Click the Original, Code and Reconstruction tabs to read about the issues and how they were fixed.
Objective The visualisation reveals about the stock prices of various Covid-19 Vaccine companies from year 2020 to 2021. While some companies saw a positive hike in the prices from the end of year 2020, others did not see any significant change in their prices. The main aim of this visual is to clearly show the market performance of these companies so that the investors can wisely invest their money in gain positive results.
Target Audience Since the data is sourced from the Yahoo Finance, the target audience is likely to be the Governments around the world, Institutional Investors and BioTech Companies.These parties would get the required information to manage the expenditure on Vaccines, their production, export and import. Also, General Public will come in this category as they will get the information on the performance of these companies on the worldwide scale.
The visualisation chosen had the following three main issues:
Reference
The following code was used to fix the issues identified in the original.
#Packages installed
#install.packages("ggplot2", repos = 'http://cran.us.r-project.org')
#installed.packages("dplyr")
#installed.packages("tidyverse")
#install.packages("colourpicker")
#install.packages("scales")
library(ggplot2)
library(dplyr)
library(tidyverse)
library(colourpicker)
library(scales)
# Setting the working directory for the data
setwd("D:/Uni/Sem 2/Data Visualisation/Assignment 2")
# Read the data required for Data Visualisation
AZC <- read.csv("AstraZeneca.csv")
BTC <- read.csv("BioNTech.csv")
CVC <- read.csv("Curevac.csv")
JNJ <- read.csv("Johnson&Johnson.csv")
MDR <- read.csv("Moderna.csv")
NVX <- read.csv("Novavax.csv")
PZR <- read.csv("Pfizer.csv")
SNV <- read.csv("Sinovac.csv")
# Checking the structure and the class of the datasets
str(AZC)
## 'data.frame': 301 obs. of 7 variables:
## $ Date : chr "Apr 08, 2021" "Apr 07, 2021" "Apr 06, 2021" "Apr 05, 2021" ...
## $ Open : chr "" "49.06" "49.45" "49.41" ...
## $ High : num NA 49.1 49.7 49.8 49.8 ...
## $ Low : num NA 48.3 49.2 49.4 49.3 ...
## $ Close. : num NA 48.4 49.2 49.5 49.5 ...
## $ Adj.Close..: num NA 48.4 49.2 49.5 49.5 ...
## $ Volume : chr "" "9469100" "7127800" "5294000" ...
str(BTC)
## 'data.frame': 298 obs. of 7 variables:
## $ Date : chr "Apr 08, 2021" "Apr 07, 2021" "Apr 06, 2021" "Apr 05, 2021" ...
## $ Open : num 29.8 29.2 34 32 31.9 ...
## $ High : num 30.7 32.9 34 32.9 32.5 ...
## $ Low : num 28.8 29.2 28.7 29.7 30.1 ...
## $ Close. : num 30.3 32.9 29.2 32.9 30.9 ...
## $ Adj.Close..: num 29.9 32.5 28.9 32.5 30.5 ...
## $ Volume : int 177600 137600 405000 387400 166700 121700 175300 157700 107100 128700 ...
str(CVC)
## 'data.frame': 164 obs. of 7 variables:
## $ Date : chr "Apr 09, 2021" "Apr 08, 2021" "Apr 07, 2021" "Apr 06, 2021" ...
## $ Open : num 90 89.9 91.6 92.5 90.5 ...
## $ High : num 92.4 90.5 92.4 93.1 93.4 ...
## $ Low : num 89.4 88.6 88.6 90.8 89.6 ...
## $ Close. : num 90.9 89.4 89.4 92.5 92.6 ...
## $ Adj.Close..: num 91 89.4 89.4 92.5 92.6 ...
## $ Volume : int 181425 4716 6861 3712 3185 6026 4869 5038 5236 754 ...
str(JNJ)
