Apresentação dos resultados para atividade de Espacial
Primeiro vamos carregar os pacotes necessários
require(maptools)
## Carregando pacotes exigidos: maptools
## Carregando pacotes exigidos: sp
## Checking rgeos availability: TRUE
## Please note that 'maptools' will be retired by the end of 2023,
## plan transition at your earliest convenience;
## some functionality will be moved to 'sp'.
gpclibPermit()
## [1] FALSE
require(sp)
require(dplyr)
## Carregando pacotes exigidos: dplyr
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
require(spdep)
## Carregando pacotes exigidos: spdep
## Carregando pacotes exigidos: spData
## To access larger datasets in this package, install the spDataLarge
## package with: `install.packages('spDataLarge',
## repos='https://nowosad.github.io/drat/', type='source')`
## Carregando pacotes exigidos: sf
## Linking to GEOS 3.9.1, GDAL 3.4.3, PROJ 7.2.1; sf_use_s2() is TRUE
require(rgdal)
## Carregando pacotes exigidos: rgdal
## Please note that rgdal will be retired by the end of 2023,
## plan transition to sf/stars/terra functions using GDAL and PROJ
## at your earliest convenience.
##
## rgdal: version: 1.5-32, (SVN revision 1176)
## Geospatial Data Abstraction Library extensions to R successfully loaded
## Loaded GDAL runtime: GDAL 3.4.3, released 2022/04/22
## Path to GDAL shared files: C:/Users/Gabriel/AppData/Local/R/win-library/4.2/rgdal/gdal
## GDAL binary built with GEOS: TRUE
## Loaded PROJ runtime: Rel. 7.2.1, January 1st, 2021, [PJ_VERSION: 721]
## Path to PROJ shared files: C:/Users/Gabriel/AppData/Local/R/win-library/4.2/rgdal/proj
## PROJ CDN enabled: FALSE
## Linking to sp version:1.5-0
## To mute warnings of possible GDAL/OSR exportToProj4() degradation,
## use options("rgdal_show_exportToProj4_warnings"="none") before loading sp or rgdal.
require(classInt)
## Carregando pacotes exigidos: classInt
require(RColorBrewer)
## Carregando pacotes exigidos: RColorBrewer
library(raster)
##
## Attaching package: 'raster'
## The following object is masked from 'package:dplyr':
##
## select
library(readxl)
library(skimr)
##
## Attaching package: 'skimr'
## The following object is masked from 'package:raster':
##
## bind
par.ori <- par(no.readonly=TRUE)
Vamos agora carregar nossos arquivos
readxl::read_excel
## function (path, sheet = NULL, range = NULL, col_names = TRUE,
## col_types = NULL, na = "", trim_ws = TRUE, skip = 0, n_max = Inf,
## guess_max = min(1000, n_max), progress = readxl_progress(),
## .name_repair = "unique")
## {
## path <- check_file(path)
## format <- check_format(path)
## read_excel_(path = path, sheet = sheet, range = range, col_names = col_names,
## col_types = col_types, na = na, trim_ws = trim_ws, skip = skip,
## n_max = n_max, guess_max = guess_max, progress = progress,
## .name_repair = .name_repair, format = format)
## }
## <bytecode: 0x0000022f27fa1080>
## <environment: namespace:readxl>
Indicadores = read_xlsx("Data_BA.xlsx", sheet = 1, col_names = T ) # Carregando indicadores
Ba_shape <- readShapePoly("BA_Municipios_2021.SHP") # Carregando shape
## Warning: readShapePoly is deprecated; use rgdal::readOGR or sf::st_read
proj4string(Ba_shape) <- CRS("+init=epsg:4674")
## Warning in showSRID(uprojargs, format = "PROJ", multiline
## = "NO", prefer_proj = prefer_proj): Discarded datum
## Sistema_de_Referencia_Geocentrico_para_las_AmericaS_2000 in Proj4 definition
Agora irei fazer as transformações para que sejá possível concatenar
posteriormente nossos dados ao shape.
library(stringr)
Ba_shape@data$NM_MUN <- as.character(Ba_shape@data$NM_MUN )
Ba_shape@data$NM_MUN <- str_to_title(Ba_shape@data$NM_MUN)
Indicadores$Município <- str_to_title(Indicadores$Município)
head(Ba_shape@data$NM_MUN)
## [1] "Abaíra" "Abaré" "Acajutiba" "Adustina"
## [5] "Água Fria" "Érico Cardoso"
head(Indicadores$Município)
## [1] "Abaíra" "Abaré" "Acajutiba" "Adustina"
## [5] "Água Fria" "Érico Cardoso"
head(Indicadores)
## # A tibble: 6 × 4
## Município GINI THEIL IDHM
## <chr> <dbl> <dbl> <dbl>
## 1 Abaíra 0.46 0.44 0.603
## 2 Abaré 0.55 0.59 0.575
## 3 Acajutiba 0.57 0.61 0.582
## 4 Adustina 0.54 0.55 0.546
## 5 Água Fria 0.53 0.54 0.55
## 6 Érico Cardoso 0.49 0.51 0.584
Vamos plotar agora o mapa da Bahia e puxar algumas estatísticas a
respeito do shape
class(Ba_shape)
## [1] "SpatialPolygonsDataFrame"
## attr(,"package")
## [1] "sp"
plot(Ba_shape)
title("Municípios da Bahia")
slotNames(Ba_shape)
## [1] "data" "polygons" "plotOrder" "bbox" "proj4string"
dim(Ba_shape)
## [1] 417 4
dim(Indicadores)
## [1] 417 4
#par(c(0,0,0,0))
plot(Ba_shape, add=T, lwd=1)

#head(Ba_shape@data)
#head(Indicadores)
fazendo a estatística descritiva dos dados
skim(Indicadores$IDHM)
Data summary
