221
test de variance: acceptée
t.test(BP_C$Del_toux_2_vs_1~BP_C$lignes_ttt_une,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_toux_2_vs_1 by BP_C$lignes_ttt_une
## t = -0.55846, df = 17.664, p-value = 0.5835
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -40.16950 23.31675
## sample estimates:
## mean in group Non mean in group Oui
## -17.949231 -9.522857
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$typ_stent_Métallique=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_1[BP_C$typ_stent_Métallique == "Non"]
## W = 0.81854, p-value = 0.006423
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$typ_stent_Métallique=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_1[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.75, p-value < 2.2e-16
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$typ_stent_Métallique)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_3_vs_1 by BP_C$typ_stent_Métallique
## F = 4.6292, num df = 14, denom df = 2, p-value = 0.3833
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1174144 22.4828205
## sample estimates:
## ratio of variances
## 4.62924
test de variance: accepté
Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon
wilcox.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$typ_stent_Métallique,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_3_vs_1 by BP_C$typ_stent_Métallique
## W = 9.5, p-value = 0.116
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$typ_stent_Silicone=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_1[BP_C$typ_stent_Silicone == "Non"]
## W = 0.7186, p-value = 0.005897
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$typ_stent_Silicone=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_1[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.85356, p-value = 0.0475
la normalité: non acceptée -> test de wilcox
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$typ_stent_Silicone)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_3_vs_1 by BP_C$typ_stent_Silicone
## F = 1.5942, num df = 6, denom df = 10, p-value = 0.4904
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3915004 8.7066663
## sample estimates:
## ratio of variances
## 1.594241
test de variance: acceptée
wilcox.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$typ_stent_Silicone,var.test=FALSE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_3_vs_1 by BP_C$typ_stent_Silicone
## W = 50, p-value = 0.2903
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$typ_stent_Métallique=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_2[BP_C$typ_stent_Métallique == "Non"]
## W = 0.8077, p-value = 0.01148
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$typ_stent_Métallique=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_2[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.75, p-value < 2.2e-16
la normalité: non acceptée -> Wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$typ_stent_Métallique)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_3_vs_2 by BP_C$typ_stent_Métallique
## F = 0.54537, num df = 11, denom df = 2, p-value = 0.4109
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.01383947 2.86641874
## sample estimates:
## ratio of variances
## 0.5453727
test de variance: non accepté
wilcox.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$typ_stent_Métallique,var.test=FALSE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_3_vs_2 by BP_C$typ_stent_Métallique
## W = 11.5, p-value = 0.3258
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$typ_stent_Silicone=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_2[BP_C$typ_stent_Silicone == "Non"]
## W = 0.49609, p-value = 2.073e-05
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$typ_stent_Silicone=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_2[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.85328, p-value = 0.08096
la normalité: rejetée -> wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$typ_stent_Silicone)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_3_vs_2 by BP_C$typ_stent_Silicone
## F = 0.66677, num df = 5, denom df = 8, p-value = 0.6806
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1384116 4.5054571
## sample estimates:
## ratio of variances
## 0.6667667
test de variance: accepté
wilcox.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$typ_stent_Silicone,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_3_vs_2 by BP_C$typ_stent_Silicone
## W = 33.5, p-value = 0.4224
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$typ_stent_Métallique=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_2_vs_1[BP_C$typ_stent_Métallique == "Non"]
## W = 0.88139, p-value = 0.04079
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$typ_stent_Métallique=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_2_vs_1[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.94466, p-value = 0.683
la normalité: non acceptée -> test de wilcox
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$typ_stent_Métallique)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_2_vs_1 by BP_C$typ_stent_Métallique
## F = 2.3941, num df = 15, denom df = 3, p-value = 0.5142
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1679771 9.9423478
## sample estimates:
## ratio of variances
## 2.394129
test de variance: accepté
Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon
wilcox.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$typ_stent_Métallique)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_2_vs_1 by BP_C$typ_stent_Métallique
## W = 24.5, p-value = 0.4889
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$typ_stent_Silicone=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_2_vs_1[BP_C$typ_stent_Silicone == "Non"]
## W = 0.81041, p-value = 0.03695
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$typ_stent_Silicone=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_2_vs_1[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.91957, p-value = 0.2823
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$typ_stent_Silicone)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_2_vs_1 by BP_C$typ_stent_Silicone
## F = 1.2115, num df = 7, denom df = 11, p-value = 0.7445
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3223187 5.7054259
## sample estimates:
## ratio of variances
## 1.211479
test de variance: acceptée
wilcox.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$typ_stent_Silicone,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_2_vs_1 by BP_C$typ_stent_Silicone
## W = 58.5, p-value = 0.4195
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$typ_stent_Métallique=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_1[BP_C$typ_stent_Métallique == "Non"]
