Conceptual

2. Carefully explain the differences between the KNN classifier and KNN regression methods.


KNN Classifier

Given a value for \(K\) and a test observation \(x_0\), the KNN classifier first identifies the \(K\) points in the training data that are closest to \(x_0\), represented by \(N_0\). It then estimates the conditional probability for class \(j\) as the fraction of points in \(N_0\) whose values equal \(j\). Finally, KNN classifies the test observation \(x_0\) to the class with the largest probability.


KNN Regression

Given a value for \(K\) and predicted point \(x_0\), KNN regression first identifies the \(K\) training observations that are closet to \(x_0\), represented by \(N_0\). It then estimates \(f(x_0)\) using the average of all the training responses in \(N_0\).

Applied

9. This question involves the use of multiple linear regression on the Auto data set.


a) Produce a scatterplot matrix which includes all the variables in the data set.

library(ISLR2)
attach(Auto)
library(xtable)

pairs(Auto)


b) Compute the matrix correlations between the variables using the function cor(). You will need to exclude the name variable, which is qualitative.

cor_xt <- xtable(cor(Auto[, -9]))
print(cor_xt, type = "html")
mpg cylinders displacement horsepower weight acceleration year origin
mpg 1.00 -0.78 -0.81 -0.78 -0.83 0.42 0.58 0.57
cylinders -0.78 1.00 0.95 0.84 0.90 -0.50 -0.35 -0.57
displacement -0.81 0.95 1.00 0.90 0.93 -0.54 -0.37 -0.61
horsepower -0.78 0.84 0.90 1.00 0.86 -0.69 -0.42 -0.46
weight -0.83 0.90 0.93 0.86 1.00 -0.42 -0.31 -0.59
acceleration 0.42 -0.50 -0.54 -0.69 -0.42 1.00 0.29 0.21
year 0.58 -0.35 -0.37 -0.42 -0.31 0.29 1.00 0.18
origin 0.57 -0.57 -0.61 -0.46 -0.59 0.21 0.18 1.00
library(corrplot)
## corrplot 0.92 loaded
corr = cor(Auto[ , -9])
corrplot(corr, method = "ellipse")


c) Use the lm() function to perform a multiple linear regression with mpg as the response and all other variables except name as the predictors. Use the summary() function to print the results. Comment on the output. For instance:

  • i. Is there a relationship between the predictors and the response?
  • ii. Which predictors appear to have a statistically significant relationship to the response?
  • iii. What does the coefficient for the year variable suggest?
lm_fit <- lm(mpg ~ cylinders + displacement + horsepower + weight + acceleration + year + origin,
             data = Auto)

summary(lm_fit)
## 
## Call:
## lm(formula = mpg ~ cylinders + displacement + horsepower + weight + 
##     acceleration + year + origin, data = Auto)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.5903 -2.1565 -0.1169  1.8690 13.0604 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -17.218435   4.644294  -3.707  0.00024 ***
## cylinders     -0.493376   0.323282  -1.526  0.12780    
## displacement   0.019896   0.007515   2.647  0.00844 ** 
## horsepower    -0.016951   0.013787  -1.230  0.21963    
## weight        -0.006474   0.000652  -9.929  < 2e-16 ***
## acceleration   0.080576   0.098845   0.815  0.41548    
## year           0.750773   0.050973  14.729  < 2e-16 ***
## origin         1.426141   0.278136   5.127 4.67e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.328 on 384 degrees of freedom
## Multiple R-squared:  0.8215, Adjusted R-squared:  0.8182 
## F-statistic: 252.4 on 7 and 384 DF,  p-value: < 2.2e-16


  • There does appear to be a relationship, both positive and negative, between the predictors and the response. The predictors that appear to have a statistically significant relationship to mpg are displacement, weight, year, and origin. The coefficient for year suggests that an increase of one year, with all other variables held constant, results in an increase of 0.750773 miles per gallon. Each year cars become slightly more fuel efficient.


d) Use the plot() function to produce diagnostic plots of the linear regression fit. Comment on any problems you see with the fit. Do residual plots suggest any unusually large outliers? Does the leverage plot identify any observations with unusually high leverage?

par(mfrow = c(2,2))
plot(lm_fit)