## 'data.frame': 303 obs. of 7 variables:
## $ Date : chr "Apr 08, 2021" "Apr 07, 2021" "Apr 06, 2021" "Apr 05, 2021" ...
## $ Open : chr "164" "163.55" "164.08" "163.64" ...
## $ High : num 164 164 165 165 164 ...
## $ Low : num 163 163 163 163 162 ...
## $ Close. : num 163 164 163 163 163 ...
## $ Adj.Close..: num 163 164 163 163 163 ...
## $ Volume : int 5035400 4608000 5074200 7387100 7226600 8281500 7236300 8535100 7617900 6269800 ...
str(MDR)
## 'data.frame': 298 obs. of 7 variables:
## $ Date : chr "Apr 08, 2021" "Apr 07, 2021" "Apr 06, 2021" "Apr 05, 2021" ...
## $ Open : num 133 132 130 133 132 ...
## $ High : num 136 135 138 133 137 ...
## $ Low : num 132 130 128 127 130 ...
## $ Close. : num 134 131 134 130 133 ...
## $ Adj.Close..: num 134 131 134 130 133 ...
## $ Volume : int 4517000 4380000 7438200 5218300 7269700 10015700 11061600 10814800 4017600 5696300 ...
str(NVX)
## 'data.frame': 298 obs. of 7 variables:
## $ Date : chr "Apr 08, 2021" "Apr 07, 2021" "Apr 06, 2021" "Apr 05, 2021" ...
## $ Open : num 173 178 176 191 184 ...
## $ High : num 179 179 183 191 190 ...
## $ Low : num 173 170 173 176 181 ...
## $ Close. : num 176 172 179 177 186 ...
## $ Adj.Close..: num 176 172 179 177 186 ...
## $ Volume : int 1701300 1862700 1480500 2185200 1985200 2159200 1889500 3162900 3781300 7401100 ...
str(PZR)
## 'data.frame': 303 obs. of 7 variables:
## $ Date : chr "Apr 08, 2021" "Apr 07, 2021" "Apr 06, 2021" "Apr 05, 2021" ...
## $ Open : chr "35.96" "36.03" "36.26" "36.44" ...
## $ High : num 36.1 36.2 36.4 36.6 36.5 ...
## $ Low : num 35.9 35.8 36 36.1 36 ...
## $ Close. : num 36 35.9 36 36.3 36.3 ...
## $ Adj.Close..: num 36 35.9 36 36.3 36.3 ...
## $ Volume : int 18124200 21933800 20722900 22096900 21299700 26582700 26303300 27004800 27897100 24875300 ...
str(SNV)
