Titanic

Librerias

library(rpart)
library(rpart.plot)

Importar base de datos

bd<-read.csv("C:\\Users\\javaw\\OneDrive - Instituto Tecnologico y de Estudios Superiores de Monterrey\\7mo Semestre\\Modulo 3\\titanic.csv")

Entender base de datos

summary(bd)
##    ï..pclass        survived         name               sex           
##  Min.   :1.000   Min.   :0.000   Length:1310        Length:1310       
##  1st Qu.:2.000   1st Qu.:0.000   Class :character   Class :character  
##  Median :3.000   Median :0.000   Mode  :character   Mode  :character  
##  Mean   :2.295   Mean   :0.382                                        
##  3rd Qu.:3.000   3rd Qu.:1.000                                        
##  Max.   :3.000   Max.   :1.000                                        
##  NA's   :1       NA's   :1                                            
##       age              sibsp            parch          ticket         
##  Min.   : 0.1667   Min.   :0.0000   Min.   :0.000   Length:1310       
##  1st Qu.:21.0000   1st Qu.:0.0000   1st Qu.:0.000   Class :character  
##  Median :28.0000   Median :0.0000   Median :0.000   Mode  :character  
##  Mean   :29.8811   Mean   :0.4989   Mean   :0.385                     
##  3rd Qu.:39.0000   3rd Qu.:1.0000   3rd Qu.:0.000                     
##  Max.   :80.0000   Max.   :8.0000   Max.   :9.000                     
##  NA's   :264       NA's   :1        NA's   :1                         
##       fare            cabin             embarked             boat          
##  Min.   :  0.000   Length:1310        Length:1310        Length:1310       
##  1st Qu.:  7.896   Class :character   Class :character   Class :character  
##  Median : 14.454   Mode  :character   Mode  :character   Mode  :character  
##  Mean   : 33.295                                                           
##  3rd Qu.: 31.275                                                           
##  Max.   :512.329                                                           
##  NA's   :2                                                                 
##       body        home.dest        
##  Min.   :  1.0   Length:1310       
##  1st Qu.: 72.0   Class :character  
##  Median :155.0   Mode  :character  
##  Mean   :160.8                     
##  3rd Qu.:256.0                     
##  Max.   :328.0                     
##  NA's   :1189

Filtrar base de datos

titanic <- bd[,c("ï..pclass","age","sex","survived")]
titanic$survived <-as.factor(ifelse(titanic$survived==0,"Murio","Sobrevivio"))
titanic$ï..pclass <-as.factor(titanic$ï..pclass)
titanic$sex <- as.factor(titanic$sex)
str(titanic)
## 'data.frame':    1310 obs. of  4 variables:
##  $ ï..pclass: Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
##  $ age      : num  29 0.917 2 30 25 ...
##  $ sex      : Factor w/ 3 levels "","female","male": 2 3 2 3 2 3 2 3 2 3 ...
##  $ survived : Factor w/ 2 levels "Murio","Sobrevivio": 2 2 1 1 1 2 2 1 2 1 ...
sum(is.na(titanic))
## [1] 266
titanic<-na.omit(titanic)

Crear arbol de decision

arbol <- rpart(formula=survived~., data=titanic)
arbol
## n= 1046 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 1046 427 Murio (0.59177820 0.40822180)  
##    2) sex=male 658 135 Murio (0.79483283 0.20516717)  
##      4) age>=9.5 615 110 Murio (0.82113821 0.17886179) *
##      5) age< 9.5 43  18 Sobrevivio (0.41860465 0.58139535)  
##       10) ï..pclass=3 29  11 Murio (0.62068966 0.37931034) *
##       11) ï..pclass=1,2 14   0 Sobrevivio (0.00000000 1.00000000) *
##    3) sex=female 388  96 Sobrevivio (0.24742268 0.75257732)  
##      6) ï..pclass=3 152  72 Murio (0.52631579 0.47368421)  
##       12) age>=1.5 145  66 Murio (0.54482759 0.45517241) *
##       13) age< 1.5 7   1 Sobrevivio (0.14285714 0.85714286) *
##      7) ï..pclass=1,2 236  16 Sobrevivio (0.06779661 0.93220339) *
rpart.plot(arbol)

prp(arbol,extra=7,prefix="Fraccion\n")