| Name |
Indicadores$IDHM |
| Number of rows |
417 |
| Number of columns |
1 |
| _______________________ |
|
| Column type frequency: |
|
| numeric |
1 |
| ________________________ |
|
| Group variables |
None |
Variable type: numeric
| data |
0 |
1 |
0.59 |
0.04 |
0.49 |
0.57 |
0.59 |
0.61 |
0.76 |
▁▇▅▁▁ |
Visualizando o mapa para o indice IDH
INT1 <- classIntervals(Ba_shape$IDHM, n=4, style="quantile")
COLORES1 <- (c('red',"#964b00",'lightgrey','green2',"green4"))
COL1 <- findColours(INT1, COLORES1)
INT1
## style: quantile
## one of 518,665 possible partitions of this variable into 4 classes
## [0.486,0.566) [0.566,0.589) [0.589,0.614) [0.614,0.759]
## 101 107 100 109
#border=NA
plot(Ba_shape, col=COL1)
#sp::wkt(Ba_shape)
#locator(1)
TB1 <- attr(COL1, "table")
names(TB1)= c('Baixo','Médio','Alto','Muito Alto')
legtext <- paste(names(TB1))
legend(-48.7785, -15.95352, fill=attr(COL1, "palette"), legend=legtext,
bty="n",cex=1)
#locator(1)
scalebar(100, xy=c(-35.97071, -16.87172),
type="bar", below="km",
cex=1, lonlat=T,divs=4)
#locator(1)
compassRose(-35.53014, -13.28069, cex=1)
title("IDH dos municípios da Bahia")

Visualizando o mapa para o indice de Theil
quantile(Ba_shape$THEIL)
## 0% 25% 50% 75% 100%
## 0.29 0.46 0.52 0.58 0.98
min(Ba_shape$THEIL)
## [1] 0.29
max(Ba_shape$THEIL)
## [1] 0.98
INT2 <- classIntervals(Ba_shape$THEIL, n=4, style="quantile")
COLORES2<- (c('red',"#964b00",'lightgrey','green2',"green4"))
COL2 <- findColours(INT2, COLORES2)
#border=NA
plot(Ba_shape, col=COL2)
#locator(1)
TB2 <- attr(COL2, "table")
names(TB2)= c('Baixo','Médio','Alto','Muito Alto')
legtext <- paste(names(TB2))
legend(-48.7785, -15.95352, fill=attr(COL2, "palette"), legend=legtext,
bty="n",cex= 1)
#locator(1)
scalebar(100, xy=c(-35.97071, -16.87172),
type="bar", below="km",
cex=0.8, lonlat=T,divs=4)
#locator(1)
compassRose(-35.53014, -12.28069, cex=1)
title("Indice de theil por municípios da Bahia")

Visualizando o mapa para o indice de Gini
INT3 <- classIntervals(Ba_shape$GINI, n=4, style="quantile")
COLORES3 <- (c('red',"#964b00",'lightgrey','green2',"green4"))
COL3 <- findColours(INT3, COLORES3)
#border=NA
plot(Ba_shape, col=COL3)
#locator(1)
TB3 <- attr(COL3, "table")
names(TB3)= c('Baixo','Médio','Alto','Muito Alto')
legtext <- paste(names(TB3))
legend(-48.7785, -15.95352, fill=attr(COL3, "palette"), legend=legtext,
bty="n",cex=0.6)
#locator(1)
scalebar(100, xy=c(-35.97071, -16.87172),
type="bar", below="km",
cex=0.8, lonlat=T,divs=4)
#locator(1)
compassRose(-35.53014, -12.28069, cex=0.8)
title("Indice de Gini por municípios da Bahia")

Agora iremos calcular as vizinhanças
require(spdep)
Ba_shape.nb1 <- poly2nb(Ba_shape)
class(Ba_shape.nb1)
## [1] "nb"
Ba_shape.nb1[[1]]
## [1] 6 222 264 298 329 331
Ba_shape.nb1[[6]]
## [1] 1 94 234 290 329 331
Ba_shape@data[Ba_shape.nb1[[6]],5]
## [1] "Abaíra" "Caturama"
## [3] "Livramento De Nossa Senhora" "Paramirim"
## [5] "Rio De Contas" "Rio Do Pires"
class(Ba_shape.nb1)
## [1] "nb"
Ba_shape.nb1 = poly2nb(Ba_shape)
vizinhanca = nb2listw(Ba_shape.nb1, style="W",
zero.policy=TRUE)
vizinhanca
## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 417
## Number of nonzero links: 2360
## Percentage nonzero weights: 1.357188
## Average number of links: 5.659472
##
## Weights style: W
## Weights constants summary:
## n nn S0 S1 S2
## W 417 173889 417 156.5982 1724.023
Calulando o indice de Moran global
Mglobal1 = moran.test(Ba_shape$IDHM, listw=nb2listw(Ba_shape.nb1))
Mglobal1
##
## Moran I test under randomisation
##
## data: Ba_shape$IDHM
## weights: nb2listw(Ba_shape.nb1)
##
## Moran I statistic standard deviate = 12.958, p-value < 2.2e-16
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic Expectation Variance
## 0.3832125066 -0.0024038462 0.0008856233
is.numeric(Ba_shape$THEIL)
## [1] TRUE
Mglobal2 = moran.test(Ba_shape$THEIL, listw=nb2listw(Ba_shape.nb1))
Mglobal2
##
## Moran I test under randomisation
##
## data: Ba_shape$THEIL
## weights: nb2listw(Ba_shape.nb1)
##
## Moran I statistic standard deviate = 9.4815, p-value < 2.2e-16
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic Expectation Variance
## 0.2796889641 -0.0024038462 0.0008851704
Mglobal3 = moran.test(Ba_shape$GINI, listw=nb2listw(Ba_shape.nb1))
Mglobal3
##
## Moran I test under randomisation
##
## data: Ba_shape$GINI
## weights: nb2listw(Ba_shape.nb1)
##
## Moran I statistic standard deviate = 10.175, p-value < 2.2e-16
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic Expectation Variance
## 0.3006368779 -0.0024038462 0.0008870922
Calculando o indice de Moran local para o IDH
Ba_shape.mloc1 <- localmoran(Ba_shape$IDHM, listw=vizinhanca,
zero.policy=T,
alternative = "two.sided")
dim(Ba_shape.mloc1)