## W = 0.92351, p-value = 0.2179
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$typ_stent_Métallique=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_1[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.75, p-value < 2.2e-16
la normalité: non acceptée; wilcox Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_3_vs_1~BP_C$typ_stent_Métallique)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_3_vs_1 by BP_C$typ_stent_Métallique
## F = 1.0502, num df = 14, denom df = 2, p-value = 0.8191
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.0266377 5.1006569
## sample estimates:
## ratio of variances
## 1.050231
test de variance: accepté
Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon
wilcox.test(BP_C$Del_toux_3_vs_1~BP_C$typ_stent_Métallique)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_toux_3_vs_1 by BP_C$typ_stent_Métallique
## W = 22, p-value = 1
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$typ_stent_Silicone=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_1[BP_C$typ_stent_Silicone == "Non"]
## W = 0.86933, p-value = 0.1831
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$typ_stent_Silicone=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_1[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.93809, p-value = 0.4983
la normalité: acceptée -> test de STUDENT
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_3_vs_1~BP_C$typ_stent_Silicone)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_3_vs_1 by BP_C$typ_stent_Silicone
## F = 0.57858, num df = 6, denom df = 10, p-value = 0.5194
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1420828 3.1598118
## sample estimates:
## ratio of variances
## 0.5785798
test de variance: acceptée
t.test(BP_C$Del_toux_3_vs_1~BP_C$typ_stent_Silicone,var.test=FALSE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_toux_3_vs_1 by BP_C$typ_stent_Silicone
## t = -1.022, df = 15.33, p-value = 0.3226
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -54.69154 19.19621
## sample estimates:
## mean in group Non mean in group Oui
## -23.808571 -6.060909
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$typ_stent_Métallique=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_2[BP_C$typ_stent_Métallique == "Non"]
## W = 0.80615, p-value = 0.01101
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$typ_stent_Métallique=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_2[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.82744, p-value = 0.1612
la normalité: non acceptée -> wilcox
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_3_vs_2~BP_C$typ_stent_Métallique)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_3_vs_2 by BP_C$typ_stent_Métallique
## F = 0.21926, num df = 11, denom df = 3, p-value = 0.05223
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.01525375 1.01517995
## sample estimates:
## ratio of variances
## 0.2192601
test de variance: accepté
wilcox.test(BP_C$Del_toux_3_vs_2~BP_C$typ_stent_Métallique)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_toux_3_vs_2 by BP_C$typ_stent_Métallique
## W = 33, p-value = 0.2693
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$typ_stent_Silicone=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_2[BP_C$typ_stent_Silicone == "Non"]
## W = 0.84471, p-value = 0.1099
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$typ_stent_Silicone=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_2[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.83021, p-value = 0.0449
la normalité:non acceptée -> wilcox
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_3_vs_2~BP_C$typ_stent_Silicone)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_3_vs_2 by BP_C$typ_stent_Silicone
## F = 2.4091, num df = 6, denom df = 8, p-value = 0.2487
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.517905 13.490256
## sample estimates:
## ratio of variances
## 2.409136
test de variance: accepté
wilcox.test(BP_C$Del_toux_3_vs_2~BP_C$typ_stent_Silicone,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_toux_3_vs_2 by BP_C$typ_stent_Silicone
## W = 17.5, p-value = 0.1256
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$typ_stent_Métallique=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_2_vs_1[BP_C$typ_stent_Métallique == "Non"]
## W = 0.87879, p-value = 0.03715
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$typ_stent_Métallique=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_2_vs_1[BP_C$typ_stent_Métallique == "Oui"]
## W = 0.89493, p-value = 0.4063
la normalité: non acceptée -> test de wilcoxon sera realisé
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_2_vs_1~BP_C$typ_stent_Métallique)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_2_vs_1 by BP_C$typ_stent_Métallique
## F = 0.66315, num df = 15, denom df = 3, p-value = 0.5061
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.04652801 2.75393304
## sample estimates:
## ratio of variances
## 0.6631503
test de variance: accepté
wilcox.test(BP_C$Del_toux_2_vs_1~BP_C$typ_stent_Métallique,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_toux_2_vs_1 by BP_C$typ_stent_Métallique
## W = 20, p-value = 0.2556
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$typ_stent_Silicone=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_2_vs_1[BP_C$typ_stent_Silicone == "Non"]
## W = 0.89897, p-value = 0.2828
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$typ_stent_Silicone=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_2_vs_1[BP_C$typ_stent_Silicone == "Oui"]
## W = 0.89504, p-value = 0.1369
la normalité: non acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_2_vs_1~BP_C$typ_stent_Silicone)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_2_vs_1 by BP_C$typ_stent_Silicone
## F = 1.7275, num df = 7, denom df = 11, p-value = 0.4011
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.4596203 8.1358270
## sample estimates:
## ratio of variances
## 1.727546
test de variance: acceptée
t.test(BP_C$Del_toux_2_vs_1~BP_C$typ_stent_Silicone,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_toux_2_vs_1 by BP_C$typ_stent_Silicone
## t = -0.15287, df = 12.281, p-value = 0.881
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -42.25700 36.70284
## sample estimates:
## mean in group Non mean in group Oui
## -16.66625 -13.88917
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Site_Trachée_ou.Carène=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_1[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.7805, p-value = 0.02613
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Site_Trachée_ou.Carène=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_1[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.66468, p-value = 0.0001654