Cáncer de Mama

Librerias

library(rpart)
library(rpart.plot)
library(janitor)
library(ggplot2)
library(tidyverse)

Importar base de datos

df<-read.csv("C:\\Users\\javaw\\OneDrive - Instituto Tecnologico y de Estudios Superiores de Monterrey\\7mo Semestre\\Modulo 3\\cancer_de_mama.csv")

Entender base de datos

summary(df)
##  ï..diagnosis        radius_mean      texture_mean   perimeter_mean  
##  Length:569         Min.   : 6.981   Min.   : 9.71   Min.   : 43.79  
##  Class :character   1st Qu.:11.700   1st Qu.:16.17   1st Qu.: 75.17  
##  Mode  :character   Median :13.370   Median :18.84   Median : 86.24  
##                     Mean   :14.127   Mean   :19.29   Mean   : 91.97  
##                     3rd Qu.:15.780   3rd Qu.:21.80   3rd Qu.:104.10  
##                     Max.   :28.110   Max.   :39.28   Max.   :188.50  
##    area_mean      smoothness_mean   compactness_mean  concavity_mean   
##  Min.   : 143.5   Min.   :0.05263   Min.   :0.01938   Min.   :0.00000  
##  1st Qu.: 420.3   1st Qu.:0.08637   1st Qu.:0.06492   1st Qu.:0.02956  
##  Median : 551.1   Median :0.09587   Median :0.09263   Median :0.06154  
##  Mean   : 654.9   Mean   :0.09636   Mean   :0.10434   Mean   :0.08880  
##  3rd Qu.: 782.7   3rd Qu.:0.10530   3rd Qu.:0.13040   3rd Qu.:0.13070  
##  Max.   :2501.0   Max.   :0.16340   Max.   :0.34540   Max.   :0.42680  
##  concave.points_mean symmetry_mean    fractal_dimension_mean   radius_se     
##  Min.   :0.00000     Min.   :0.1060   Min.   :0.04996        Min.   :0.1115  
##  1st Qu.:0.02031     1st Qu.:0.1619   1st Qu.:0.05770        1st Qu.:0.2324  
##  Median :0.03350     Median :0.1792   Median :0.06154        Median :0.3242  
##  Mean   :0.04892     Mean   :0.1812   Mean   :0.06280        Mean   :0.4052  
##  3rd Qu.:0.07400     3rd Qu.:0.1957   3rd Qu.:0.06612        3rd Qu.:0.4789  
##  Max.   :0.20120     Max.   :0.3040   Max.   :0.09744        Max.   :2.8730  
##    texture_se      perimeter_se       area_se        smoothness_se     
##  Min.   :0.3602   Min.   : 0.757   Min.   :  6.802   Min.   :0.001713  
##  1st Qu.:0.8339   1st Qu.: 1.606   1st Qu.: 17.850   1st Qu.:0.005169  
##  Median :1.1080   Median : 2.287   Median : 24.530   Median :0.006380  
##  Mean   :1.2169   Mean   : 2.866   Mean   : 40.337   Mean   :0.007041  
##  3rd Qu.:1.4740   3rd Qu.: 3.357   3rd Qu.: 45.190   3rd Qu.:0.008146  
##  Max.   :4.8850   Max.   :21.980   Max.   :542.200   Max.   :0.031130  
##  compactness_se      concavity_se     concave.points_se   symmetry_se      
##  Min.   :0.002252   Min.   :0.00000   Min.   :0.000000   Min.   :0.007882  
##  1st Qu.:0.013080   1st Qu.:0.01509   1st Qu.:0.007638   1st Qu.:0.015160  
##  Median :0.020450   Median :0.02589   Median :0.010930   Median :0.018730  
##  Mean   :0.025478   Mean   :0.03189   Mean   :0.011796   Mean   :0.020542  
##  3rd Qu.:0.032450   3rd Qu.:0.04205   3rd Qu.:0.014710   3rd Qu.:0.023480  
##  Max.   :0.135400   Max.   :0.39600   Max.   :0.052790   Max.   :0.078950  
##  fractal_dimension_se  radius_worst   texture_worst   perimeter_worst 
##  Min.   :0.0008948    Min.   : 7.93   Min.   :12.02   Min.   : 50.41  
##  1st Qu.:0.0022480    1st Qu.:13.01   1st Qu.:21.08   1st Qu.: 84.11  
##  Median :0.0031870    Median :14.97   Median :25.41   Median : 97.66  
##  Mean   :0.0037949    Mean   :16.27   Mean   :25.68   Mean   :107.26  
##  3rd Qu.:0.0045580    3rd Qu.:18.79   3rd Qu.:29.72   3rd Qu.:125.40  
##  Max.   :0.0298400    Max.   :36.04   Max.   :49.54   Max.   :251.20  
##    area_worst     smoothness_worst  compactness_worst concavity_worst 
##  Min.   : 185.2   Min.   :0.07117   Min.   :0.02729   Min.   :0.0000  
##  1st Qu.: 515.3   1st Qu.:0.11660   1st Qu.:0.14720   1st Qu.:0.1145  
##  Median : 686.5   Median :0.13130   Median :0.21190   Median :0.2267  
##  Mean   : 880.6   Mean   :0.13237   Mean   :0.25427   Mean   :0.2722  
##  3rd Qu.:1084.0   3rd Qu.:0.14600   3rd Qu.:0.33910   3rd Qu.:0.3829  
##  Max.   :4254.0   Max.   :0.22260   Max.   :1.05800   Max.   :1.2520  
##  concave.points_worst symmetry_worst   fractal_dimension_worst
##  Min.   :0.00000      Min.   :0.1565   Min.   :0.05504        
##  1st Qu.:0.06493      1st Qu.:0.2504   1st Qu.:0.07146        
##  Median :0.09993      Median :0.2822   Median :0.08004        
##  Mean   :0.11461      Mean   :0.2901   Mean   :0.08395        
##  3rd Qu.:0.16140      3rd Qu.:0.3179   3rd Qu.:0.09208        
##  Max.   :0.29100      Max.   :0.6638   Max.   :0.20750

