With the attached data file, build and visualize eigenimagery that accounts for 80% of the variability. Provide full R code and discussion.
num=17
files=list.files("C:\\Users\\daria\\Downloads\\4\\",pattern="\\.jpg")[1:num]
height=1200; width=2500;scale=20
plot_jpeg = function(path, add=FALSE)
{ jpg = readJPEG(path, native=T) # read the file
res = dim(jpg)[2:1] # get the resolution, [x, y]
if (!add) # initialize an empty plot area if add==FALSE
plot(1,1,xlim=c(1,res[1]),ylim=c(1,res[2]),asp=1,type='n',xaxs='i',yaxs='i',xaxt='n',yaxt='n',xlab='',ylab='',bty='n')
rasterImage(jpg,1,1,res[1],res[2])
}
im=array(rep(0,length(files)*height/scale*width/scale*3), dim=c(length(files), height/scale, width/scale,3))
for (i in 1:17){
temp=resize(readJPEG(paste0("C:\\Users\\daria\\Downloads\\4\\",files[i])),height/scale, width/scale)
im[i,,,]=array(temp,dim=c(1, height/scale, width/scale,3))}
flat=matrix(0, 17, prod(dim(im)))
for (i in 1:17) {
newim <- readJPEG(paste0("C:\\Users\\daria\\Downloads\\4\\",files[i]))
r=as.vector(im[i,,,1]); g=as.vector(im[i,,,2]);b=as.vector(im[i,,,3])
flat[i,] <- t(c(r, g, b))
}
shoes=as.data.frame(t(flat))
par(mfrow=c(3,3))
par(mai=c(.3,.3,.3,.3))
for (i in 1:17){
plot_jpeg(writeJPEG(im[i,,,]))
}
scaled=scale(shoes, center = TRUE, scale = TRUE)
mean.shoe=attr(scaled, "scaled:center") #saving for classification
std.shoe=attr(scaled, "scaled:scale") #saving for classification...later
Covariance
Sigma_=cor(scaled)
The 80% varibility is between 2nd and 3rd image, closer to the 2nd image.
myeigen=eigen(Sigma_)
cumsum(myeigen$values) / sum(myeigen$values)
## [1] 0.6928202 0.7940449 0.8451072 0.8723847 0.8913841 0.9076337 0.9216282
## [8] 0.9336889 0.9433871 0.9524454 0.9609037 0.9688907 0.9765235 0.9832209
## [15] 0.9894033 0.9953587 1.0000000
2nd shoe ~80% variability
scaling=diag(myeigen$values[1:2]^(-1/2)) / (sqrt(nrow(scaled)-1))
eigenshoes=scaled%*%myeigen$vectors[,1:2]%*%scaling
imageShow(array(eigenshoes[,2], c(60,125,3)))
3rd shoe ~85% variability
scaling_3rd=diag(myeigen$values[1:3]^(-1/2)) / (sqrt(nrow(scaled)-1))
eigenshoes_3rd=scaled%*%myeigen$vectors[,1:3]%*%scaling_3rd
imageShow(array(eigenshoes_3rd[,3], c(60,125,3)))
Transform the images
height=1200
width=2500
scale=20
newdata=im
dim(newdata)=c(length(files),height*width*3/scale^2)
mypca=princomp(t(as.matrix(newdata)), scores=TRUE, cor=TRUE)
Plot Eigenshoes
mypca2=t(mypca$scores)
dim(mypca2)=c(length(files),height/scale,width/scale,3)
par(mfrow=c(5,5))
par(mai=c(.001,.001,.001,.001))
for (i in 1:17)
plot_jpeg(writeJPEG(mypca2[i,,,], bg="white")) #complete without reduction