bd <- read.csv("/Users/georginamartinez/Documents/Tec/Séptimo Semestre/Analítica para negocios, de los datos a decisiones/rentadebicis.csv")
resumen <- summary(bd)
resumen
## hora dia mes año
## Min. : 0.00 Min. : 1.000 Min. : 1.000 Min. :2011
## 1st Qu.: 6.00 1st Qu.: 5.000 1st Qu.: 4.000 1st Qu.:2011
## Median :12.00 Median :10.000 Median : 7.000 Median :2012
## Mean :11.54 Mean : 9.993 Mean : 6.521 Mean :2012
## 3rd Qu.:18.00 3rd Qu.:15.000 3rd Qu.:10.000 3rd Qu.:2012
## Max. :23.00 Max. :19.000 Max. :12.000 Max. :2012
## estacion dia_de_la_semana asueto temperatura
## Min. :1.000 Min. :1.000 Min. :0.00000 Min. : 0.82
## 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:0.00000 1st Qu.:13.94
## Median :3.000 Median :4.000 Median :0.00000 Median :20.50
## Mean :2.507 Mean :4.014 Mean :0.02857 Mean :20.23
## 3rd Qu.:4.000 3rd Qu.:6.000 3rd Qu.:0.00000 3rd Qu.:26.24
## Max. :4.000 Max. :7.000 Max. :1.00000 Max. :41.00
## sensacion_termica humedad velocidad_del_viento
## Min. : 0.76 Min. : 0.00 Min. : 0.000
## 1st Qu.:16.66 1st Qu.: 47.00 1st Qu.: 7.002
## Median :24.24 Median : 62.00 Median :12.998
## Mean :23.66 Mean : 61.89 Mean :12.799
## 3rd Qu.:31.06 3rd Qu.: 77.00 3rd Qu.:16.998
## Max. :45.45 Max. :100.00 Max. :56.997
## rentas_de_no_registrados rentas_de_registrados rentas_totales
## Min. : 0.00 Min. : 0.0 Min. : 1.0
## 1st Qu.: 4.00 1st Qu.: 36.0 1st Qu.: 42.0
## Median : 17.00 Median :118.0 Median :145.0
## Mean : 36.02 Mean :155.6 Mean :191.6
## 3rd Qu.: 49.00 3rd Qu.:222.0 3rd Qu.:284.0
## Max. :367.00 Max. :886.0 Max. :977.0
plot(bd$temperatura,bd$rentas_totales, main= "Influencia de la temperatura sobre la renta total", xlab= "Temperatura (ºC)", ylab= "Rentas totales")
regresion <- lm(rentas_totales ~ hora + dia + mes + año + estacion + dia_de_la_semana + asueto + temperatura + sensacion_termica + humedad + velocidad_del_viento, data=bd)
summary(regresion)
##
## Call:
## lm(formula = rentas_totales ~ hora + dia + mes + año + estacion +
## dia_de_la_semana + asueto + temperatura + sensacion_termica +
## humedad + velocidad_del_viento, data = bd)
##
## Residuals:
## Min 1Q Median 3Q Max
## -305.52 -93.64 -27.70 61.85 649.10
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.661e+05 5.496e+03 -30.217 < 2e-16 ***
## hora 7.735e+00 2.070e-01 37.368 < 2e-16 ***
## dia 3.844e-01 2.482e-01 1.549 0.12150
## mes 9.996e+00 1.682e+00 5.943 2.89e-09 ***
## año 8.258e+01 2.732e+00 30.225 < 2e-16 ***
## estacion -7.774e+00 5.177e+00 -1.502 0.13324
## dia_de_la_semana 4.393e-01 6.918e-01 0.635 0.52545
## asueto -4.864e+00 8.365e+00 -0.582 0.56089
## temperatura 1.582e+00 1.038e+00 1.524 0.12752
## sensacion_termica 4.748e+00 9.552e-01 4.971 6.76e-07 ***
## humedad -2.115e+00 7.884e-02 -26.827 < 2e-16 ***
## velocidad_del_viento 5.582e-01 1.809e-01 3.086 0.00203 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 141.7 on 10874 degrees of freedom
## Multiple R-squared: 0.3891, Adjusted R-squared: 0.3885
## F-statistic: 629.6 on 11 and 10874 DF, p-value: < 2.2e-16
# Evaluar y en caso necesario ajustar la regresión lineal
regresion <- lm(rentas_totales ~ hora + mes + año + sensacion_termica + humedad + velocidad_del_viento, data=bd)