Crear arbol de decision

arbolcm <- rpart(formula=ï..diagnosis~., data=df)
arbolcm
## n= 569 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 569 212 B (0.62741652 0.37258348)  
##    2) radius_worst< 16.795 379  33 B (0.91292876 0.08707124)  
##      4) concave.points_worst< 0.1358 333   5 B (0.98498498 0.01501502) *
##      5) concave.points_worst>=0.1358 46  18 M (0.39130435 0.60869565)  
##       10) texture_worst< 25.67 19   4 B (0.78947368 0.21052632) *
##       11) texture_worst>=25.67 27   3 M (0.11111111 0.88888889) *
##    3) radius_worst>=16.795 190  11 M (0.05789474 0.94210526) *
rpart.plot(arbolcm)

prp(arbolcm,extra=7,prefix="Fraccion\n")

ggplot(data=df,mapping = aes(radius_worst,concave.points_worst))+geom_point(aes(color=ï..diagnosis))+theme_bw()

Conclusiones

Podemos concluir a través del análisis lo siguiente:
Titanic Quienes tenían mayor probabilidad de sobrevivir en el Titanic eran las mujeres y niños, su probabilidad aumenta si son de primera clase. Al observar el árbol de decisión encontramos que el 93% de las mujeres que no eran de la clase tres sobrevivieron, además que el 100% de los niños varones menores a 9.5 años que no eran de la clase 3 sobrevivieron también.

Cancer de mama Aquellos tumores que tuvieran un radio mayor a 17, puntos concavos mayores a 0.14, y textura mayor a 26 tienen mayor probabilidad de ser malignos. El 94% de los tumores con un radio mayor a 17 fueron malignos, el 61% de los tumores con puntos concavos mayores a 0.14 fueron malignos y el 89% de los tumores con textura mayor a 26 fueron malignos también.