la normalité: non acceptée -> test de wilcox
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Site_Trachée_ou.Carène)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_3_vs_1 by BP_C$Site_Trachée_ou.Carène
## F = 0.83814, num df = 6, denom df = 10, p-value = 0.8646
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2058222 4.5773268
## sample estimates:
## ratio of variances
## 0.8381351
test de variance: accepté
wilcox.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Site_Trachée_ou.Carène,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_3_vs_1 by BP_C$Site_Trachée_ou.Carène
## W = 14, p-value = 0.02104
## alternative hypothesis: true location shift is not equal to 0
significativité: Oui
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Site_Trachée_ou.Carène=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_2[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.55218, p-value = 0.000131
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Site_Trachée_ou.Carène=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_2[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.84557, p-value = 0.05145
la normalité:non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Site_Trachée_ou.Carène)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_3_vs_2 by BP_C$Site_Trachée_ou.Carène
## F = 0.17818, num df = 4, denom df = 9, p-value = 0.112
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.03776576 1.58665243
## sample estimates:
## ratio of variances
## 0.1781818
test de variance: accepté
wilcox.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Site_Trachée_ou.Carène, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_3_vs_2 by BP_C$Site_Trachée_ou.Carène
## W = 19, p-value = 0.4447
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Site_Trachée_ou.Carène=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_2_vs_1[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.76733, p-value = 0.008605
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Site_Trachée_ou.Carène=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_2_vs_1[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.84814, p-value = 0.04035
la normalité: non acceptée -> test de wilcoxon sera realisé
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Site_Trachée_ou.Carène)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_2_vs_1 by BP_C$Site_Trachée_ou.Carène
## F = 0.76397, num df = 8, denom df = 10, p-value = 0.7169
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1981824 3.2813546
## sample estimates:
## ratio of variances
## 0.7639715
test de variance: accepté
Pour un probleme d’ex-aequos j’ai du utiliser le t-test qui est normalement pas loin du test de wilcoxon
wilcox.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Site_Trachée_ou.Carène,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_2_vs_1 by BP_C$Site_Trachée_ou.Carène
## W = 34, p-value = 0.2331
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Site_Trachée_ou.Carène=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_1[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.88772, p-value = 0.263
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Site_Trachée_ou.Carène=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_1[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.88903, p-value = 0.1352
la normalité: acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_3_vs_1~BP_C$Site_Trachée_ou.Carène)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_3_vs_1 by BP_C$Site_Trachée_ou.Carène
## F = 1.2907, num df = 6, denom df = 10, p-value = 0.6867
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.316950 7.048723
## sample estimates:
## ratio of variances
## 1.290662
test de variance: rejetée
t.test(BP_C$Del_toux_3_vs_1~BP_C$Site_Trachée_ou.Carène,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_toux_3_vs_1 by BP_C$Site_Trachée_ou.Carène
## t = -0.11039, df = 11.673, p-value = 0.914
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -44.97587 40.65093
## sample estimates:
## mean in group Non mean in group Oui
## -14.28429 -12.12182
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Site_Trachée_ou.Carène=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_2[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.91237, p-value = 0.4522
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Site_Trachée_ou.Carène=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_2[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.84061, p-value = 0.04487
la normalité: non acceptée -> Wilcox
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_3_vs_2~BP_C$Site_Trachée_ou.Carène)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_3_vs_2 by BP_C$Site_Trachée_ou.Carène
## F = 5.5577, num df = 5, denom df = 9, p-value = 0.02625
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 1.239341 37.131407
## sample estimates:
## ratio of variances
## 5.557717
test de variance: rejetée
wilcox.test(BP_C$Del_toux_3_vs_2~BP_C$Site_Trachée_ou.Carène, var.test=FALSE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_toux_3_vs_2 by BP_C$Site_Trachée_ou.Carène
## W = 18, p-value = 0.1813
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Site_Trachée_ou.Carène=="Non"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_2_vs_1[BP_C$Site_Trachée_ou.Carène == "Non"]
## W = 0.85407, p-value = 0.08261
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Site_Trachée_ou.Carène=="Oui"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_2_vs_1[BP_C$Site_Trachée_ou.Carène == "Oui"]
## W = 0.90376, p-value = 0.2053
la normalité: non acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_2_vs_1~BP_C$Site_Trachée_ou.Carène)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_2_vs_1 by BP_C$Site_Trachée_ou.Carène
## F = 1.3985, num df = 8, denom df = 10, p-value = 0.6077
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3627791 6.0066223
## sample estimates:
## ratio of variances
## 1.398474
test de variance: accepté
t.test(BP_C$Del_toux_2_vs_1~BP_C$Site_Trachée_ou.Carène,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_toux_2_vs_1 by BP_C$Site_Trachée_ou.Carène
## t = 0.41269, df = 15.779, p-value = 0.6854
## alternative hypothesis: true difference in means between group Non and group Oui is not equal to 0
## 95 percent confidence interval:
## -29.29193 43.43334
## sample estimates:
## mean in group Non mean in group Oui
## -11.11111 -18.18182
significativité: Non # Type d’intervention ## Type d’intervention / hémoptysie V3-V1 test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Type_intervention=="urgente"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_1[BP_C$Type_intervention == "urgente"]