## [1] 417 5
head(Ba_shape.mloc1)
## Ii E.Ii Var.Ii Z.Ii Pr(z != E(Ii))
## 0 -0.001272182 -0.0001171665 0.008044022 -0.01287808 0.98972506
## 1 0.037910379 -0.0005060820 0.105210572 0.11843707 0.90572135
## 2 0.216727888 -0.0002006788 0.020765359 1.50538308 0.13222562
## 3 0.979391381 -0.0032497872 0.267547587 1.89974117 0.05746709
## 4 0.634438250 -0.0027297299 0.139505292 1.70591977 0.08802302
## 5 -0.034595336 -0.0001389114 0.009536702 -0.35283455 0.72421248
min(Ba_shape.mloc1)
## [1] -3.130361
max(Ba_shape.mloc1)
## [1] 10.88678
Checando a amplitude da estatística de Moran local para IDH
list_w <- vizinhanca
signif = 0.05
Sd_1 <- (Ba_shape$IDHM) - mean(Ba_shape$IDHM)
mI_1 <- Ba_shape.mloc1[, 5]
C_mI <- mI_1 - mean(mI_1) # MAS N?O QUEREMOS CENTRAR! Apenas o sinal importa
quadrant <- vector(mode = "numeric", length = nrow(Ba_shape.mloc1))
# builds a data quadrant
quadrant[Sd_1 >0 & mI_1>0] <- 4
quadrant[Sd_1 <0 & mI_1<0] <- 1
quadrant[Sd_1 <0 & mI_1>0] <- 2
quadrant[Sd_1 >0 & mI_1<0] <- 3
quadrant[Ba_shape.mloc1[,5]>signif] <- 0.05
# plot in r
brks <- c(0,1,2,3,4)
colors <- c("white","blue",rgb(0,0,1,alpha=0.4),rgb(1,0,0,alpha=0.4),"red")
plot(Ba_shape,border="lightgray",col=colors[findInterval(quadrant,brks,
all.inside=FALSE)])
title("Indice de Moran Local para o IDH")
legend(-50.92708, -12.95683, legend = c("Não significativo","Baixo-baixo","Baixo-Alto","Alto-Baixo","Alto-Alto"),
fill=colors,bty="n",cex=0.6)
scalebar(100, xy=c(-35.97071, -16.87172),
type="bar", below="km",
cex=0.6, lonlat=T,divs=4)
compassRose(-35.53014, -12.28069, cex=0.6)

Calculando o indice de Moran local para o Theil
Ba_shape.mloc2 <- localmoran(Ba_shape$THEIL, listw=vizinhanca,
zero.policy=T,
alternative = "two.sided")
dim(Ba_shape.mloc2)
## [1] 417 5
head(Ba_shape.mloc2)
## Ii E.Ii Var.Ii Z.Ii Pr(z != E(Ii))
## 0 0.24395151 -1.811387e-03 0.124149308 0.6974999 0.4854900
## 1 0.21780741 -9.891000e-04 0.205526931 0.4826208 0.6293650
## 2 0.49816735 -1.707178e-03 0.176385083 1.1902278 0.2339569
## 3 0.02342064 -1.372147e-04 0.011331850 0.2213020 0.8248573
## 4 -0.04697900 -4.596629e-05 0.002355470 -0.9670296 0.3335292
## 5 0.07617027 -6.435609e-05 0.004418575 1.1468620 0.2514387
Checando a amplitude do Moran local para o Theil
list_w <- vizinhanca
Sd_2 <- (Ba_shape$THEIL) - mean(Ba_shape$THEIL)
mI_2 <- Ba_shape.mloc2[, 5]
C_m2 <- mI_2 - mean(mI_2) # MAS N?O QUEREMOS CENTRAR! Apenas o sinal importa
quadrant <- vector(mode = "numeric", length = nrow(Ba_shape.mloc2))
# builds a data quadrant
quadrant[Sd_2 >0 & mI_2>0] <- 4
quadrant[Sd_2 <0 & mI_2<0] <- 1
quadrant[Sd_2 <0 & mI_2>0] <- 2
quadrant[Sd_2 >0 & mI_2<0] <- 3
quadrant[Ba_shape.mloc2[,5]>signif] <- 0.05
# plot in r
#brks <- c(0,1,2,3,4)
colors <- c("white","blue",rgb(0,0,1,alpha=0.4),rgb(1,0,0,alpha=0.4),"red")
plot(Ba_shape,border="lightgray",col=colors[findInterval(quadrant,brks,
all.inside=FALSE)])
title("Indice de Moran Local para o Theil")
legend(-50.92708, -12.95683, legend = c("insignificant","low-low","low-high","high-low","high-high"),
fill=colors,bty="n",cex=0.6)
scalebar(100, xy=c(-35.97071, -16.87172),
type="bar", below="km",
cex=0.6, lonlat=T,divs=4)
compassRose(-35.53014, -12.28069, cex=0.6)

Calculando o indice de Moran local para Gini
Ba_shape.mloc3 <- localmoran(Ba_shape$GINI, listw=vizinhanca,
zero.policy=T,
alternative = "two.sided")
dim(Ba_shape.mloc3)
## [1] 417 5
head(Ba_shape.mloc3)
## Ii E.Ii Var.Ii Z.Ii Pr(z != E(Ii))
## 0 0.86591059 -4.716150e-03 0.322296139 1.5335730 0.12513474
## 1 0.21486593 -6.498684e-04 0.135083213 0.5863790 0.55762084
## 2 0.64379311 -2.154673e-03 0.222520411 1.3693438 0.17089185
## 3 0.05471855 -2.258872e-04 0.018653198 0.4022973 0.68746524
## 4 -0.02610869 -2.085359e-05 0.001068636 -0.7980372 0.42484889
## 5 0.57832096 -1.390195e-03 0.095321748 1.8776544 0.06042846
Calculando a amplitude do indice de Moran local para Gini
list_w <- vizinhanca
Sd_3 <- (Ba_shape$GINI) - mean(Ba_shape$GINI)
mI_3 <- Ba_shape.mloc3[, 5]
C_m3 <- mI_3 - mean(mI_3) # MAS N?O QUEREMOS CENTRAR! Apenas o sinal importa
quadrant <- vector(mode = "numeric", length = nrow(Ba_shape.mloc3))
# builds a data quadrant
quadrant[Sd_3 >0 & mI_3>0] <- 4
quadrant[Sd_3 <0 & mI_3<0] <- 1
quadrant[Sd_3 <0 & mI_3>0] <- 2
quadrant[Sd_3 >0 & mI_3<0] <- 3
quadrant[Ba_shape.mloc3[,5]>signif] <- 0.05
# plot in r
#brks <- c(0,1,2,3,4)
colors <- c("white","blue",rgb(0,0,1,alpha=0.4),rgb(1,0,0,alpha=0.4),"red")
plot(Ba_shape,border="lightgray",col=colors[findInterval(quadrant,brks,
all.inside=FALSE)])
title("Indice de Moran Local para o GINI")
legend(-50.92708, -12.95683, legend = c("insignificant","low-low","low-high","high-low","high-high"),
fill=colors,bty="n",cex=0.6)