## 'data.frame': 298 obs. of 7 variables:
## $ Date : chr "Apr 08, 2021" "Apr 07, 2021" "Apr 06, 2021" "Apr 05, 2021" ...
## $ Open : num 6.47 6.47 6.47 6.47 6.47 6.47 6.47 6.47 6.47 6.47 ...
## $ High : num 6.47 6.47 6.47 6.47 6.47 6.47 6.47 6.47 6.47 6.47 ...
## $ Low : num 6.47 6.47 6.47 6.47 6.47 6.47 6.47 6.47 6.47 6.47 ...
## $ Close. : num 6.47 6.47 6.47 6.47 6.47 6.47 6.47 6.47 6.47 6.47 ...
## $ Adj.Close..: num 6.47 6.47 6.47 6.47 6.47 6.47 6.47 6.47 6.47 6.47 ...
## $ Volume : chr "-" "-" "-" "-" ...
# Correcting the class of the variables
AZC$Open <- as.numeric(AZC$Open)
AZC$Volume <- as.integer(AZC$Volume)
class(AZC$Volume)
## [1] "integer"
class(AZC$Open)
## [1] "numeric"
#Convert Date column to date class
AZC$Date<- as.Date(AZC$Date, format= "%b %d, %Y")
print(AZC$Date)
## [1] "2021-04-08" "2021-04-07" "2021-04-06" "2021-04-05" "2021-04-01"
## [6] "2021-03-31" "2021-03-30" "2021-03-29" "2021-03-26" "2021-03-25"
## [11] "2021-03-24" "2021-03-23" "2021-03-22" "2021-03-19" "2021-03-18"
## [16] "2021-03-17" "2021-03-16" "2021-03-15" "2021-03-12" "2021-03-11"
## [21] "2021-03-10" "2021-03-09" "2021-03-08" "2021-03-05" "2021-03-04"
## [26] "2021-03-03" "2021-03-02" "2021-03-01" "2021-02-26" "2021-02-25"
## [31] "2021-02-25" "2021-02-24" "2021-02-23" "2021-02-22" "2021-02-19"
## [36] "2021-02-18" "2021-02-17" "2021-02-16" "2021-02-12" "2021-02-11"
## [41] "2021-02-10" "2021-02-09" "2021-02-08" "2021-02-05" "2021-02-04"
## [46] "2021-02-03" "2021-02-02" "2021-02-01" "2021-01-29" "2021-01-28"
## [51] "2021-01-27" "2021-01-26" "2021-01-25" "2021-01-22" "2021-01-21"
## [56] "2021-01-20" "2021-01-19" "2021-01-15" "2021-01-14" "2021-01-13"
## [61] "2021-01-12" "2021-01-11" "2021-01-08" "2021-01-07" "2021-01-06"
## [66] "2021-01-05" "2021-01-04" "2020-12-31" "2020-12-30" "2020-12-29"
## [71] "2020-12-28" "2020-12-24" "2020-12-23" "2020-12-22" "2020-12-21"
## [76] "2020-12-18" "2020-12-17" "2020-12-16" "2020-12-15" "2020-12-14"
## [81] "2020-12-11" "2020-12-10" "2020-12-09" "2020-12-08" "2020-12-07"
## [86] "2020-12-04" "2020-12-03" "2020-12-02" "2020-12-01" "2020-11-30"
## [91] "2020-11-27" "2020-11-25" "2020-11-24" "2020-11-23" "2020-11-20"
## [96] "2020-11-19" "2020-11-18" "2020-11-17" "2020-11-16" "2020-11-13"
## [101] "2020-11-12" "2020-11-11" "2020-11-10" "2020-11-09" "2020-11-06"
## [106] "2020-11-05" "2020-11-04" "2020-11-03" "2020-11-02" "2020-10-30"
## [111] "2020-10-29" "2020-10-28" "2020-10-27" "2020-10-26" "2020-10-23"
## [116] "2020-10-22" "2020-10-21" "2020-10-20" "2020-10-19" "2020-10-16"
## [121] "2020-10-15" "2020-10-14" "2020-10-13" "2020-10-12" "2020-10-09"
## [126] "2020-10-08" "2020-10-07" "2020-10-06" "2020-10-05" "2020-10-02"
## [131] "2020-10-01" "2020-09-30" "2020-09-29" "2020-09-28" "2020-09-25"
## [136] "2020-09-24" "2020-09-23" "2020-09-22" "2020-09-21" "2020-09-18"