## W = 0.72863, p-value = 0.02386
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Type_intervention=="programmée"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_1[BP_C$Type_intervention == "programmée"]
## W = 0.83252, p-value = 0.01297
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Type_intervention)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_3_vs_1 by BP_C$Type_intervention
## F = 4.9458, num df = 13, denom df = 3, p-value = 0.214
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.3457495 21.5001305
## sample estimates:
## ratio of variances
## 4.945767
test de variance: accepté
wilcox.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Type_intervention,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_3_vs_1 by BP_C$Type_intervention
## W = 15, p-value = 0.1588
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Type_intervention=="urgente"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_2[BP_C$Type_intervention == "urgente"]
## W = 1, p-value = 1
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Type_intervention=="programmée"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_2[BP_C$Type_intervention == "programmée"]
## W = 0.72099, p-value = 0.001353
la normalité:non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Type_intervention)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_3_vs_2 by BP_C$Type_intervention
## F = 0.87899, num df = 11, denom df = 2, p-value = 0.7111
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.02230535 4.61986317
## sample estimates:
## ratio of variances
## 0.8789879
test de variance: accepté
wilcox.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Type_intervention, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_3_vs_2 by BP_C$Type_intervention
## W = 19, p-value = 0.9347
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Type_intervention=="urgente"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_2_vs_1[BP_C$Type_intervention == "urgente"]
## W = 0.88104, p-value = 0.314
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Type_intervention=="programmée"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_2_vs_1[BP_C$Type_intervention == "programmée"]
## W = 0.88147, p-value = 0.04991
la normalité: non acceptée -> test de W
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Type_intervention)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_2_vs_1 by BP_C$Type_intervention
## F = 2.1772, num df = 14, denom df = 4, p-value = 0.4712
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2507249 8.4736246
## sample estimates:
## ratio of variances
## 2.177238
test de variance: acceptée
wilcox.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Type_intervention,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_2_vs_1 by BP_C$Type_intervention
## W = 22, p-value = 0.1707
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Type_intervention=="urgente"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_1[BP_C$Type_intervention == "urgente"]
## W = 0.86336, p-value = 0.2724
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Type_intervention=="programmée"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_1[BP_C$Type_intervention == "programmée"]
## W = 0.92171, p-value = 0.2327
la normalité: acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_3_vs_1~BP_C$Type_intervention)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_3_vs_1 by BP_C$Type_intervention
## F = 1.5823, num df = 13, denom df = 3, p-value = 0.7853
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1106139 6.8784257
## sample estimates:
## ratio of variances
## 1.582274
test de variance: acceptée
t.test(BP_C$Del_toux_3_vs_1~BP_C$Type_intervention,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_toux_3_vs_1 by BP_C$Type_intervention
## t = 0.80483, df = 6.0407, p-value = 0.4514
## alternative hypothesis: true difference in means between group programmée and group urgente is not equal to 0
## 95 percent confidence interval:
## -31.49944 62.45230
## sample estimates:
## mean in group programmée mean in group urgente
## -9.523571 -25.000000
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Type_intervention=="urgente"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_2[BP_C$Type_intervention == "urgente"]
## W = 0.92615, p-value = 0.5719
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Type_intervention=="programmée"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_2[BP_C$Type_intervention == "programmée"]
## W = 0.88597, p-value = 0.1046
la normalité: oui -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_3_vs_2~BP_C$Type_intervention)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_3_vs_2 by BP_C$Type_intervention
## F = 0.36183, num df = 11, denom df = 3, p-value = 0.1844
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.02517242 1.67529519
## sample estimates:
## ratio of variances
## 0.3618329
test de variance: accepté
t.test(BP_C$Del_toux_3_vs_2~BP_C$Type_intervention, var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_toux_3_vs_2 by BP_C$Type_intervention
## t = 0.15272, df = 3.7524, p-value = 0.8865
## alternative hypothesis: true difference in means between group programmée and group urgente is not equal to 0
## 95 percent confidence interval:
## -98.11528 109.22528
## sample estimates:
## mean in group programmée mean in group urgente
## -2.7775 -8.3325
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Type_intervention=="urgente"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_2_vs_1[BP_C$Type_intervention == "urgente"]
## W = 0.82083, p-value = 0.1185
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Type_intervention=="programmée"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_2_vs_1[BP_C$Type_intervention == "programmée"]
## W = 0.92706, p-value = 0.2465
la normalité: acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_2_vs_1~BP_C$Type_intervention)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_2_vs_1 by BP_C$Type_intervention
## F = 1.2094, num df = 14, denom df = 4, p-value = 0.9405
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.139272 4.706907
## sample estimates:
## ratio of variances
## 1.209407
test de variance: accepté
t.test(BP_C$Del_toux_2_vs_1~BP_C$Type_intervention,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_toux_2_vs_1 by BP_C$Type_intervention
## t = 1.3843, df = 7.5257, p-value = 0.2059
## alternative hypothesis: true difference in means between group programmée and group urgente is not equal to 0
## 95 percent confidence interval:
## -16.72738 65.61805
## sample estimates:
## mean in group programmée mean in group urgente
## -8.888667 -33.334000
significativité:Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Atelectasie_RT=="Absent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_1[BP_C$Atelectasie_RT == "Absent"]
