Analysis the difference between TWO groups or TREATMENTS by using t value which is calculated by using the difference between mean values of 2 groups divide by NOISE (SD of the difference)
boxplot(Raw_data$`WG (g)`~ Raw_data$Hemorrhage, data = Raw_data, lwd = 2, ylab = 'WG')
stripchart(Raw_data$`WG (g)`~ Raw_data$Hemorrhage, vertical = TRUE, data = Raw_data,
method = "jitter", add = TRUE, pch = 20, col = 'blue')
describe.by(Raw_data$`WG (g)`,Raw_data$Hemorrhage,range=F)
##
## Descriptive statistics by group
## group: 0
## vars n mean sd skew kurtosis se
## X1 1 26 51.1 16.05 0.09 -1.48 3.15
## ------------------------------------------------------------
## group: 1
## vars n mean sd skew kurtosis se
## X1 1 34 43.23 12.87 0.59 -0.81 2.21
beeswarm(`WG (g)`~Hemorrhage,data=Raw_data,color=20,pch=16)
boxplot(Raw_data$`WG (g)`~ Raw_data$Hemorrhage,method = "jitter",add = T) # kết hợp beeswarm
t.test(Raw_data$`WG (g)`~Raw_data$Hemorrhage)
##
## Welch Two Sample t-test
##
## data: Raw_data$`WG (g)` by Raw_data$Hemorrhage
## t = 2.0478, df = 47.018, p-value = 0.04618
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
## 0.1388506 15.6034452
## sample estimates:
## mean in group 0 mean in group 1
## 51.09697 43.22582
t value = 2.04 có nghĩa difference (mean1-mean2) lớn gấp 2.04 lần noise (SD of difference)
p value = 0.04 có ý nghĩa thống kê
95% CI: lặp lại nghiên cứu nà y 100 lần thì 95 lần kết quả dao động từ 0.13 đến 15.6
Mean ở group 1 (bị hemorrhage ) và 0 (ko bị hemorrage) lần lượt là 51.09 và 43.2
qqnorm(Raw_data$`WG (g)`)
qqline(Raw_data$`WG (g)`,col=3)
plot(density(Raw_data$`WG (g)`))
shapiro.test(Raw_data$`WG (g)`)
##
## Shapiro-Wilk normality test
##
## data: Raw_data$`WG (g)`
## W = 0.92827, p-value = 0.001678
ad.test(Raw_data$`WG (g)`)
##
## Anderson-Darling normality test
##
## data: Raw_data$`WG (g)`
## A = 1.7083, p-value = 0.0001972
Note that, sometimes, the statistical tests are sensitive. For example, if you have 1000 observations but having some outliers, the test will performed with p value <0.05. In this case, you should check by using qqnorm, qqline to identify normal distribution.