## [141] "2020-09-17" "2020-09-16" "2020-09-15" "2020-09-14" "2020-09-11"
## [146] "2020-09-10" "2020-09-09" "2020-09-08" "2020-09-04" "2020-09-03"
## [151] "2020-09-02" "2020-09-01" "2020-08-31" "2020-08-28" "2020-08-27"
## [156] "2020-08-26" "2020-08-25" "2020-08-24" "2020-08-21" "2020-08-20"
## [161] "2020-08-19" "2020-08-18" "2020-08-17" "2020-08-14" "2020-08-13"
## [166] "2020-08-13" "2020-08-12" "2020-08-11" "2020-08-10" "2020-08-07"
## [171] "2020-08-06" "2020-08-05" "2020-08-04" "2020-08-03" "2020-07-31"
## [176] "2020-07-30" "2020-07-29" "2020-07-28" "2020-07-27" "2020-07-24"
## [181] "2020-07-23" "2020-07-22" "2020-07-21" "2020-07-20" "2020-07-17"
## [186] "2020-07-16" "2020-07-15" "2020-07-14" "2020-07-13" "2020-07-10"
## [191] "2020-07-09" "2020-07-08" "2020-07-07" "2020-07-06" "2020-07-02"
## [196] "2020-07-01" "2020-06-30" "2020-06-29" "2020-06-26" "2020-06-25"
## [201] "2020-06-24" "2020-06-23" "2020-06-22" "2020-06-19" "2020-06-18"
## [206] "2020-06-17" "2020-06-16" "2020-06-15" "2020-06-12" "2020-06-11"
## [211] "2020-06-10" "2020-06-09" "2020-06-08" "2020-06-05" "2020-06-04"
## [216] "2020-06-03" "2020-06-02" "2020-06-01" "2020-05-29" "2020-05-28"
## [221] "2020-05-27" "2020-05-26" "2020-05-22" "2020-05-21" "2020-05-20"
## [226] "2020-05-19" "2020-05-18" "2020-05-15" "2020-05-14" "2020-05-13"
## [231] "2020-05-12" "2020-05-11" "2020-05-08" "2020-05-07" "2020-05-06"
## [236] "2020-05-05" "2020-05-04" "2020-05-01" "2020-04-30" "2020-04-29"
## [241] "2020-04-28" "2020-04-27" "2020-04-24" "2020-04-23" "2020-04-22"
## [246] "2020-04-21" "2020-04-20" "2020-04-17" "2020-04-16" "2020-04-15"
## [251] "2020-04-14" "2020-04-13" "2020-04-09" "2020-04-08" "2020-04-07"
## [256] "2020-04-06" "2020-04-03" "2020-04-02" "2020-04-01" "2020-03-31"
## [261] "2020-03-30" "2020-03-27" "2020-03-26" "2020-03-25" "2020-03-24"
## [266] "2020-03-23" "2020-03-20" "2020-03-19" "2020-03-18" "2020-03-17"
## [271] "2020-03-16" "2020-03-13" "2020-03-12" "2020-03-11" "2020-03-10"
## [276] "2020-03-09" "2020-03-06" "2020-03-05" "2020-03-04" "2020-03-03"
## [281] "2020-03-02" "2020-02-28" "2020-02-27" "2020-02-27" "2020-02-26"
## [286] "2020-02-25" "2020-02-24" "2020-02-21" "2020-02-20" "2020-02-19"
## [291] "2020-02-18" "2020-02-14" "2020-02-13" "2020-02-12" "2020-02-11"
## [296] "2020-02-10" "2020-02-07" "2020-02-06" "2020-02-05" "2020-02-04"
## [301] "2020-02-03"
class(AZC$Date)
## [1] "Date"
BTC$Date <- as.Date(BTC$Date, format= "%b %d, %Y")
str(BTC$Date)
## Date[1:298], format: "2021-04-08" "2021-04-07" "2021-04-06" "2021-04-05" "2021-04-01" ...
class(BTC$Date)
## [1] "Date"
CVC$Date <- as.Date(CVC$Date, format= "%b %d, %Y")
str(CVC$Date)
## Date[1:164], format: "2021-04-09" "2021-04-08" "2021-04-07" "2021-04-06" "2021-04-05" ...
class(CVC$Date)
## [1] "Date"
JNJ$Date <- as.Date(JNJ$Date, format= "%b %d, %Y")
str(JNJ$Date)