scalebar(100, xy=c(-35.97071, -16.87172),
type="bar", below="km",
cex=0.6, lonlat=T,divs=4)
compassRose(-35.53014, -12.28069, cex=0.6)

Checando a amplitude do moran
#Checando a amplitude da estatística de moran local
list_w <- vizinhanca
Sd_1 <- (Ba_shape$IDHM) - mean(Ba_shape$IDHM)
mI_1 <- Ba_shape.mloc1[, 5]
C_mI <- mI_1 - mean(mI_1) # MAS NÃO QUEREMOS CENTRAR! Apenas o sinal importa
quadrant <- vector(mode = "numeric", length = nrow(Ba_shape.mloc1))
quadrant[Sd_1 > 0 & mI_1 > 0] <- 1
quadrant[Sd_1 < 0 & mI_1 > 0] <- 2
quadrant[Sd_1 > 0 & mI_1 < 0] <- 3
quadrant[Sd_1 < 0 & mI_1 < 0] <- 4
signif <- 0.05
# places non-significant Moran's in the category '5'
quadrant[Ba_shape.mloc1[, 5] > signif] <- 5
colors <- c("red", "blue", "lightpink", "skyblue2", "white")
#par(mar=c(0,0,0,0))
plot(Ba_shape, col = colors[quadrant])
#locator
legend(-48.92708, -12.95683, legend = c("alto-alto",
"baixo-baixo", "alto-baixo", "baixo-alto","Não Sig."),
fill = colors, bty = "n", cex = 0.7, y.intersp = 1, x.intersp = 1)

###
nobs <- length(Ba_shape)
Ne.nb <- poly2nb(Ba_shape, queen = T)
coords <- coordinates(Ba_shape)
#par(mar = c(0,0,0,0))
plot(Ba_shape, border = "grey")
plot(Ne.nb, coords, add = T, col = "red")
plot(Ba_shape, add = T, lwd = 2)
#locator(1)
scalebar(500, xy=c(-35.95657, -13.52004),
type="bar", below="km",
cex=0.8, lonlat=T,divs=4)
compassRose(-49.95657, -13.52004)

vizinhança = nb2listw(Ne.nb, style = "W", zero.policy = T)
vizinhança
## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 417
## Number of nonzero links: 2360
## Percentage nonzero weights: 1.357188
## Average number of links: 5.659472
##
## Weights style: W
## Weights constants summary:
## n nn S0 S1 S2
## W 417 173889 417 156.5982 1724.023
Ne.nb <- poly2nb(Ba_shape, queen = T)
### indice de moran global para para detecar a presença de dependencias antes
### da regressão espacial
Mglobal1 <- moran.test(Ba_shape$IDHM, nb2listw(Ne.nb), alternative = "two.sided")
Ba_shape.mloc1
## Ii E.Ii Var.Ii Z.Ii Pr(z != E(Ii))
## 0 -0.0012721820 -1.171665e-04 8.044022e-03 -0.012878082 9.897251e-01
## 1 0.0379103786 -5.060820e-04 1.052106e-01 0.118437071 9.057214e-01
## 2 0.2167278884 -2.006788e-04 2.076536e-02 1.505383081 1.322256e-01
## 3 0.9793913805 -3.249787e-03 2.675476e-01 1.899741173 5.746709e-02
## 4 0.6344382505 -2.729730e-03 1.395053e-01 1.705919769 8.802302e-02
## 5 -0.0345953358 -1.389114e-04 9.536702e-03 -0.352834551 7.242125e-01
## 6 -0.0931189539 -1.683789e-04 1.390511e-02 -0.788251618 4.305495e-01
## 7 0.3986958447 -1.124154e-02 7.631966e-01 0.469244629 6.388948e-01
## 8 0.3883250361 -2.813825e-04 3.891272e-02 1.969990748 4.883943e-02
## 9 -0.0154010400 -1.352513e-03 1.397909e-01 -0.037574337 9.700271e-01
## 10 0.0855022029 -1.369358e-03 8.028511e-02 0.306591508 7.591543e-01
## 11 1.7879445880 -7.360908e-03 7.562196e-01 2.064497613 3.897056e-02
## 12 0.0834320709 -1.533237e-03 1.264453e-01 0.238940762 8.111515e-01
## 13 0.4375674811 -4.114842e-03 2.100006e-01 0.963828404 3.351320e-01
## 14 0.5287617245 -2.143385e-03 1.468551e-01 1.385391283 1.659329e-01
## 15 -0.0072900529 -4.936441e-05 4.077109e-03 -0.113397561 9.097154e-01
## 16 0.4230990907 -1.369358e-03 1.129488e-01 1.263003742 2.065878e-01
## 17 -0.1302860293 -3.405842e-05 7.083828e-03 -1.547569996 1.217259e-01
## 18 0.0431911204 -5.134272e-06 4.240689e-04 2.097625160 3.593827e-02
## 19 -0.5381619593 -1.533237e-03 1.051147e-01 -1.655168174 9.789039e-02
## 20 -0.0161768551 -2.375820e-05 1.962289e-03 -0.364648365 7.153739e-01
## 21 0.4084592622 -2.984094e-03 2.457392e-01 0.829990032 4.065444e-01
## 22 -0.3109493052 -2.486695e-03 1.703185e-01 -0.747431906 4.548029e-01
## 23 0.2251600253 -2.358109e-04 1.384123e-02 1.915837023 5.538584e-02
## 24 -0.7195509210 -8.091964e-04 6.678242e-02 -2.781261297 5.414814e-03
## 25 0.8965264422 -5.081860e-03 2.062643e-01 1.985207302 4.712141e-02
## 26 -0.0136667639 -4.936441e-05 3.389324e-03 -0.233903992 8.150595e-01
## 27 0.6560329369 -1.725291e-03 1.422565e-01 1.743934717 8.117047e-02
## 28 -0.2906239802 -5.060820e-04 4.177927e-02 -1.419365015 1.557926e-01
## 29 -0.2125687236 -9.502682e-04 6.518593e-02 -0.828851251 4.071886e-01
## 30 -0.0009994023 -3.405842e-05 1.745291e-03 -0.023107242 9.815647e-01
## 31 0.1285377064 -1.122762e-04 9.272541e-03 1.336011951 1.815454e-01
## 32 0.1725683051 -3.145721e-04 3.254683e-02 0.958291514 3.379158e-01
## 33 0.4164269958 -1.928673e-03 9.864575e-02 1.332006881 1.828579e-01
## 34 0.1604147158 -5.060820e-04 3.473135e-02 0.863478158 3.878746e-01
## 35 -0.0087434259 -2.606796e-03 2.690907e-01 -0.011829886 9.905613e-01
## 36 0.0354559164 -1.845127e-03 1.081278e-01 0.113436354 9.096846e-01
## 37 -0.0686731840 -4.046624e-04 3.341003e-02 -0.373492646 