mydata <- data.frame("ID" = c(1, 2, 3), "Age" = c(22, 25, 27), "Gender" = c(1, 2, 2))
print(mydata) # Showing the object mydata
## ID Age Gender
## 1 1 22 1
## 2 2 25 2
## 3 3 27 2
mydata[2, 2] = 24
mydata[2, 2] <- 24
print(mydata)
## ID Age Gender
## 1 1 22 1
## 2 2 24 2
## 3 3 27 2
mydata1 <- mydata[ , -3] # We removed 3rd variable
mydata3 <- mydata[1 , ] #We selected only the first unit/observation
mydata3 <- mydata[ c(-2, -3) , ] #We removed 2nd and 3rd observation
In the existing table mydata include new variable Height with values 160, 177, 168.
mydata$Height <- c(160, 177, 168)
Create a new variable, called Height1, where everyone grows by 5 cm.
mydata$Height1 <- mydata$Height + 5
summary(mydata[ , c(-1, -3) ])
## Age Height Height1
## Min. :22.00 Min. :160.0 Min. :165.0
## 1st Qu.:23.00 1st Qu.:164.0 1st Qu.:169.0
## Median :24.00 Median :168.0 Median :173.0
## Mean :24.33 Mean :168.3 Mean :173.3
## 3rd Qu.:25.50 3rd Qu.:172.5 3rd Qu.:177.5
## Max. :27.00 Max. :177.0 Max. :182.0
summary(mydata[c(-1, -3) ])
## Age Height Height1
## Min. :22.00 Min. :160.0 Min. :165.0
## 1st Qu.:23.00 1st Qu.:164.0 1st Qu.:169.0
## Median :24.00 Median :168.0 Median :173.0
## Mean :24.33 Mean :168.3 Mean :173.3
## 3rd Qu.:25.50 3rd Qu.:172.5 3rd Qu.:177.5
## Max. :27.00 Max. :177.0 Max. :182.0
mean(mydata$Height1)
## [1] 173.3333
sd(mydata$Height1)
## [1] 8.504901
sapply( mydata[c(-1, -3) ], FUN = var )
## Age Height Height1
## 6.333333 72.333333 72.333333
#install.packages("psych")
library(psych)
describe(mydata)
## vars n mean sd median trimmed mad min max range skew kurtosis
## ID 1 3 2.00 1.00 2 2.00 1.48 1 3 2 0.00 -2.33
## Age 2 3 24.33 2.52 24 24.33 2.97 22 27 5 0.13 -2.33
## Gender 3 3 1.67 0.58 2 1.67 0.00 1 2 1 -0.38 -2.33
## Height 4 3 168.33 8.50 168 168.33 11.86 160 177 17 0.04 -2.33
## Height1 5 3 173.33 8.50 173 173.33 11.86 165 182 17 0.04 -2.33
## se
## ID 0.58
## Age 1.45
## Gender 0.33
## Height 4.91
## Height1 4.91
Describe your data using function stat.desc
#install.packages("pastecs")
library(pastecs)
round(stat.desc(mydata[c(-1, -3)]), 2)
## Age Height Height1
## nbr.val 3.00 3.00 3.00
## nbr.null 0.00 0.00 0.00
## nbr.na 0.00 0.00 0.00
## min 22.00 160.00 165.00
## max 27.00 177.00 182.00
## range 5.00 17.00 17.00
## sum 73.00 505.00 520.00
## median 24.00 168.00 173.00
## mean 24.33 168.33 173.33
## SE.mean 1.45 4.91 4.91
## CI.mean.0.95 6.25 21.13 21.13
## var 6.33 72.33 72.33
## std.dev 2.52 8.50 8.50
## coef.var 0.10 0.05 0.05