## Date[1:303], format: "2021-04-08" "2021-04-07" "2021-04-06" "2021-04-05" "2021-04-01" ...
class(JNJ$Date)
## [1] "Date"
JNJ$Open <- as.numeric(JNJ$Open)
JNJ$Volume <- as.integer(JNJ$Volume)
class(JNJ$Volume)
## [1] "integer"
class(JNJ$Open)
## [1] "numeric"
MDR$Date <- as.Date(MDR$Date, format= "%b %d, %Y")
str(MDR$Date)
## Date[1:298], format: "2021-04-08" "2021-04-07" "2021-04-06" "2021-04-05" "2021-04-01" ...
class(MDR$Date)
## [1] "Date"
MDR$Volume <- as.integer(MDR$Volume)
class(MDR$Volume)
## [1] "integer"
NVX$Date <- as.Date(NVX$Date, format= "%b %d, %Y")
str(NVX$Date)
## Date[1:298], format: "2021-04-08" "2021-04-07" "2021-04-06" "2021-04-05" "2021-04-01" ...
class(NVX$Date)
## [1] "Date"
PZR$Date <- as.Date(PZR$Date, format= "%b %d, %Y")
str(PZR$Date)
## Date[1:303], format: "2021-04-08" "2021-04-07" "2021-04-06" "2021-04-05" "2021-04-01" ...
class(PZR$Date)
## [1] "Date"
PZR$Open <- as.numeric(PZR$Open)
SNV$Date <- as.Date(SNV$Date, format= "%b %d, %Y")
str(SNV$Date)
## Date[1:298], format: "2021-04-08" "2021-04-07" "2021-04-06" "2021-04-05" "2021-04-01" ...
class(SNV$Date)
## [1] "Date"
SNV$Volume <- as.integer(SNV$Volume)
class(SNV$Volume)
## [1] "integer"
#Changing the column names
colnames(AZC) <- c('Date','AZC_open', 'AZC_High', 'AZC_Low', 'AZC_Close', 'AZC_Adj.Close', 'AZC_Volume')
colnames(AZC)
## [1] "Date" "AZC_open" "AZC_High" "AZC_Low"
## [5] "AZC_Close" "AZC_Adj.Close" "AZC_Volume"
colnames(BTC) <- c('Date','BTC_open', 'BTC_High', 'BTC_Low', 'BTC_Close', 'BTC_Adj.Close', 'BTC_Volume')
colnames(BTC)
## [1] "Date" "BTC_open" "BTC_High" "BTC_Low"
## [5] "BTC_Close" "BTC_Adj.Close" "BTC_Volume"
colnames(CVC) <- c('Date','CVC_open', 'CVC_High', 'CVC_Low', 'CVC_Close', 'CVC_Adj.Close', 'CVC_Volume')
colnames(CVC)
## [1] "Date" "CVC_open" "CVC_High" "CVC_Low"
## [5] "CVC_Close" "CVC_Adj.Close" "CVC_Volume"
colnames(JNJ) <- c('Date','JNJ_open', 'JNJ_High', 'JNJ_Low', 'JNJ_Close', 'JNJ_Adj.Close', 'JNJ_Volume')
colnames(JNJ)
## [1] "Date" "JNJ_open" "JNJ_High" "JNJ_Low"
## [5] "JNJ_Close" "JNJ_Adj.Close" "JNJ_Volume"
colnames(MDR) <- c('Date','MDR_open', 'MDR_High', 'MDR_Low', 'MDR_Close', 'MDR_Adj.Close', 'MDR_Volume')
colnames(MDR)
## [1] "Date" "MDR_open" "MDR_High" "MDR_Low"
## [5] "MDR_Close" "MDR_Adj.Close" "MDR_Volume"
colnames(NVX) <- c('Date','NVX_open', 'NVX_High', 'NVX_Low', 'NVX_Close', 'NVX_Adj.Close', 'NVX_Volume')
colnames(NVX)
## [1] "Date" "NVX_open" "NVX_High" "NVX_Low"
## [5] "NVX_Close" "NVX_Adj.Close" "NVX_Volume"
colnames(PZR) <- c('Date','PZR_open', 'PZR_High', 'PZR_Low', 'PZR_Close', 'PZR_Adj.Close', 'PZR_Volume')