7.087818e-01
## 38 1.6544249899 -2.287564e-02 1.846217e+00 1.234438596 2.170395e-01
## 39 0.0380295211 -2.428747e-04 1.667237e-02 0.296406008 7.669200e-01
## 40 -0.0725791726 -3.668950e-04 3.795837e-02 -0.370644240 7.109025e-01
## 41 0.1702504664 -9.282025e-05 7.665883e-03 1.945556822 5.170800e-02
## 42 0.0504216071 -2.375820e-05 1.962289e-03 1.138779768 2.547950e-01
## 43 0.1503916337 -5.060820e-04 4.177927e-02 0.738247932 4.603638e-01
## 44 1.2867626971 -4.425853e-03 3.025458e-01 2.347437890 1.890302e-02
## 45 0.4125533947 -1.025053e-03 5.247578e-02 1.805420839 7.100885e-02
## 46 0.6010309788 -2.606796e-03 1.332391e-01 1.653714715 9.818549e-02
## 47 -0.1705319244 -2.164576e-03 1.106853e-01 -0.506072669 6.128056e-01
## 48 1.0696992841 -3.249787e-03 2.675476e-01 2.074333536 3.804835e-02
## 49 0.1307272903 -4.637367e-04 3.182663e-02 0.735374960 4.621112e-01
## 50 0.0562938700 -1.533237e-03 8.987859e-02 0.192887174 8.470473e-01
## 51 -0.0509283997 -1.171665e-04 9.676369e-03 -0.516539473 6.054777e-01
## 52 -0.0511836848 -5.060820e-04 5.235115e-02 -0.221489393 8.247114e-01
## 53 -0.0155103167 -1.357345e-05 1.121100e-03 -0.462826611 6.434887e-01
## 54 0.0083053639 -5.134272e-06 3.525309e-04 0.442617372 6.580425e-01
## 55 0.0932021284 -8.091964e-04 4.746960e-02 0.431491636 6.661109e-01
## 56 -0.7281291773 -5.460547e-03 2.009132e-01 -1.612259592 1.069055e-01
## 57 0.3723218037 -5.164060e-04 5.341856e-02 1.613148460 1.067123e-01
## 58 0.6794846915 -1.183118e-03 1.634673e-01 1.683525921 9.227333e-02
## 59 0.5486583721 -1.533237e-03 1.264453e-01 1.547257408 1.218012e-01
## 60 -0.2271011198 -2.358109e-04 1.071276e-02 -2.191883401 2.838793e-02
## 61 1.2333407303 -3.992384e-03 2.730333e-01 2.367984517 1.788528e-02
## 62 0.1475133243 -2.630161e-03 1.540110e-01 0.382587333 7.020258e-01
## 63 0.2324697609 -3.249787e-03 2.224139e-01 0.499821215 6.172010e-01
## 64 1.2099822176 -3.815161e-03 2.609597e-01 2.376071418 1.749808e-02
## 65 0.3514876296 -1.369358e-03 5.059086e-02 1.568782315 1.166987e-01
## 66 0.1243025456 -1.389114e-04 1.147195e-02 1.161840150 2.453004e-01
## 67 -0.2970906368 -1.551169e-03 2.142405e-01 -0.638505605 5.231446e-01
## 68 0.2451186390 -6.188309e-04 6.400712e-02 0.971308591 3.313946e-01
## 69 0.1024413528 -2.358109e-04 1.384123e-02 0.872743325 3.828030e-01
## 70 5.8582749134 -1.418870e-02 1.447644e+00 4.880782670 1.056656e-06
## 71 0.3218977057 -1.183118e-03 1.634673e-01 0.799090149 4.242381e-01
## 72 1.1175712378 -1.928673e-03 4.003857e-01 1.769232011 7.685516e-02
## 73 -0.0708753885 -8.847331e-05 4.533483e-03 -1.051325009 2.931093e-01
## 74 -0.1662369098 -1.183118e-03 1.634673e-01 -0.408234872 6.831012e-01
## 75 0.0321484520 -6.750271e-05 4.634602e-03 0.473221844 6.360549e-01
## 76 0.0463537166 -2.158473e-05 2.233894e-03 0.981195406 3.264964e-01
## 77 -0.1386792145 -6.750271e-05 4.634602e-03 -2.036074685 4.174286e-02
## 78 5.3938295839 -1.335094e-02 1.088014e+00 5.183864543 2.173348e-07
## 79 -0.0623249165 -1.194335e-05 1.652105e-03 -1.533061623 1.252607e-01
## 80 -0.0528984178 -7.130628e-05 7.379416e-03 -0.614958571 5.385821e-01
## 81 0.8675508104 -1.928673e-03 1.130143e-01 2.586381605 9.698948e-03
## 82 0.3200667736 -1.441459e-03 7.376222e-02 1.183791169 2.364957e-01
## 83 -0.0425992730 -3.677526e-05 2.159002e-03 -0.916010834 3.596612e-01
## 84 -0.1660775038 -1.039724e-03 5.322605e-02 -0.715354403 4.743901e-01
## 85 0.9909644918 -2.143385e-03 1.468551e-01 2.591504527 9.555728e-03
## 86 0.5523074274 -6.914078e-04 4.744107e-02 2.538908104 1.111990e-02
## 87 -0.1998600389 -2.486695e-03 5.159404e-01 -0.274782287 7.834835e-01
## 88 -0.0305451518 -4.539561e-04 3.747800e-02 -0.155435866 8.764777e-01
## 89 -0.0623743629 -8.091964e-04 1.118457e-01 -0.184088010 8.539444e-01
## 90 0.0107217827 -5.164060e-04 3.030262e-02 0.064558915 9.485252e-01
## 91 -0.2222810465 -2.006788e-04 1.657197e-02 -1.725135271 8.450310e-02
## 92 1.5059339424 -9.778436e-03 6.648480e-01 1.858898252 6.304156e-02
## 93 -0.0201848448 -7.429089e-04 6.131582e-02 -0.078515106 9.374183e-01
## 94 0.0171991358 -6.221008e-06 4.271482e-04 0.832481104 4.051374e-01
## 95 -0.0026482066 -5.262462e-05 3.613156e-03 -0.043180873 9.655574e-01
## 96 0.1066562103 -1.122762e-04 6.591014e-03 1.315124814 1.884680e-01
## 97 -0.1977474031 -7.130628e-05 5.889204e-03 -2.575881351 9.998495e-03
## 98 0.1232195670 -5.164060e-04 3.030262e-02 0.710813848 4.771996e-01
## 99 0.0079385182 -6.221008e-06 8.605474e-04 0.270827183 7.865240e-01
## 100 0.5573660368 -2.276724e-03 1.559700e-01 1.417066885 1.564634e-01
## 101 0.3081170753 -2.071992e-04 1.216218e-02 2.795774187 5.177556e-03
## 102 0.1973611186 -4.138997e-04 2.120183e-02 1.358265637 1.743794e-01
## 103 1.5235858614 -6.761061e-03 