basedatos <- read.csv("rentadebicis.csv")
summary(basedatos)
##       hora            dia              mes              año      
##  Min.   : 0.00   Min.   : 1.000   Min.   : 1.000   Min.   :2011  
##  1st Qu.: 6.00   1st Qu.: 5.000   1st Qu.: 4.000   1st Qu.:2011  
##  Median :12.00   Median :10.000   Median : 7.000   Median :2012  
##  Mean   :11.54   Mean   : 9.993   Mean   : 6.521   Mean   :2012  
##  3rd Qu.:18.00   3rd Qu.:15.000   3rd Qu.:10.000   3rd Qu.:2012  
##  Max.   :23.00   Max.   :19.000   Max.   :12.000   Max.   :2012  
##     estacion     dia_de_la_semana     asueto         temperatura   
##  Min.   :1.000   Min.   :1.000    Min.   :0.00000   Min.   : 0.82  
##  1st Qu.:2.000   1st Qu.:2.000    1st Qu.:0.00000   1st Qu.:13.94  
##  Median :3.000   Median :4.000    Median :0.00000   Median :20.50  
##  Mean   :2.507   Mean   :4.014    Mean   :0.02857   Mean   :20.23  
##  3rd Qu.:4.000   3rd Qu.:6.000    3rd Qu.:0.00000   3rd Qu.:26.24  
##  Max.   :4.000   Max.   :7.000    Max.   :1.00000   Max.   :41.00  
##  sensacion_termica    humedad       velocidad_del_viento
##  Min.   : 0.76     Min.   :  0.00   Min.   : 0.000      
##  1st Qu.:16.66     1st Qu.: 47.00   1st Qu.: 7.002      
##  Median :24.24     Median : 62.00   Median :12.998      
##  Mean   :23.66     Mean   : 61.89   Mean   :12.799      
##  3rd Qu.:31.06     3rd Qu.: 77.00   3rd Qu.:16.998      
##  Max.   :45.45     Max.   :100.00   Max.   :56.997      
##  rentas_de_no_registrados rentas_de_registrados rentas_totales 
##  Min.   :  0.00           Min.   :  0.0         Min.   :  1.0  
##  1st Qu.:  4.00           1st Qu.: 36.0         1st Qu.: 42.0  
##  Median : 17.00           Median :118.0         Median :145.0  
##  Mean   : 36.02           Mean   :155.6         Mean   :191.6  
##  3rd Qu.: 49.00           3rd Qu.:222.0         3rd Qu.:284.0  
##  Max.   :367.00           Max.   :886.0         Max.   :977.0
str(basedatos)
## 'data.frame':    10886 obs. of  14 variables:
##  $ hora                    : int  0 1 2 3 4 5 6 7 8 9 ...
##  $ dia                     : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ mes                     : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ año                     : int  2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 ...
##  $ estacion                : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ dia_de_la_semana        : int  6 6 6 6 6 6 6 6 6 6 ...
##  $ asueto                  : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ temperatura             : num  9.84 9.02 9.02 9.84 9.84 ...
##  $ sensacion_termica       : num  14.4 13.6 13.6 14.4 14.4 ...
##  $ humedad                 : int  81 80 80 75 75 75 80 86 75 76 ...
##  $ velocidad_del_viento    : num  0 0 0 0 0 ...
##  $ rentas_de_no_registrados: int  3 8 5 3 0 0 2 1 1 8 ...
##  $ rentas_de_registrados   : int  13 32 27 10 1 1 0 2 7 6 ...
##  $ rentas_totales          : int  16 40 32 13 1 1 2 3 8 14 ...
plot(basedatos$temperatura,basedatos$rentas_totales, main = "la influencia de la temperatura sobre rentas")

regresion<- lm(rentas_totales ~ hora + mes+ año + sensacion_termica + humedad + velocidad_del_viento, data= basedatos)
datos_nuevos<- data.frame(hora=12, mes= 1:12, año= 2013, sensacion_termica=24, humedad=62,velocidad_del_viento=13)

predict(regresion, datos_nuevos)
##        1        2        3        4        5        6        7        8 
## 279.1478 286.7215 294.2952 301.8690 309.4427 317.0164 324.5901 332.1638 
##        9       10       11       12 
## 339.7375 347.3112 354.8849 362.4587