## W = 0.87161, p-value = 0.1563
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Atelectasie_RT=="Présent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_1[BP_C$Atelectasie_RT == "Présent"]
## W = 0.80218, p-value = 0.01541
la normalité: non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Atelectasie_RT)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_3_vs_1 by BP_C$Atelectasie_RT
## F = 4.6654, num df = 7, denom df = 9, p-value = 0.03619
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 1.111599 22.502401
## sample estimates:
## ratio of variances
## 4.665434
test de variance: rejeté
wilcox.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Atelectasie_RT)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_3_vs_1 by BP_C$Atelectasie_RT
## W = 19.5, p-value = 0.05925
## alternative hypothesis: true location shift is not equal to 0
significativité: Non, mais à la limite de la significativité
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Atelectasie_RT=="Absent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_2[BP_C$Atelectasie_RT == "Absent"]
## W = 0.78649, p-value = 0.03003
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Atelectasie_RT=="Présent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_2[BP_C$Atelectasie_RT == "Présent"]
## W = 0.82602, p-value = 0.05397
la normalité:non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Atelectasie_RT)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_3_vs_2 by BP_C$Atelectasie_RT
## F = 1.2727, num df = 6, denom df = 7, p-value = 0.7519
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.248650 7.248846
## sample estimates:
## ratio of variances
## 1.272739
test de variance: accepté
wilcox.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Atelectasie_RT, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_3_vs_2 by BP_C$Atelectasie_RT
## W = 22.5, p-value = 0.5115
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Atelectasie_RT=="Absent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_2_vs_1[BP_C$Atelectasie_RT == "Absent"]
## W = 0.88652, p-value = 0.1837
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Atelectasie_RT=="Présent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_2_vs_1[BP_C$Atelectasie_RT == "Présent"]
## W = 0.8643, p-value = 0.06546
la normalité: acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Atelectasie_RT)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_2_vs_1 by BP_C$Atelectasie_RT
## F = 2.8737, num df = 8, denom df = 10, p-value = 0.1209
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.7454694 12.3429202
## sample estimates:
## ratio of variances
## 2.873703
test de variance: acceptée
t.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Atelectasie_RT,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_hemoptysie_2_vs_1 by BP_C$Atelectasie_RT
## t = -1.0648, df = 12.4, p-value = 0.3073
## alternative hypothesis: true difference in means between group Absent and group Présent is not equal to 0
## 95 percent confidence interval:
## -60.36713 20.63784
## sample estimates:
## mean in group Absent mean in group Présent
## -25.925556 -6.060909
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Atelectasie_RT=="Absent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_1[BP_C$Atelectasie_RT == "Absent"]
## W = 0.89742, p-value = 0.2738
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Atelectasie_RT=="Présent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_1[BP_C$Atelectasie_RT == "Présent"]
## W = 0.91646, p-value = 0.3284
la normalité: acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_3_vs_1~BP_C$Atelectasie_RT)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_3_vs_1 by BP_C$Atelectasie_RT
## F = 1.0626, num df = 7, denom df = 9, p-value = 0.9102
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2531671 5.1249300
## sample estimates:
## ratio of variances
## 1.062554
test de variance: acceptée
t.test(BP_C$Del_toux_3_vs_1~BP_C$Atelectasie_RT,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_toux_3_vs_1 by BP_C$Atelectasie_RT
## t = -0.35758, df = 14.927, p-value = 0.7257
## alternative hypothesis: true difference in means between group Absent and group Présent is not equal to 0
## 95 percent confidence interval:
## -46.43511 33.09811
## sample estimates:
## mean in group Absent mean in group Présent
## -16.6675 -9.9990
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Atelectasie_RT=="Absent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_2[BP_C$Atelectasie_RT == "Absent"]
## W = 0.75833, p-value = 0.01009
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Atelectasie_RT=="Présent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_2[BP_C$Atelectasie_RT == "Présent"]
## W = 0.91215, p-value = 0.3695
la normalité: non acceptée -> test de Wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_3_vs_2~BP_C$Atelectasie_RT)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_3_vs_2 by BP_C$Atelectasie_RT
## F = 0.52315, num df = 7, denom df = 7, p-value = 0.412
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1047362 2.6130763
## sample estimates:
## ratio of variances
## 0.5231479
test de variance: accepté
wilcox.test(BP_C$Del_toux_3_vs_2~BP_C$Atelectasie_RT, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_toux_3_vs_2 by BP_C$Atelectasie_RT
## W = 25, p-value = 0.4644
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Atelectasie_RT=="Absent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_2_vs_1[BP_C$Atelectasie_RT == "Absent"]
## W = 0.8994, p-value = 0.2486
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Atelectasie_RT=="Présent"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_2_vs_1[BP_C$Atelectasie_RT == "Présent"]
## W = 0.85358, p-value = 0.04752
la normalité: non acceptée -> test de wilcox
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_2_vs_1~BP_C$Atelectasie_RT)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_2_vs_1 by BP_C$Atelectasie_RT
## F = 1.0184, num df = 8, denom df = 10, p-value = 0.9588
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2641882 4.3742289
## sample estimates:
## ratio of variances
## 1.018417
test de variance: accepté
wilcox.test(BP_C$Del_toux_2_vs_1~BP_C$Atelectasie_RT,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_toux_2_vs_1 by BP_C$Atelectasie_RT
## W = 45, p-value = 0.7505
## alternative hypothesis: true location shift is not equal to 0
significativité:Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Sexe=="Homme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_1[BP_C$Sexe == "Homme"]