colnames(PZR)
## [1] "Date" "PZR_open" "PZR_High" "PZR_Low"
## [5] "PZR_Close" "PZR_Adj.Close" "PZR_Volume"
colnames(SNV) <- c('Date','SNV_open', 'SNV_High', 'SNV_Low', 'SNV_Close', 'SNV_Adj.Close', 'SNV_Volume')
colnames(SNV)
## [1] "Date" "SNV_open" "SNV_High" "SNV_Low"
## [5] "SNV_Close" "SNV_Adj.Close" "SNV_Volume"
# Join all the data-sets
Companies <- list(AZC, BTC, CVC, JNJ, MDR, NVX, PZR, SNV) %>% reduce(inner_join, by='Date')
head(Companies)
## Date AZC_open AZC_High AZC_Low AZC_Close AZC_Adj.Close AZC_Volume
## 1 2021-04-08 NA NA NA NA NA NA
## 2 2021-04-07 49.06 49.12 48.26 48.42 48.42 9469100
## 3 2021-04-06 49.45 49.68 49.16 49.22 49.22 7127800
## 4 2021-04-05 49.41 49.80 49.40 49.53 49.53 5294000
## 5 2021-04-01 49.61 49.79 49.33 49.53 49.53 5958200
## 6 2021-03-31 50.04 50.13 49.70 49.72 49.72 6688300
## BTC_open BTC_High BTC_Low BTC_Close BTC_Adj.Close BTC_Volume CVC_open
## 1 29.80 30.69 28.78 30.27 29.87431 177600 89.87
## 2 29.17 32.92 29.17 32.92 32.48967 137600 91.58
## 3 34.00 34.00 28.69 29.25 28.86764 405000 92.48
## 4 32.00 32.93 29.68 32.93 32.49954 387400 90.51
## 5 31.88 32.49 30.07 30.88 30.47634 166700 91.89
## 6 30.99 32.15 30.11 32.12 31.70013 121700 90.17
## CVC_High CVC_Low CVC_Close CVC_Adj.Close CVC_Volume JNJ_open JNJ_High JNJ_Low
## 1 90.54 88.62 89.42 89.42 4716 164.00 164.11 162.85
## 2 92.40 88.61 89.37 89.37 6861 163.55 164.28 163.32
## 3 93.08 90.82 92.54 92.54 3712 164.08 164.52 163.00
## 4 93.39 89.59 92.58 92.58 3185 163.64 164.75 162.66
## 5 93.89 90.68 91.19 91.19 6026 162.60 163.84 162.26
## 6 92.88 90.15 91.46 91.46 4869 164.96 165.39 163.70
## JNJ_Close JNJ_Adj.Close JNJ_Volume MDR_open MDR_High MDR_Low MDR_Close
## 1 162.97 162.97 5035400 132.85 135.90 132.06 133.88
## 2 163.61 163.61 4608000 132.37 135.16 130.21 131.47
## 3 163.39 163.39 5074200 130.11 138.25 128.16 133.53
## 4 163.43 163.43 7387100 132.60 133.19 127.04 129.91
## 5 162.83 162.83 7226600 132.20 136.64 130.34 132.55
## 6 164.35 164.35 8281500 121.10 131.80 119.33 130.95
## MDR_Adj.Close MDR_Volume NVX_open NVX_High NVX_Low NVX_Close NVX_Adj.Close
## 1 133.88 4517000 173.39 179.25 173.00 176.27 176.27
## 2 131.47 4380000 178.03 179.00 170.49 171.77 171.77
## 3 133.53 7438200 175.85 182.72 173.11 178.76 178.76
## 4 129.91 5218300 190.77 191.00 175.88 177.29 177.29
## 5 132.55 7269700 183.50 189.77 180.76 185.82 185.82
## 6 130.95 10015700 177.54 185.13 173.85 181.31 181.31
## NVX_Volume PZR_open PZR_High PZR_Low PZR_Close PZR_Adj.Close PZR_Volume
## 1 1701300 35.96 36.15 35.87 35.96 35.96 