  • The fit of the model doesn’t appear to be linear. In the Residuals vs Fitted, there appears to be no large outliers. In the Residuals vs Leverage plot, there appears to be one large outlier. Observation 14 appears to have very high leverage.


e) Use the * and : symbols to fit linear regression models with interaction effects. Do any interactions appear to be statistically significant?

lm_fit2 <- lm(mpg ~ . *. , data = Auto[ , -9])

summary(lm_fit2)
## 
## Call:
## lm(formula = mpg ~ . * ., data = Auto[, -9])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -7.6303 -1.4481  0.0596  1.2739 11.1386 
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)                3.548e+01  5.314e+01   0.668  0.50475   
## cylinders                  6.989e+00  8.248e+00   0.847  0.39738   
## displacement              -4.785e-01  1.894e-01  -2.527  0.01192 * 
## horsepower                 5.034e-01  3.470e-01   1.451  0.14769   
## weight                     4.133e-03  1.759e-02   0.235  0.81442   
## acceleration              -5.859e+00  2.174e+00  -2.696  0.00735 **
## year                       6.974e-01  6.097e-01   1.144  0.25340   
## origin                    -2.090e+01  7.097e+00  -2.944  0.00345 **
## cylinders:displacement    -3.383e-03  6.455e-03  -0.524  0.60051   
## cylinders:horsepower       1.161e-02  2.420e-02   0.480  0.63157   
## cylinders:weight           3.575e-04  8.955e-04   0.399  0.69000   
## cylinders:acceleration     2.779e-01  1.664e-01   1.670  0.09584 . 
## cylinders:year            -1.741e-01  9.714e-02  -1.793  0.07389 . 
## cylinders:origin           4.022e-01  4.926e-01   0.816  0.41482   
## displacement:horsepower   -8.491e-05  2.885e-04  -0.294  0.76867   
## displacement:weight        2.472e-05  1.470e-05   1.682  0.09342 . 
## displacement:acceleration -3.479e-03  3.342e-03  -1.041  0.29853   
## displacement:year          5.934e-03  2.391e-03   2.482  0.01352 * 
## displacement:origin        2.398e-02  1.947e-02   1.232  0.21875   
## horsepower:weight         -1.968e-05  2.924e-05  -0.673  0.50124   
## horsepower:acceleration   -7.213e-03  3.719e-03  -1.939  0.05325 . 
## horsepower:year           -5.838e-03  3.938e-03  -1.482  0.13916   
## horsepower:origin          2.233e-03  2.930e-02   0.076  0.93931   
## weight:acceleration        2.346e-04  2.289e-04   1.025  0.30596   
## weight:year               -2.245e-04  2.127e-04  -1.056  0.29182   
## weight:origin             -5.789e-04  1.591e-03  -0.364  0.71623   
## acceleration:year          5.562e-02  2.558e-02   2.174  0.03033 * 
## acceleration:origin        4.583e-01  1.567e-01   2.926  0.00365 **
## year:origin                1.393e-01  7.399e-02   1.882  0.06062 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.695 on 363 degrees of freedom
## Multiple R-squared:  0.8893, Adjusted R-squared:  0.8808 
## F-statistic: 104.2 on 28 and 363 DF,  p-value: < 2.2e-16


  • The interactions that appear to be statistically significant are displacement:year, acceleration:year, and acceleration:origin.


f) Try a few different transformations of the variables, such as \(log(X)\), \(\sqrt{X}\), \(X^2\). Comment on your findings.

lm_fit3 <- lm(mpg ~ . + I(weight**2) + I(horsepower**2) + I(log(weight)) + I(log(acceleration)) + 
                I(displacement**(1/2)) + I(horsepower**(1/2)), data = Auto[ , -9])