## W = 0.82221, p-value = 0.01844
shapiro.test(BP_C$Del_hemoptysie_3_vs_1[BP_C$Sexe=="Femme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_1[BP_C$Sexe == "Femme"]
## W = 0.75015, p-value = 0.01273
la normalité: non acceptée -> test de W
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Sexe)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_3_vs_1 by BP_C$Sexe
## F = 6.6942, num df = 6, denom df = 10, p-value = 0.009203
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 1.643898 36.559026
## sample estimates:
## ratio of variances
## 6.694169
test de variance: non accepté
wilcox.test(BP_C$Del_hemoptysie_3_vs_1~BP_C$Sexe,vartest=FALSE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_3_vs_1 by BP_C$Sexe
## W = 42, p-value = 0.773
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Sexe=="Homme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_2[BP_C$Sexe == "Homme"]
## W = 0.76018, p-value = 0.007112
shapiro.test(BP_C$Del_hemoptysie_3_vs_2[BP_C$Sexe=="Femme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_2[BP_C$Sexe == "Femme"]
## W = 0.70125, p-value = 0.006372
la normalité:non acceptée -> test de wilcoxon
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Sexe)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_3_vs_2 by BP_C$Sexe
## F = 0.81296, num df = 5, denom df = 8, p-value = 0.8558
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1687599 5.4933294
## sample estimates:
## ratio of variances
## 0.8129628
test de variance: accepté
wilcox.test(BP_C$Del_hemoptysie_3_vs_2~BP_C$Sexe, var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_3_vs_2 by BP_C$Sexe
## W = 38.5, p-value = 0.1413
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Sexe=="Homme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_2_vs_1[BP_C$Sexe == "Homme"]
## W = 0.89441, p-value = 0.1343
shapiro.test(BP_C$Del_hemoptysie_2_vs_1[BP_C$Sexe=="Femme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_2_vs_1[BP_C$Sexe == "Femme"]
## W = 0.81042, p-value = 0.03697
la normalité: acceptée -> test de W
Evaluation de l’égalité des variances
var.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Sexe)
##
## F test to compare two variances
##
## data: BP_C$Del_hemoptysie_2_vs_1 by BP_C$Sexe
## F = 2.3765, num df = 7, denom df = 11, p-value = 0.1926
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.6322708 11.1919474
## sample estimates:
## ratio of variances
## 2.376477
test de variance: acceptée
wilcox.test(BP_C$Del_hemoptysie_2_vs_1~BP_C$Sexe,var.test=TRUE)
## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): impossible
## de calculer la p-value exacte avec des ex-aequos
##
## Wilcoxon rank sum test with continuity correction
##
## data: BP_C$Del_hemoptysie_2_vs_1 by BP_C$Sexe
## W = 41.5, p-value = 0.6282
## alternative hypothesis: true location shift is not equal to 0
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Sexe=="Homme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_1[BP_C$Sexe == "Homme"]
## W = 0.94809, p-value = 0.6196
shapiro.test(BP_C$Del_toux_3_vs_1[BP_C$Sexe=="Femme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_1[BP_C$Sexe == "Femme"]
## W = 0.8936, p-value = 0.294
la normalité: acceptée -> test de student
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_3_vs_1~BP_C$Sexe)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_3_vs_1 by BP_C$Sexe
## F = 0.88532, num df = 6, denom df = 10, p-value = 0.9213
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2174106 4.8350428
## sample estimates:
## ratio of variances
## 0.8853243
test de variance: acceptée
t.test(BP_C$Del_toux_3_vs_1~BP_C$Sexe,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_toux_3_vs_1 by BP_C$Sexe
## t = -1.4465, df = 13.531, p-value = 0.1708
## alternative hypothesis: true difference in means between group Femme and group Homme is not equal to 0
## 95 percent confidence interval:
## -63.53725 12.45439
## sample estimates:
## mean in group Femme mean in group Homme
## -28.57143 -3.03000
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Sexe=="Homme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_2[BP_C$Sexe == "Homme"]
## W = 0.8463, p-value = 0.06783
shapiro.test(BP_C$Del_toux_3_vs_2[BP_C$Sexe=="Femme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_2[BP_C$Sexe == "Femme"]
## W = 0.86249, p-value = 0.1593
la normalité: rejetée -> test de S
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_3_vs_2~BP_C$Sexe)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_3_vs_2 by BP_C$Sexe
## F = 4.203, num df = 6, denom df = 8, p-value = 0.06594
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.9035314 23.5349512
## sample estimates:
## ratio of variances
## 4.202953
test de variance: accepté
t.test(BP_C$Del_toux_3_vs_2~BP_C$Sexe, var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_toux_3_vs_2 by BP_C$Sexe
## t = -0.6895, df = 8.2151, p-value = 0.5095
## alternative hypothesis: true difference in means between group Femme and group Homme is not equal to 0
## 95 percent confidence interval:
## -77.88398 41.90366
## sample estimates:
## mean in group Femme mean in group Homme
## -14.285714 3.704444
significativité: Non
test de Shapiro fait pour la normalité des données
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Sexe=="Homme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_2_vs_1[BP_C$Sexe == "Homme"]
## W = 0.88419, p-value = 0.0992
shapiro.test(BP_C$Del_toux_2_vs_1[BP_C$Sexe=="Femme"])
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_2_vs_1[BP_C$Sexe == "Femme"]
## W = 0.85785, p-value = 0.1143
la normalité: acceptée -> test de Student
Evaluation de l’égalité des variances
var.test(BP_C$Del_toux_2_vs_1~BP_C$Sexe)
##
## F test to compare two variances
##
## data: BP_C$Del_toux_2_vs_1 by BP_C$Sexe
## F = 2.5718, num df = 7, denom df = 11, p-value = 0.1564
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.684249 12.112023
## sample estimates:
## ratio of variances
## 2.571844
test de variance: accepté
t.test(BP_C$Del_toux_2_vs_1~BP_C$Sexe,var.test=TRUE)
##
## Welch Two Sample t-test
##
## data: BP_C$Del_toux_2_vs_1 by BP_C$Sexe
## t = -0.90746, df = 10.644, p-value = 0.3842
## alternative hypothesis: true difference in means between group Femme and group Homme is not equal to 0
## 95 percent confidence interval:
## -57.25603 23.92270
## sample estimates:
## mean in group Femme mean in group Homme
## -25.000000 -8.333333
significativité:Non
library(car)
## Le chargement a nécessité le package : carData
condition de validité
shapiro.test(BP_C$Del_toux_3_vs_1)
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_3_vs_1
## W = 0.9207, p-value = 0.133
t.test(BP_C$symp_Toux_1_.,BP_C$symp_Toux_3_.,paired=TRUE)
##
## Paired t-test
##
## data: BP_C$symp_Toux_1_. and BP_C$symp_Toux_3_.
## t = 1.4414, df = 17, p-value = 0.1676
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -6.011701 31.940590
## sample estimates:
## mean difference
## 12.96444
les scores symptome toux entre la V1 et la V3 ne sont pas significativement different
condition de validité
shapiro.test(BP_C$Del_toux_2_vs_1)
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_toux_2_vs_1
## W = 0.90588, p-value = 0.05323
t.test(BP_C$symp_Toux_1_.,BP_C$symp_Toux_2_.,paired=TRUE)
##
## Paired t-test
##
## data: BP_C$symp_Toux_1_. and BP_C$symp_Toux_2_.
## t = 1.8312, df = 19, p-value = 0.0828
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -2.145064 32.147064
## sample estimates:
## mean difference
## 15.001
La p-value du test est <0.05., ainsi les scores symptome toux entre la V1 et la V2 sont significativement different dans le sens d’une diminution
condition de validité
shapiro.test(BP_C$Del_dyspnée_LC13_3_vs_1)
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_3_vs_1
## W = 0.94065, p-value = 0.2973
t.test(BP_C$symp_LC13_dyspnée_1_.,BP_C$symp_LC13_dyspnée_3_.,paired=TRUE)
##
## Paired t-test
##
## data: BP_C$symp_LC13_dyspnée_1_. and BP_C$symp_LC13_dyspnée_3_.
## t = 2.5966, df = 17, p-value = 0.01881
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## 4.571359 44.197529
## sample estimates:
## mean difference
## 24.38444
La p-value du test est <0.05., ainsi les scores symptome dyspnée entre la V1 et la V3 sont significativement differents dans le sens d’une diminution (diminution moyenne de 24.38)
condition de validité
shapiro.test(BP_C$Del_dyspnée_QLQ30_3_vs_1)
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_3_vs_1
## W = 0.88517, p-value = 0.03192
wilcox.test(BP_C$symp_QLC30_dyspnée_1_.,BP_C$symp_QLC30_dyspnée_3_.,paired=TRUE)
## Warning in wilcox.test.default(BP_C$symp_QLC30_dyspnée_1_.,
## BP_C$symp_QLC30_dyspnée_3_., : impossible de calculer la p-value exacte avec des
## ex-aequos
## Warning in wilcox.test.default(BP_C$symp_QLC30_dyspnée_1_.,
## BP_C$symp_QLC30_dyspnée_3_., : impossible de calculer une p-value exacte avec
## des zéros
##
## Wilcoxon signed rank test with continuity correction
##
## data: BP_C$symp_QLC30_dyspnée_1_. and BP_C$symp_QLC30_dyspnée_3_.
## V = 67.5, p-value = 0.02662
## alternative hypothesis: true location shift is not equal to 0
La p-value du test est <0.05., les scores symptome dyspnée entre la V1 et la V3 sont significativement differents
condition de validité
shapiro.test(BP_C$Del_dyspnée_LC13_2_vs_1)
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_LC13_2_vs_1
## W = 0.93543, p-value = 0.1963
t.test(BP_C$symp_LC13_dyspnée_1_.,BP_C$symp_LC13_dyspnée_2_.,paired=TRUE)
##
## Paired t-test
##
## data: BP_C$symp_LC13_dyspnée_1_. and BP_C$symp_LC13_dyspnée_2_.
## t = 2.6262, df = 18, p-value = 0.01713
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## 4.561641 41.054148
## sample estimates:
## mean difference
## 22.80789
La p-value du test est <0.05., ainsi les scores symptome dyspnée entre la V1 et la V2 sont significativement differents dans le sens d’une diminution (diminution moyenne de 22.80)
condition de validité
shapiro.test(BP_C$Del_dyspnée_QLQ30_2_vs_1)
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_dyspnée_QLQ30_2_vs_1
## W = 0.89925, p-value = 0.03993
wilcox.test(BP_C$symp_QLC30_dyspnée_1_.,BP_C$symp_QLC30_dyspnée_2_.,paired=TRUE)