4.610936e-01 2.253695981 2.421530e-02
## 104 0.4707913888 -1.627848e-03 2.248138e-01 0.996359476 3.190755e-01
## 105 0.1021834911 -2.006788e-04 1.377637e-02 0.872299062 3.830452e-01
## 106 0.3077588407 -4.046624e-04 3.341003e-02 1.685942502 9.180687e-02
## 107 -0.0384333237 -5.134272e-06 3.525309e-04 -2.046686475 4.068888e-02
## 108 0.1352521133 -3.145721e-04 6.540965e-02 0.530068600 5.960644e-01
## 109 0.0305107849 -5.262462e-05 4.346362e-03 0.463595125 6.429378e-01
## 110 1.7595091942 -4.913610e-03 4.038511e-01 2.776463951 5.495373e-03
## 111 0.0433826901 -1.171665e-04 1.620576e-02 0.341706402 7.325719e-01
## 112 -0.0220703093 -2.158473e-05 1.482033e-03 -0.572736081 5.668234e-01
## 113 -0.0920268227 -3.677526e-05 3.805966e-03 -1.491105489 1.359338e-01
## 114 1.2566436745 -3.669569e-03 2.510378e-01 2.515411062 1.188937e-02
## 115 0.0079007102 -5.719076e-04 3.355758e-02 0.046251122 9.631101e-01
## 116 1.5744281352 -1.564162e-02 1.057196e+00 1.546459014 1.219938e-01
## 117 -0.2227088291 -2.358109e-04 1.947248e-02 -1.594287881 1.108716e-01
## 118 0.3356838526 -4.114842e-03 2.813734e-01 0.640590057 5.217891e-01
## 119 4.0188760978 -9.544500e-03 7.808146e-01 4.558908290 5.142022e-06
## 120 -0.0514895466 -1.194335e-05 1.652105e-03 -1.266483269 2.053401e-01
## 121 1.0494949854 -2.055261e-03 2.837202e-01 1.974171661 4.836223e-02
## 122 0.0659228637 -1.198876e-03 1.239306e-01 0.190666314 8.487870e-01
## 123 -0.3556135956 -3.526810e-03 3.637247e-01 -0.583798952 5.593556e-01
## 124 0.0120666510 -6.302416e-04 3.227687e-02 0.070672711 9.436582e-01
## 125 0.0647273187 -3.405842e-05 2.338462e-03 1.339216967 1.805001e-01
## 126 0.6166184489 -1.025053e-03 7.031068e-02 2.329309585 1.984267e-02
## 127 0.9348107252 -9.778436e-03 5.684798e-01 1.252810685 2.102746e-01
## 128 0.6190201346 -1.725291e-03 1.422565e-01 1.645801530 9.980463e-02
## 129 0.0112603792 -4.936441e-05 6.828248e-03 0.136866802 8.911361e-01
## 130 0.1516165405 -1.975058e-02 6.549444e-01 0.211750898 8.323014e-01
## 131 0.0153945750 -1.183118e-03 9.760540e-02 0.053062436 9.576822e-01
## 132 -0.0102681432 -3.582011e-04 3.705924e-02 -0.051478143 9.589445e-01
## 133 -0.0346968188 -1.928673e-03 1.321724e-01 -0.090132508 9.281819e-01
## 134 -0.0341267716 -8.222372e-04 1.708827e-01 -0.080566459 9.357867e-01
## 135 -0.9763640220 -2.055261e-03 1.694077e-01 -2.367172906 1.792456e-02
## 136 0.0098947148 -3.677526e-05 3.037383e-03 0.180204089 8.569923e-01
## 137 0.1360911896 -1.725291e-03 1.011173e-01 0.433399458 6.647246e-01
## 138 -0.0314750280 -1.157499e-06 2.407567e-04 -2.028434411 4.251593e-02
## 139 -0.0155147669 -4.539561e-04 2.325277e-02 -0.098766796 9.213234e-01
## 140 1.1076467661 -3.413507e-03 2.809801e-01 2.096041191 3.607854e-02
## 141 0.1355264235 -8.783162e-04 6.025455e-02 0.555692521 5.784211e-01
## 142 0.5481007101 -8.859683e-03 6.029397e-01 0.717277768 4.732027e-01
## 143 -0.4589075552 -1.825566e-03 1.505094e-01 -1.178181632 2.387242e-01
## 144 0.5398877690 -1.352513e-03 1.397909e-01 1.447606923 1.477270e-01
## 145 0.2607531421 -5.610403e-04 2.547946e-02 1.637072406 1.016153e-01
## 146 0.0185912894 -4.138997e-04 4.281939e-02 0.091844245 9.268218e-01
## 147 -0.1301410805 -1.369358e-03 1.129488e-01 -0.383159616 7.016014e-01
## 148 0.0148913512 -1.194335e-05 9.864629e-04 0.474506226 6.351390e-01
## 149 0.1161339887 -1.389114e-04 4.698570e-03 1.696272600 8.983427e-02
## 150 0.0179849646 -6.914078e-04 4.056459e-02 0.092729723 9.261183e-01
## 151 -0.0215645426 -1.389114e-04 1.147195e-02 -0.200039111 8.414500e-01
## 152 1.9123006955 -9.733337e-03 9.975602e-01 1.924383065 5.430659e-02
## 153 0.2306407124 -1.825566e-03 8.280257e-02 0.807863637 4.191691e-01
## 154 0.5664429961 -5.719076e-04 5.915652e-02 2.331273108 1.973896e-02
## 155 0.0893965665 -4.539561e-04 2.663973e-02 0.550497908 5.819779e-01
## 156 0.0017449273 -1.122762e-04 6.591014e-03 0.022876174 9.817490e-01
## 157 0.1162873736 -9.282025e-05 5.448986e-03 1.576599005 1.148878e-01
## 158 -0.8011257303 -2.509517e-03 2.067562e-01 -1.756340949 7.903021e-02
## 159 0.4610287718 -1.948778e-03 2.012984e-01 1.031905084 3.021166e-01
## 160 0.2402813614 -5.719076e-04 4.721035e-02 1.108495485 2.676479e-01
## 161 0.3330627188 -5.610403e-04 5.803307e-02 1.384902554 1.660823e-01
## 162 0.6394810841 -2.486695e-03 2.048807e-01 1.418282452 1.561083e-01
## 163 0.7130800364 -1.307735e-02 6.613954e-01 0.892894577 3.719136e-01
## 164 0.2942272842 -1.183118e-03 6.055809e-02 1.200437876 2.299693e-01
## 165 -0.0628320960 -2.729730e-03 1.869189e-01 -0.139016072 8.894374e-01
## 166 -0.3263179746 -8.200357e-03 4.167876e-01 -0.492754162 6.221863e-01
## 167 0.3889796132 -2.855496e-03 1.161592e-01 1.149678847 2.502762e-01
## 168 0.0003543715 -2.158473e-05 2.233894e-03 0.007954374 9.936534e-01
## 169 0.3512793636 -4.539561e-04 3.747800e-02 1.816876056 6.923609e-02
## 170 0.2056019616 -7.429089e-04 5.097220e-02 0.913959595 3.607381e-01
## 171 0.0283076386 -3.677526e-05 2.524994e-03 0.564075602 5.727027e-01
## 172 -0.1245889482 -9.643958e-04 7.957856e-02 -0.438234643 6.612162e-01
## 173 0.2819588496 -1.335094e-02 9.044722e-01 0.310513317 7.561706e-01
## 174 0.1218733111 -3.677526e-05 3.805966e-03 1.976092024 4.814436e-02
## 175 -0.3521184365 -9.643958e-04 9.971522e-02 -1.112031118 2.661248e-01
## 176 0.5831322899 -1.975058e-02 1.136657e+00 0.565481155 5.717465e-01
## 177 -0.0198876008 -1.683789e-04 1.742368e-02 -0.149389427 8.812464e-01
## 178 0.2863396387 -6.794537e-04 3.986373e-02 1.437546244 1.505628e-01
## 179 0.1530640035 -3.669569e-03 3.019801e-01 0.285215350 7.754792e-01
## 180 0.0387255390 -3.405842e-05 1.745291e-03 0.927780713 3.535213e-01
## 181 0.2443840057 -2.276724e-03 2.350962e-01 0.508718067 6.109499e-01
## 182 0.2730784990 -1.441459e-03 7.376222e-02 1.010780655 3.121214e-01
## 183 0.0011387651 -5.134272e-06 2.333009e-04 0.074890993 9.403014e-01
## 184 0.1811649272 -3.677526e-05 3.805966e-03 2.937174843 3.312173e-03
## 185 0.0278668586 -1.551169e-03 1.063421e-01 0.090211284 9.281193e-01
## 186 0.2764354905 -3.582011e-04 2.957543e-02 1.609498755 1.075073e-01
## 187 -0.0517611994 -3.582011e-04 2.102251e-02 -0.354524443 7.229459e-01
## 188 -0.2091496179 -1.389114e-04 1.437483e-02 -1.743279900 8.128473e-02
## 189 0.1801558660 -2.630161e-03 5.456283e-01 0.247454040 8.045569e-01
## 190 2.9406378842 -8.200357e-03 8.417476e-01 3.214104592 1.308520e-03
## 191 0.0458199302 -3.677526e-05 2.524994e-03 0.912583654 3.614616e-01
## 192 -0.3474982525 -6.794537e-04 4.662139e-02 -1.606238377 1.082215e-01
## 193 0.1825313148 -7.566522e-03 4.408704e-01 0.286300241 7.746482e-01
## 194 2.3459324679 -1.648867e-02 1.113488e+00 2.238795951 2.516920e-02
## 195 -0.1272311792 -7.429089e-04 5.097220e-02 -0.560252203 5.753074e-01
## 196 0.4651777546 -2.369426e-03 1.952418e-01 1.058130167 2.899961e-01
## 197 0.1826559737 -3.668950e-04 2.518274e-02 1.153330771 2.487746e-01
## 198 0.0501709842 -2.006788e-04 2.076536e-02 0.349555848 7.266721e-01
## 199 0.0470304269 -5.262462e-05 5.446171e-03 0.637997473 5.234753e-01
## 200 0.4339718650 -3.526810e-03 2.063293e-01 0.963155270 3.354696e-01
## 201 -0.0004224427 -1.303040e-08 7.650170e-07 -0.482968568 6.291181e-01
## 202 -0.0670684812 -8.091964e-04 5.551661e-02 -0.281212929 7.785471e-01
## 203 -0.3033566819 -2.071992e-04 2.865595e-02 -1.790809706 7.332384e-02
## 204 0.0106712598 -1.194335e-05 1.652105e-03 0.262834655 7.926780e-01
## 205 0.1855754817 -5.164060e-04 4.263112e-02 0.901288997 3.674347e-01
## 206 -0.0054659490 -1.157499e-06 7.947685e-05 -0.612989853 5.398830e-01
## 207 -0.7866996990 -4.298817e-03 1.944992e-01 -1.774068714 7.605179e-02
## 208 0.0950508613 -2.737753e-04 1.116579e-02 0.902112032 3.669974e-01
## 209 0.8921033377 -6.000916e-03 4.095662e-01 1.403345800 1.605137e-01
## 210 -0.4806425283 -2.034613e-03 1.192094e-01 -1.386195909 1.656871e-01
## 211 0.7217317560 -2.729730e-03 5.662274e-01 0.962764076 3.356659e-01
## 212 -0.5055708487 -7.158127e-03 2.404183e-01 -1.016495244 3.093936e-01
## 213 0.5899044830 -3.115524e-03 1.411289e-01 1.578561186 1.144367e-01
## 214 0.3109544954 -2.369426e-03 2.446460e-01 0.633467741 5.264282e-01
## 215 -0.5059346335 -5.060820e-04 6.997096e-02 -1.910736745 5.603842e-02
## 216 -0.0062293555 -1.157499e-06 9.560483e-05 -0.636975147 5.241410e-01
## 217 0.9960024985 -9.778436e-03 1.002137e+00 1.004708118 3.150374e-01
## 218 0.2047891558 -3.963586e-03 5.461101e-01 0.282482842 7.775733e-01
## 219 0.1370113481 -7.429089e-04 7.683126e-02 0.496976712 6.192055e-01
## 220 -0.0675608268 -1.025053e-03 7.031068e-02 -0.250925358 8.018718e-01
## 221 -0.0106712496 -9.282025e-05 6.372693e-03 -0.132513369 8.945782e-01
## 222 0.0399157862 -3.677526e-05 3.037383e-03 0.724927972 4.684962e-01
## 223 -0.6308289776 -3.386882e-03 2.787960e-01 -1.188311806 2.347106e-01
## 224 -0.0325243920 -8.847331e-05 4.019886e-03 -0.511586823 6.089402e-01
## 225 0.5482669444 -2.055261e-03 2.837202e-01 1.033170318 3.015242e-01
## 226 0.5946420828 -3.249787e-03 2.224139e-01 1.267773688 2.048788e-01
## 227 0.0134435586 -1.389114e-04 1.147195e-02 0.126811911 8.990893e-01
## 228 0.6485724535 -8.159061e-03 6.684085e-01 0.803279832 4.218130e-01
## 229 0.0174049273 -6.221008e-06 4.271482e-04 0.842438325 3.995426e-01
## 230 10.8867808291 -3.629698e-02 4.838720e+00 4.965691999 6.845653e-07
## 231 -0.1477271113 -1.198876e-03 7.030181e-02 -0.552634589 5.805137e-01
## 232 0.2760902129 -1.039724e-03 8.578787e-02 0.946172894 3.440604e-01