18124200
## 2 1862700 36.03 36.24 35.76 35.91 35.91 21933800
## 3 1480500 36.26 36.40 36.00 36.05 36.05 20722900
## 4 2185200 36.44 36.57 36.10 36.28 36.28 22096900
## 5 1985200 36.30 36.45 36.02 36.30 36.30 21299700
## 6 2159200 36.15 36.43 36.04 36.23 36.23 26582700
## SNV_open SNV_High SNV_Low SNV_Close SNV_Adj.Close SNV_Volume
## 1 6.47 6.47 6.47 6.47 6.47 NA
## 2 6.47 6.47 6.47 6.47 6.47 NA
## 3 6.47 6.47 6.47 6.47 6.47 NA
## 4 6.47 6.47 6.47 6.47 6.47 NA
## 5 6.47 6.47 6.47 6.47 6.47 NA
## 6 6.47 6.47 6.47 6.47 6.47 NA
# Plotting the chart
options(repr.plot.width = 100, repr.plot.height = 6, repr.plot.res = 5000)
p1 <- ggplot(data= Companies, aes(x= Date, y= Price))
plot <- p1 + geom_line(aes(y=AZC_Adj.Close, col="Astra Zeneca")) +
geom_line(aes(y=BTC_Adj.Close, col="BioNTech")) +
geom_line(aes(y=CVC_Adj.Close, col="Curevac")) +
geom_line(aes(y=JNJ_Adj.Close, col="Johnson & Johnson")) +
geom_line(aes(y=MDR_Adj.Close, col="Moderna")) +
geom_line(aes(y=NVX_Adj.Close, col="Novavax")) +
geom_line(aes(y=PZR_Adj.Close, col="Pfizer")) +
geom_line(aes(y=SNV_Adj.Close, col="Sinovac")) +
labs(title="Covid-19 Stock Prices Oscillations in a Year", subtitle="Stock Price change and Highest Price Reached", caption="Source: Yahoo Finance") +
scale_x_date(breaks = function(x) seq.Date(from = min(x),
to = max(x),
by = "16 months"),
minor_breaks = function(x) seq.Date(from = min(x),
to = max(x),
by = "1 week")) +
scale_y_continuous(limits = c(0,400))+ scale_fill_brewer(palette = "set1")+
theme(axis.text=element_text(size=8), axis.title=element_text(size=10), plot.title = element_text(hjust = 0.5, size=16), plot.subtitle= element_text(hjust = 0.5, size=8))+ theme_minimal()
###Data Reference
#Irena(2021). Visualizing One Year of Fluctuating Covid-19 Vaccine Stock Prices. Retrieved from: https://howmuch.net/articles/covid-19-vaccine-stock-prices-oscillations
Irena(2021). Visualizing One Year of Fluctuating Covid-19 Vaccine Stock Prices. Retrieved from: https://howmuch.net/sources/covid-19-vaccine-stock-prices-oscillations
Yahoo Finance. Retrieved from: https://finance.yahoo.com/
Dr James Baglin(2022). Data Visualisation Chapter 5: Grammar and Vocabulary. Retrieved from: https://dark-star-161610.appspot.com/secured/_book/demos/DataVis-Week-05-Demo.html#/
Lea Waniek(2018). Customizing time and date scales in ggplot2. Retrieved from: https://www.r-bloggers.com/2018/06/customizing-time-and-date-scales-in-ggplot2/
Home - RDocumentation. Home - RDocumentation, https://www.rdocumentation.org/.
The following plot fixes the main issues in the original.