summary(lm_fit3)
## 
## Call:
## lm(formula = mpg ~ . + I(weight^2) + I(horsepower^2) + I(log(weight)) + 
##     I(log(acceleration)) + I(displacement^(1/2)) + I(horsepower^(1/2)), 
##     data = Auto[, -9])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.1673 -1.5596  0.0183  1.4953 12.0534 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           -1.427e+02  1.714e+02  -0.833  0.40563    
## cylinders              2.783e-01  3.567e-01   0.780  0.43563    
## displacement           4.581e-03  2.949e-02   0.155  0.87664    
## horsepower             9.327e-02  3.648e-01   0.256  0.79835    
## weight                -3.472e-02  1.750e-02  -1.984  0.04795 *  
## acceleration           1.367e+00  5.335e-01   2.562  0.01080 *  
## year                   7.834e-01  4.478e-02  17.492  < 2e-16 ***
## origin                 6.542e-01  2.656e-01   2.464  0.01420 *  
## I(weight^2)            3.147e-06  1.374e-06   2.291  0.02250 *  
## I(horsepower^2)        9.598e-05  4.820e-04   0.199  0.84227    
## I(log(weight))         3.194e+01  2.665e+01   1.199  0.23145    
## I(log(acceleration))  -2.485e+01  8.393e+00  -2.960  0.00327 ** 
## I(displacement^(1/2)) -2.919e-01  8.774e-01  -0.333  0.73955    
## I(horsepower^(1/2))   -3.804e+00  5.281e+00  -0.720  0.47179    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.869 on 378 degrees of freedom
## Multiple R-squared:  0.8694, Adjusted R-squared:  0.8649 
## F-statistic: 193.5 on 13 and 378 DF,  p-value: < 2.2e-16


  • The variables weight, acceleration, year, and origin remain statistically significant, although all of them except year are only significant at the 0.05 level. Of the variable transformations, horsepower squared and the log of acceleration are statistically significant.


10. This question should be answered using the Carseats data set.


a) Fit a multiple regression model to predict Sales using Price, Urban, and US.

car_lm <- lm(Sales ~ Price + Urban + US, data = Carseats)

b) Provide an interpretation of each coefficient in the model. Be careful - some variables in the model are qualitative!

summary(car_lm)
## 
## Call:
## lm(formula = Sales ~ Price + Urban + US, data = Carseats)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9206 -1.6220 -0.0564  1.5786  7.0581 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.043469   0.651012  20.036  < 2e-16 ***
## Price       -0.054459   0.005242 -10.389  < 2e-16 ***
## UrbanYes    -0.021916   0.271650  -0.081    0.936    
## USYes        1.200573   0.259042   4.635 4.86e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.472 on 396 degrees of freedom
## Multiple R-squared:  0.2393, Adjusted R-squared:  0.2335 
## F-statistic: 41.52 on 3 and 396 DF,  p-value: < 2.2e-16


  • A one unit increase in Price, with Urban and US held constant, results in a decrease in Sales by 0.054 units or $54. The relationship between Price and Sales appears to be statistically significant, with a p-value near 0.
  • The relationship between Urban and Sales does not appear to be statistically significant, with a p-value of 0.936.
  • A store residing in the United States, with Price and Urban held constant, results in an increase in Sales by 1.2 units or $1200. The relationship between US and Sales appears to be statistically significant, with a p-value near 0.


c) Write out the model in equation form, being careful to handle the qualitative variables properly.


  • \(Sales = 13.043469 - 0.054459*Price - 0.021916*Urban_{Yes} + 1.200573*US_{Yes}\)


d) For which of the predictors can you reject the null hypothesis \(H_{0} : \beta_{j} = 0\)?


  • The predictors for which the null hypothesis can be rejected are Price and US because of their small p-values. There is not enough evidence to reject the null hypothesis for the predictor Urban because of its large p-value.


e) On the basis of your response to the previous question, fit a smaller model that only uses the predictors for which there is evidence of association with the outcome.

car_lm2 <- lm(Sales ~ Price + US, data = Carseats)

summary(car_lm2)
## 
## Call:
## lm(formula = Sales ~ Price + US, data = Carseats)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9269 -1.6286 -0.0574  1.5766  7.0515 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.03079    0.63098  20.652  < 2e-16 ***
## Price       -0.05448    0.00523 -10.416  < 2e-16 ***
## USYes        1.19964    0.25846   4.641 4.71e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.469 on 397 degrees of freedom
## Multiple R-squared:  0.2393, Adjusted R-squared:  0.2354 
## F-statistic: 62.43 on 2 and 397 DF,  p-value: < 2.2e-16

f) How well do the models in a) and e) fit the data?


