Bước 1 Nhập data
library(readxl)
Raw_data= read_excel("/Users/hien/Library/CloudStorage/OneDrive-UGent/Rstudio/Raw_data.xlsx",
sheet = "Categorical", col_types = c("text",
"numeric", "numeric", "numeric",
"numeric"))
require(gmodels)
## Loading required package: gmodels
Bước 2
CrossTable(Raw_data$Gender)
##
##
## Cell Contents
## |-------------------------|
## | N |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 60
##
##
## | Female | Male |
## |-----------|-----------|
## | 30 | 30 |
## | 0.500 | 0.500 |
## |-----------|-----------|
##
##
##
##
CrossTable(Raw_data$Hemorrhage)
##
##
## Cell Contents
## |-------------------------|
## | N |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 60
##
##
## | 0 | 1 |
## |-----------|-----------|
## | 26 | 34 |
## | 0.433 | 0.567 |
## |-----------|-----------|
##
##
##
##
CrossTable(Raw_data$Gender,Raw_data$Hemorrhage,digits = 3)
##
##
## Cell Contents
## |-------------------------|
## | N |
## | Chi-square contribution |
## | N / Row Total |
## | N / Col Total |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 60
##
##
## | Raw_data$Hemorrhage
## Raw_data$Gender | 0 | 1 | Row Total |
## ----------------|-----------|-----------|-----------|
## Female | 11 | 19 | 30 |
## | 0.308 | 0.235 | |
## | 0.367 | 0.633 | 0.500 |
## | 0.423 | 0.559 | |
## | 0.183 | 0.317 | |
## ----------------|-----------|-----------|-----------|
## Male | 15 | 15 | 30 |
## | 0.308 | 0.235 | |
## | 0.500 | 0.500 | 0.500 |
## | 0.577 | 0.441 | |
## | 0.250 | 0.250 | |
## ----------------|-----------|-----------|-----------|
## Column Total | 26 | 34 | 60 |
## | 0.433 | 0.567 | |
## ----------------|-----------|-----------|-----------|
##
##
CrossTable(Raw_data$Gender,Raw_data$Hemorrhage, chisq = T, fisher = T, digits = 3)
##
##
## Cell Contents
## |-------------------------|
## | N |
## | Chi-square contribution |
## | N / Row Total |
## | N / Col Total |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 60
##
##
## | Raw_data$Hemorrhage
## Raw_data$Gender | 0 | 1 | Row Total |
## ----------------|-----------|-----------|-----------|
## Female | 11 | 19 | 30 |
## | 0.308 | 0.235 | |
## | 0.367 | 0.633 | 0.500 |
## | 0.423 | 0.559 | |
## | 0.183 | 0.317 | |
## ----------------|-----------|-----------|-----------|
## Male | 15 | 15 | 30 |
## | 0.308 | 0.235 | |
## | 0.500 | 0.500 | 0.500 |
## | 0.577 | 0.441 | |
## | 0.250 | 0.250 | |
## ----------------|-----------|-----------|-----------|
## Column Total | 26 | 34 | 60 |
## | 0.433 | 0.567 | |
## ----------------|-----------|-----------|-----------|
##
##
## Statistics for All Table Factors
##
##
## Pearson's Chi-squared test
## ------------------------------------------------------------
## Chi^2 = 1.085973 d.f. = 1 p = 0.2973652
##
## Pearson's Chi-squared test with Yates' continuity correction
## ------------------------------------------------------------
## Chi^2 = 0.6108597 d.f. = 1 p = 0.4344643
##
##
## Fisher's Exact Test for Count Data
## ------------------------------------------------------------
## Sample estimate odds ratio: 0.5842966
##
## Alternative hypothesis: true odds ratio is not equal to 1
## p = 0.4348156
## 95% confidence interval: 0.1817485 1.826674
##
## Alternative hypothesis: true odds ratio is less than 1
## p = 0.2174078
## 95% confidence interval: 0 1.554517
##
## Alternative hypothesis: true odds ratio is greater than 1
## p = 0.9038416
## 95% confidence interval: 0.2154139 Inf
##
##
##