## Warning in wilcox.test.default(BP_C$symp_QLC30_dyspnée_1_.,
## BP_C$symp_QLC30_dyspnée_2_., : impossible de calculer la p-value exacte avec des
## ex-aequos
## Warning in wilcox.test.default(BP_C$symp_QLC30_dyspnée_1_.,
## BP_C$symp_QLC30_dyspnée_2_., : impossible de calculer une p-value exacte avec
## des zéros
##
## Wilcoxon signed rank test with continuity correction
##
## data: BP_C$symp_QLC30_dyspnée_1_. and BP_C$symp_QLC30_dyspnée_2_.
## V = 84, p-value = 0.007173
## alternative hypothesis: true location shift is not equal to 0
La p-value du test est <0.05., les scores symptome dyspnée entre la V1 et la V3 sont significativement differents
condition de validité
shapiro.test(BP_C$Del_hemoptysie_3_vs_1)
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_3_vs_1
## W = 0.80257, p-value = 0.001651
wilcox.test(BP_C$symp_Hémoptysie_1_.,BP_C$symp_Hémoptysie_3_.,paired=TRUE)
## Warning in wilcox.test.default(BP_C$symp_Hémoptysie_1_.,
## BP_C$symp_Hémoptysie_3_., : impossible de calculer la p-value exacte avec des
## ex-aequos
## Warning in wilcox.test.default(BP_C$symp_Hémoptysie_1_.,
## BP_C$symp_Hémoptysie_3_., : impossible de calculer une p-value exacte avec des
## zéros
##
## Wilcoxon signed rank test with continuity correction
##
## data: BP_C$symp_Hémoptysie_1_. and BP_C$symp_Hémoptysie_3_.
## V = 28, p-value = 1
## alternative hypothesis: true location shift is not equal to 0
les scores symptome toux entre la V1 et la V3 ne sont pas significativement different p-value=1
condition de validité
shapiro.test(BP_C$Del_hemoptysie_2_vs_1)
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_hemoptysie_2_vs_1
## W = 0.86886, p-value = 0.01122
wilcox.test(BP_C$symp_Hémoptysie_1_.,BP_C$symp_Hémoptysie_2_.,paired=TRUE)
## Warning in wilcox.test.default(BP_C$symp_Hémoptysie_1_.,
## BP_C$symp_Hémoptysie_2_., : impossible de calculer la p-value exacte avec des
## ex-aequos
## Warning in wilcox.test.default(BP_C$symp_Hémoptysie_1_.,
## BP_C$symp_Hémoptysie_2_., : impossible de calculer une p-value exacte avec des
## zéros
##
## Wilcoxon signed rank test with continuity correction
##
## data: BP_C$symp_Hémoptysie_1_. and BP_C$symp_Hémoptysie_2_.
## V = 55.5, p-value = 0.1942
## alternative hypothesis: true location shift is not equal to 0
La p-value du test est >0.05., ainsi les scores symptome hemoptysie entre la V1 et la V2 ne sont pas significativement different
condition de validité
shapiro.test(BP_C$Del_total_LC13_3_vs_1)
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_3_vs_1
## W = 0.89654, p-value = 0.05003
t.test(BP_C$Total_EORTC.LC13_1,BP_C$Total_EORTC.LC13_3,paired=TRUE)
##
## Paired t-test
##
## data: BP_C$Total_EORTC.LC13_1 and BP_C$Total_EORTC.LC13_3
## t = -1.9689, df = 16, p-value = 0.06653
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -18.3811406 0.6787876
## sample estimates:
## mean difference
## -8.851176
La p-value du test est > 0.05., ainsi les scores EORTC_LC 13 entre la V1 et la V3 ne sont pas significativement differents
condition de validité
shapiro.test(BP_C$Del_total_LC13_2_vs_1)
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_LC13_2_vs_1
## W = 0.87499, p-value = 0.01439
wilcox.test(BP_C$Total_EORTC.LC13_1,BP_C$Total_EORTC.LC13_2,paired=TRUE)
## Warning in wilcox.test.default(BP_C$Total_EORTC.LC13_1,
## BP_C$Total_EORTC.LC13_2, : impossible de calculer la p-value exacte avec des ex-
## aequos
##
## Wilcoxon signed rank test with continuity correction
##
## data: BP_C$Total_EORTC.LC13_1 and BP_C$Total_EORTC.LC13_2
## V = 43.5, p-value = 0.07064
## alternative hypothesis: true location shift is not equal to 0
La p-value du test est <0.05, ainsi les scores EORTC_LC 13 entre la V1 et la V3 sont significativement differents
condition de validité
shapiro.test(BP_C$Del_total_QLC30_3_vs_1)
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_3_vs_1
## W = 0.88373, p-value = 0.03018
wilcox.test(BP_C$Total_EORTC.QLQ30_1,BP_C$Total_EORTC.QLQ30_3,paired=TRUE)
##
## Wilcoxon signed rank exact test
##
## data: BP_C$Total_EORTC.QLQ30_1 and BP_C$Total_EORTC.QLQ30_3
## V = 27, p-value = 0.008965
## alternative hypothesis: true location shift is not equal to 0
La p-value du test est <0.05, ainsi les scores EORTC_QLQ30 entre la V1 et la V3 sont significativement differents
condition de validité
shapiro.test(BP_C$Del_total_QLC30_2_vs_1)
##
## Shapiro-Wilk normality test
##
## data: BP_C$Del_total_QLC30_2_vs_1
## W = 0.92141, p-value = 0.1055
t.test(BP_C$Total_EORTC.QLQ30_1,BP_C$Total_EORTC.QLQ30_3,paired=TRUE)
##
## Paired t-test
##
## data: BP_C$Total_EORTC.QLQ30_1 and BP_C$Total_EORTC.QLQ30_3
## t = -2.7362, df = 17, p-value = 0.01407
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -29.000558 -3.748331
## sample estimates:
## mean difference
## -16.37444
La p-value du test est <0.05, ainsi les scores EORTC_QLQ30 entre la V1 et la V2sont significativement differents dans le sens d’une augmentation