# Instalar programas requeridos

library(riem)
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.3.6      ✔ purrr   0.3.4 
## ✔ tibble  3.1.8      ✔ dplyr   1.0.10
## ✔ tidyr   1.2.1      ✔ stringr 1.4.1 
## ✔ readr   2.1.2      ✔ forcats 0.5.2 
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
library(lubridate)
## 
## Attaching package: 'lubridate'
## 
## The following objects are masked from 'package:base':
## 
##     date, intersect, setdiff, union
library(ggplot2)
library(plotly)
## 
## Attaching package: 'plotly'
## 
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## 
## The following object is masked from 'package:stats':
## 
##     filter
## 
## The following object is masked from 'package:graphics':
## 
##     layout

Paso 1. Buscar la red

Ejemplo: TEXAS, y copiar CODE

view(riem_networks())

Paso 2. Buscar la estación (ciudad)

Ejemplo: Atlanta

view(riem_stations("TX_ASOS"))

Paso 3. Escribir ID

atlanta <- riem_measures("ATA")
str(atlanta)
## tibble [8,035 × 32] (S3: tbl_df/tbl/data.frame)
##  $ station          : chr [1:8035] "ATA" "ATA" "ATA" "ATA" ...
##  $ valid            : POSIXct[1:8035], format: "2022-05-19 10:55:00" "2022-05-19 12:35:00" ...
##  $ lon              : num [1:8035] -94.2 -94.2 -94.2 -94.2 -94.2 ...
##  $ lat              : num [1:8035] 33.1 33.1 33.1 33.1 33.1 ...
##  $ tmpf             : num [1:8035] 71.1 71.6 72.1 73.2 74.5 75.9 77.4 79.2 79.9 80.6 ...
##  $ dwpf             : num [1:8035] 69.6 70 70 70.3 70.7 71.2 71.4 71.4 70.3 70.5 ...
##  $ relh             : num [1:8035] 95 94.7 93.1 90.6 88 ...
##  $ drct             : num [1:8035] 180 180 160 170 180 200 220 220 210 190 ...
##  $ sknt             : num [1:8035] 5 5 5 5 10 5 9 10 9 11 ...
##  $ p01i             : num [1:8035] 0 0 0 0 0 0 0 0 0 0 ...
##  $ alti             : num [1:8035] 29.8 29.8 29.8 29.8 29.8 ...
##  $ mslp             : num [1:8035] 1000 1000 1000 1000 1000 ...
##  $ vsby             : num [1:8035] 10 10 10 10 10 10 10 10 10 10 ...
##  $ gust             : num [1:8035] NA NA NA NA NA NA NA 15 NA 17 ...
##  $ skyc1            : chr [1:8035] "CLR" "CLR" "CLR" "CLR" ...
##  $ skyc2            : chr [1:8035] NA NA NA NA ...
##  $ skyc3            : chr [1:8035] NA NA NA NA ...
##  $ skyc4            : chr [1:8035] NA NA NA NA ...
##  $ skyl1            : num [1:8035] NA NA NA NA 1600 1500 1600 2000 2400 2500 ...
##  $ skyl2            : num [1:8035] NA NA NA NA NA NA NA NA NA NA ...
##  $ skyl3            : num [1:8035] NA NA NA NA NA NA NA NA NA NA ...
##  $ skyl4            : num [1:8035] NA NA NA NA NA NA NA NA NA NA ...
##  $ wxcodes          : chr [1:8035] NA NA NA NA ...
##  $ ice_accretion_1hr: logi [1:8035] NA NA NA NA NA NA ...
##  $ ice_accretion_3hr: logi [1:8035] NA NA NA NA NA NA ...
##  $ ice_accretion_6hr: logi [1:8035] NA NA NA NA NA NA ...
##  $ peak_wind_gust   : num [1:8035] NA NA NA NA NA NA NA NA NA NA ...
##  $ peak_wind_drct   : num [1:8035] NA NA NA NA NA NA NA NA NA NA ...
##  $ peak_wind_time   : chr [1:8035] NA NA NA NA ...
##  $ feel             : num [1:8035] 71.1 71.6 72.1 73.2 74.5 ...
##  $ metar            : chr [1:8035] "KATA 191055Z AUTO 18005KT 10SM CLR 22/21 A2981 RMK AO2 SLP995 T02170209 $" "KATA 191235Z AUTO 18005KT 10SM CLR 22/21 A2983 RMK AO2 SLP001 T02200211 $" "KATA 191255Z AUTO 16005KT 10SM CLR 22/21 A2982 RMK AO2 SLP998 T02230211 $" "KATA 191315Z AUTO 17005KT 10SM CLR 23/21 A2982 RMK AO2 SLP997 T02290213 $" ...
##  $ snowdepth        : logi [1:8035] NA NA NA NA NA NA ...

Paso 4. Información

Extraer información de este mes

este_mes <- subset(atlanta, valid >= as.POSIXct("2022-09-01 00:00") & valid <= as.POSIXct("2022-09-18 23:59"))

Paso 5. Graficar

plot(este_mes$valid, este_mes$relh)