  • Both the models in a) and e) fit the data almost identically. They explain about 23.9% of the variation of the response variable Sales around its mean. The \(R^2\) value of 0.239 is relatively low, so much of the variation of the mean of Sales is not being explained by either of these models.


g) Using the model from e), obtain 95% confidence intervals for the coefficient(s).

confint(car_lm2, level = 0.95)
##                   2.5 %      97.5 %
## (Intercept) 11.79032020 14.27126531
## Price       -0.06475984 -0.04419543
## USYes        0.69151957  1.70776632


h) Is there evidence of outliers or high leverage observations in the model from e)?

par(mfrow=c(2,2))
plot(car_lm2)


  • The Residuals vs Leverage plot indicates the presence of a few outliers, and there does appear to be a few high leverage observations in the data that exceed \(\frac{(p+1)}{n}\).


12. This problem involves simple linear regression without an intercept.


a) Recall that the coefficient estimate \(\hat{\beta}\) for the linear regression of \(Y\) onto \(X\) without an intercept is given by (3.38). Under what circumstance is the coefficient estimate for the regression of \(X\) onto \(Y\) the same as the coefficient estimate for the regression of \(Y\) into \(X\)?

  • Since the numerator in the formula for \(\hat{\beta}\) given in (3.38) is symmetric in \(X\) and \(Y\), the coefficient estimate for the regression of \(X\) onto \(Y\) will be the same as the coefficient estimate for the regression of \(Y\) onto \(X\) when \(\sum_{j=1}^{n}{x^2_j} = \sum_{j=1}^{n}{y^2_j}\).


b) Generate an example in R with \(n = 100\) observations in which the coefficient estimate for the regression of \(X\) onto \(Y\) is different from the coefficient estimate for the regression of \(Y\) onto\(X\).

set.seed(1)
x <- rnorm(100)
y <- 2 * x + rnorm(100)

lmx <- lm(x ~ y)
lmy <- lm(y ~ x)
summary(lmx)
## 
## Call:
## lm(formula = x ~ y)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.90848 -0.28101  0.06274  0.24570  0.85736 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.03880    0.04266    0.91    0.365    
## y            0.38942    0.02099   18.56   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4249 on 98 degrees of freedom
## Multiple R-squared:  0.7784, Adjusted R-squared:  0.7762 
## F-statistic: 344.3 on 1 and 98 DF,  p-value: < 2.2e-16
summary(lmy)
## 
## Call:
## lm(formula = y ~ x)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8768 -0.6138 -0.1395  0.5394  2.3462 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.03769    0.09699  -0.389    0.698    
## x            1.99894    0.10773  18.556   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9628 on 98 degrees of freedom
## Multiple R-squared:  0.7784, Adjusted R-squared:  0.7762 
## F-statistic: 344.3 on 1 and 98 DF,  p-value: < 2.2e-16


  • The two regression models have different coefficient estimates. The first model is \(X\) onto \(Y\) with \(\hat{\beta} = 0.38942\). The second model is \(Y\) onto \(X\) with \(\hat{\beta} = 1.99894\).


c) Generate an example in R with \(n = 100\) observations in which the coefficient estimate for the regression of \(X\) onto \(Y\) is the same as the coefficient estimate for the regression of \(Y\) onto \(X\).

set.seed(1)
f <- 1:100
g <- 100:1

lmf <- lm(f ~ g + 0)
lmg <- lm(g ~ f + 0)
summary(lmf)
## 
## Call:
## lm(formula = f ~ g + 0)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -49.75 -12.44  24.87  62.18  99.49 
## 
## Coefficients:
##   Estimate Std. Error t value Pr(>|t|)    
## g   0.5075     0.0866    5.86 6.09e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 50.37 on 99 degrees of freedom
## Multiple R-squared:  0.2575, Adjusted R-squared:   0.25 
## F-statistic: 34.34 on 1 and 99 DF,  p-value: 6.094e-08
summary(lmg)
## 
## Call:
## lm(formula = g ~ f + 0)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -49.75 -12.44  24.87  62.18  99.49 
## 
## Coefficients:
##   Estimate Std. Error t value Pr(>|t|)    
## f   0.5075     0.0866    5.86 6.09e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 50.37 on 99 degrees of freedom
## Multiple R-squared:  0.2575, Adjusted R-squared:   0.25 
## F-statistic: 34.34 on 1 and 99 DF,  p-value: 6.094e-08


  • As the outputs show, both the coefficients are 0.5075.