summary(regresion)
##
## Call:
## lm(formula = rentas_totales ~ hora + mes + año + sensacion_termica +
## humedad + velocidad_del_viento, data = bd)
##
## Residuals:
## Min 1Q Median 3Q Max
## -308.60 -93.85 -28.34 61.05 648.09
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.662e+05 5.496e+03 -30.250 < 2e-16 ***
## hora 7.734e+00 2.070e-01 37.364 < 2e-16 ***
## mes 7.574e+00 4.207e-01 18.002 < 2e-16 ***
## año 8.266e+01 2.732e+00 30.258 < 2e-16 ***
## sensacion_termica 6.172e+00 1.689e-01 36.539 < 2e-16 ***
## humedad -2.121e+00 7.858e-02 -26.988 < 2e-16 ***
## velocidad_del_viento 6.208e-01 1.771e-01 3.506 0.000457 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 141.7 on 10879 degrees of freedom
## Multiple R-squared: 0.3886, Adjusted R-squared: 0.3883
## F-statistic: 1153 on 6 and 10879 DF, p-value: < 2.2e-16
# Construir Modelo Predictivo
Datos_nuevos <- data.frame(hora=12, mes=1:12, año=2013, sensacion_termica=24, humedad=62, velocidad_del_viento=13)
predict(regresion, Datos_nuevos)
## 1 2 3 4 5 6 7 8
## 279.1478 286.7215 294.2952 301.8690 309.4427 317.0164 324.5901 332.1638
## 9 10 11 12
## 339.7375 347.3112 354.8849 362.4587
plot(bd$sensacion_termica,bd$rentas_totales, main= "Influencia de la sensación térmica sobre la renta total", xlab= "Sensación Térmica", ylab= "Rentas totales")
plot(bd$humedad,bd$rentas_totales, main= "Influencia de la humedad sobre la renta total", xlab= "Humedad", ylab= "Rentas totales")
plot(bd$velocidad_del_viento,bd$rentas_totales, main= "Influencia de la velocidad del viento sobre la renta total", xlab= "Velocidad del viento", ylab= "Rentas totales")
Un modelo predictivo se construye con la recolección de datos y nos sirve para predecir y pronosticar futuros resultados que permiten poder tomar decisiones que sean precisas.
Para este análisis se construyó un modelo con una linea de regresión, al principio se tenía la hipótesis de que el Clima era un factor importante donde las ventas dependendían de este, al realizar la gráfica podemos ver que entre más temperatura más son las rentas de bicis, pero al momento de realizar la regresión los resultados mostraron que las variables día, estación, día de la semana, asueto y temperatura no tenían significancia ya que no muestran ni un asterisco, por lo que las variables con las que si hay significancia y forman parte del modelo predictivo son:
Hora
Mes
Año
Sensación térmica
Humedad
Velocidad del viento
Se realizaron tres gráficas para ahora que conocemos que variables tienen relación, ver como se comportan la influencia que tiene una de otra y podemos observar que entre más sea la sensación térmica más rentas se tienen, que cuando hay una humedad intermedia hay mas rentas y que entre menos viento haya la gente utiliza más las bicicletas.
Al final nuestro modelo tiene una Rsquared de 38.85%, lo que nos dice que es un buen modelo predictivo ya que se encuentra entre los valores aceptables de significancia. Entre más se acerque al 100% más validez tiene.