LS0tDQp0aXRsZTogIsOBcmJvbCBkZSBEZWNpc2nDs24iDQphdXRob3I6ICJKYXZpZXIgQXlhbGEtQTAwODIzOTU4Ig0KZGF0ZTogJzIwMjItMDktMDgnDQpvdXRwdXQ6DQogIGh0bWxfZG9jdW1lbnQ6DQogICAgdG9jOiB0cnVlDQogICAgdG9jX2Zsb2F0OiB0cnVlDQogICAgY29kZV9kb3dubG9hZDogdHJ1ZQ0KLS0tDQo8Y2VudGVyPg0KPGltZyBzcmM9IkM6Ly9Vc2Vycy8vamF2YXcvL09uZURyaXZlIC0gSW5zdGl0dXRvIFRlY25vbG9naWNvIHkgZGUgRXN0dWRpb3MgU3VwZXJpb3JlcyBkZSBNb250ZXJyZXkvL0xvZ28gSVRFU00gc21hbGwucG5nIj4NCjwvY2VudGVyPiAgDQoNCmBgYHtjc3MsIGVjaG89RkFMU0V9DQpoMSwgaDQgew0KICB0ZXh0LWFsaWduOiBjZW50ZXI7DQp9DQoNCmgxLCBoMiwgaDMgew0KICBjb2xvcjogIzA2MUY2QjsNCn0NCmBgYA0KDQojIFRpdGFuaWMgIA0KDQoNCg0KIyMjIExpYnJlcmlhcyAgDQpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0KbGlicmFyeShycGFydCkNCmxpYnJhcnkocnBhcnQucGxvdCkNCmBgYA0KDQoNCg0KIyMjIEltcG9ydGFyIGJhc2UgZGUgZGF0b3MgIA0KYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0NCmJkPC1yZWFkLmNzdigiQzpcXFVzZXJzXFxqYXZhd1xcT25lRHJpdmUgLSBJbnN0aXR1dG8gVGVjbm9sb2dpY28geSBkZSBFc3R1ZGlvcyBTdXBlcmlvcmVzIGRlIE1vbnRlcnJleVxcN21vIFNlbWVzdHJlXFxNb2R1bG8gM1xcdGl0YW5pYy5jc3YiKQ0KYGBgDQoNCg0KIyMjIEVudGVuZGVyIGJhc2UgZGUgZGF0b3MNCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQpzdW1tYXJ5KGJkKQ0KYGBgDQoNCg0KIyMjIEZpbHRyYXIgYmFzZSBkZSBkYXRvcyAgDQpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0KdGl0YW5pYyA8LSBiZFssYygiw68uLnBjbGFzcyIsImFnZSIsInNleCIsInN1cnZpdmVkIildDQp0aXRhbmljJHN1cnZpdmVkIDwtYXMuZmFjdG9yKGlmZWxzZSh0aXRhbmljJHN1cnZpdmVkPT0wLCJNdXJpbyIsIlNvYnJldml2aW8iKSkNCnRpdGFuaWMkw68uLnBjbGFzcyA8LWFzLmZhY3Rvcih0aXRhbmljJMOvLi5wY2xhc3MpDQp0aXRhbmljJHNleCA8LSBhcy5mYWN0b3IodGl0YW5pYyRzZXgpDQpzdHIodGl0YW5pYykNCg0Kc3VtKGlzLm5hKHRpdGFuaWMpKQ0KDQp0aXRhbmljPC1uYS5vbWl0KHRpdGFuaWMpDQpgYGANCg0KDQojIyMgQ3JlYXIgYXJib2wgZGUgZGVjaXNpb24gIA0KYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0NCmFyYm9sIDwtIHJwYXJ0KGZvcm11bGE9c3Vydml2ZWR+LiwgZGF0YT10aXRhbmljKQ0KYXJib2wNCnJwYXJ0LnBsb3QoYXJib2wpDQpwcnAoYXJib2wsZXh0cmE9NyxwcmVmaXg9IkZyYWNjaW9uXG4iKQ0KYGBgDQoNCg0KIyBDw6FuY2VyIGRlIE1hbWEgIA0KDQoNCiMjIyBMaWJyZXJpYXMgIA0KYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0NCmxpYnJhcnkocnBhcnQpDQpsaWJyYXJ5KHJwYXJ0LnBsb3QpDQpsaWJyYXJ5KGphbml0b3IpDQpsaWJyYXJ5KGdncGxvdDIpDQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmBgYA0KIA0KIyMjIEltcG9ydGFyIGJhc2UgZGUgZGF0b3MgIA0KYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0NCmRmPC1yZWFkLmNzdigiQzpcXFVzZXJzXFxqYXZhd1xcT25lRHJpdmUgLSBJbnN0aXR1dG8gVGVjbm9sb2dpY28geSBkZSBFc3R1ZGlvcyBTdXBlcmlvcmVzIGRlIE1vbnRlcnJleVxcN21vIFNlbWVzdHJlXFxNb2R1bG8gM1xcY2FuY2VyX2RlX21hbWEuY3N2IikNCmBgYA0KDQojIyMgRW50ZW5kZXIgYmFzZSBkZSBkYXRvcyAgDQpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0Kc3VtbWFyeShkZikNCmBgYA0KDQojIyMgQ3JlYXIgYXJib2wgZGUgZGVjaXNpb24gIA0KYGBge3J9DQphcmJvbGNtIDwtIHJwYXJ0KGZvcm11bGE9w68uLmRpYWdub3Npc34uLCBkYXRhPWRmKQ0KYXJib2xjbQ0KcnBhcnQucGxvdChhcmJvbGNtKQ0KcHJwKGFyYm9sY20sZXh0cmE9NyxwcmVmaXg9IkZyYWNjaW9uXG4iKQ0KDQpgYGANCg0KDQpgYGB7cn0NCmdncGxvdChkYXRhPWRmLG1hcHBpbmcgPSBhZXMocmFkaXVzX3dvcnN0LGNvbmNhdmUucG9pbnRzX3dvcnN0KSkrZ2VvbV9wb2ludChhZXMoY29sb3I9w68uLmRpYWdub3NpcykpK3RoZW1lX2J3KCkNCmBgYA0KDQojIENvbmNsdXNpb25lcyAgDQpQb2RlbW9zIGNvbmNsdWlyIGEgdHJhdsOpcyBkZWwgYW7DoWxpc2lzIGxvIHNpZ3VpZW50ZTogIA0KKipUaXRhbmljKiogDQpRdWllbmVzIHRlbsOtYW4gbWF5b3IgcHJvYmFiaWxpZGFkIGRlIHNvYnJldml2aXIgZW4gZWwgVGl0YW5pYyBlcmFuIGxhcyBtdWplcmVzIHkgbmnDsW9zLCBzdSBwcm9iYWJpbGlkYWQgYXVtZW50YSBzaSBzb24gZGUgcHJpbWVyYSBjbGFzZS4gQWwgb2JzZXJ2YXIgZWwgw6FyYm9sIGRlIGRlY2lzacOzbiBlbmNvbnRyYW1vcyBxdWUgZWwgOTMlIGRlIGxhcyBtdWplcmVzIHF1ZSBubyBlcmFuIGRlIGxhIGNsYXNlIHRyZXMgc29icmV2aXZpZXJvbiwgYWRlbcOhcyBxdWUgZWwgMTAwJSBkZSBsb3MgbmnDsW9zIHZhcm9uZXMgbWVub3JlcyBhIDkuNSBhw7FvcyBxdWUgbm8gZXJhbiBkZSBsYSBjbGFzZSAzIHNvYnJldml2aWVyb24gdGFtYmnDqW4uIA0KDQoqKkNhbmNlciBkZSBtYW1hKioNCkFxdWVsbG9zIHR1bW9yZXMgcXVlIHR1dmllcmFuIHVuIHJhZGlvIG1heW9yIGEgMTcsIHB1bnRvcyBjb25jYXZvcyBtYXlvcmVzIGEgMC4xNCwgeSB0ZXh0dXJhIG1heW9yIGEgMjYgdGllbmVuIG1heW9yIHByb2JhYmlsaWRhZCBkZSBzZXIgbWFsaWdub3MuIEVsIDk0JSBkZSBsb3MgdHVtb3JlcyBjb24gdW4gcmFkaW8gbWF5b3IgYSAxNyBmdWVyb24gbWFsaWdub3MsIGVsIDYxJSBkZSBsb3MgdHVtb3JlcyBjb24gcHVudG9zIGNvbmNhdm9zIG1heW9yZXMgYSAwLjE0IGZ1ZXJvbiBtYWxpZ25vcyB5IGVsIDg5JSBkZSBsb3MgdHVtb3JlcyBjb24gdGV4dHVyYSBtYXlvciBhIDI2IGZ1ZXJvbiBtYWxpZ25vcyB0YW1iacOpbi4=