## 233 0.0916099520 -4.138997e-04 2.429006e-02 0.590454098 5.548863e-01
## 234 4.0349278349 -2.111117e-02 4.298372e+00 1.956366117 5.042204e-02
## 235 0.4284590881 -6.920142e-03 7.112534e-01 0.516244616 6.056836e-01
## 236 -0.0527570244 -1.743560e-04 1.196966e-02 -0.480619924 6.307867e-01
## 237 0.0186396763 -3.227226e-04 1.465983e-02 0.156613346 8.755496e-01
## 238 -0.0514718871 -1.443451e-04 1.493704e-02 -0.419969927 6.745074e-01
## 239 5.3837371354 -1.843530e-02 1.872813e+00 3.947492103 7.897412e-05
## 240 0.7082190245 -4.425853e-03 3.639404e-01 1.181294022 2.374859e-01
## 241 -0.1434048843 -4.539561e-04 9.437891e-02 -0.465317629 6.417040e-01
## 242 0.1407074718 -6.794537e-04 3.479548e-02 0.757962700 4.484733e-01
## 243 -0.1020445599 -1.441459e-03 9.883174e-02 -0.320009705 7.489610e-01
## 244 0.0763988049 -3.582011e-04 3.705924e-02 0.398721615 6.900983e-01
## 245 0.1604630522 -1.102669e-03 6.466650e-02 0.635344886 5.252035e-01
## 246 -0.0315343638 -3.677526e-05 3.037383e-03 -0.571514871 5.676507e-01
## 247 -0.0433460156 -2.428747e-04 1.425575e-02 -0.361005602 7.180953e-01
## 248 0.4005995338 -1.039724e-03 6.097886e-02 1.626471622 1.038494e-01
## 249 0.0078048950 -1.157499e-06 1.197968e-04 0.713195910 4.757245e-01
## 250 0.3761369521 -1.533237e-03 1.051147e-01 1.164879277 2.440679e-01
## 251 0.0524850790 -2.358109e-04 1.618758e-02 0.414373273 6.786008e-01
## 252 2.3904606629 -7.774968e-03 5.296992e-01 3.295165079 9.836388e-04
## 253 -0.1431830816 -6.794537e-04 9.392505e-02 -0.464980986 6.419451e-01
## 254 0.6502573066 -1.369358e-03 1.129488e-01 1.938911875 5.251207e-02
## 255 0.0334788648 -8.847331e-05 5.193822e-03 0.465771988 6.413787e-01
## 256 -0.2053104527 -1.117884e-03 7.667105e-02 -0.737435831 4.608574e-01
## 257 0.6544873815 -3.815161e-03 1.947650e-01 1.491660682 1.357881e-01
## 258 1.2377756077 -6.338918e-03 4.324879e-01 1.891791926 5.851871e-02
## 259 1.4080503820 -1.094279e-02 6.354226e-01 1.780118770 7.505653e-02
## 260 0.3610767344 -1.825566e-03 1.251194e-01 1.025952999 3.049137e-01
## 261 0.0672429331 -4.936441e-05 1.424225e-03 1.783101667 7.456976e-02
## 262 -0.0909082729 -8.222372e-04 1.708827e-01 -0.217925667 8.274870e-01
## 263 0.0212696006 -2.071992e-04 9.413213e-03 0.221360754 8.248115e-01
## 264 1.6793770917 -7.158127e-03 1.478216e+00 1.387159923 1.653930e-01
## 265 0.0915765168 -1.102669e-03 7.562871e-02 0.337006949 7.361117e-01
## 266 0.0316914254 -2.158473e-05 1.106103e-03 0.953541834 3.403156e-01
## 267 0.5319491382 -7.554064e-04 7.812277e-02 1.905888941 5.666462e-02
## 268 -0.0554452642 -2.855496e-03 1.671679e-01 -0.128624836 8.976545e-01
## 269 1.8143701946 -6.186704e-03 6.363401e-01 2.282231007 2.247571e-02
## 270 -0.0781895105 -7.130628e-05 5.889204e-03 -1.017944145 3.087045e-01
## 271 0.0858967655 -3.141063e-03 2.586248e-01 0.175081199 8.610158e-01
## 272 0.3723565171 -3.115524e-03 1.823431e-01 0.879291741 3.792431e-01
## 273 0.2311088057 -1.627848e-03 2.248138e-01 0.490855055 6.235290e-01
## 274 0.5206242482 -3.386882e-03 2.317647e-01 1.088471036 2.763872e-01
## 275 0.0304511666 -1.357345e-05 1.121100e-03 0.909861650 3.628955e-01
## 276 0.2896845075 -8.091964e-04 5.551661e-02 1.232892653 2.176158e-01
## 277 0.3323681136 -6.920142e-03 4.718671e-01 0.493922675 6.213608e-01
## 278 0.7394537242 -1.025053e-03 1.059805e-01 2.274571765 2.293163e-02
## 279 1.0597219282 -2.143385e-03 1.468551e-01 2.770926333 5.589707e-03
## 280 1.3369343825 -5.114463e-03 7.038658e-01 1.599644164 1.096775e-01
## 281 -0.0085796168 -1.357345e-05 1.121100e-03 -0.255833937 7.980791e-01
## 282 0.6951568681 -2.254989e-03 1.544844e-01 1.774381524 7.600006e-02
## 283 1.2071124386 -1.725291e-03 1.422565e-01 3.205028831 1.350490e-03
## 284 0.0839419817 -2.254989e-03 1.544844e-01 0.219305582 8.264120e-01
## 285 -0.0571229123 -2.428747e-04 2.513055e-02 -0.358805358 7.197407e-01
## 286 0.4814439481 -1.627848e-03 1.342351e-01 1.318495506 1.873378e-01
## 287 -0.0563239986 -8.847331e-05 5.193822e-03 -0.780310083 4.352084e-01
## 288 0.6101649781 -3.413507e-03 2.809801e-01 1.157530163 2.470558e-01
## 289 0.0032634721 -6.302416e-04 4.324678e-02 0.018723503 9.850617e-01
## 290 -0.0078871779 -2.158473e-05 1.482033e-03 -0.204316081 8.381065e-01
## 291 0.5318255220 -4.046624e-04 8.413475e-02 1.834897437 6.652089e-02
## 292 -0.1435458067 -1.683789e-04 1.742368e-02 -1.086202684 2.773893e-01
## 293 -0.6796716361 -9.085123e-03 9.317348e-01 -0.694718155 4.872319e-01
## 294 0.0084223872 -6.750271e-05 4.634602e-03 0.124708438 9.007544e-01
## 295 -0.0218985182 -4.936441e-05 4.077109e-03 -0.342183032 7.322132e-01
## 296 2.4420856037 -9.269382e-03 1.270349e+00 2.174926786 2.963560e-02
## 297 -0.1146374928 -7.429089e-04 6.131582e-02 -0.459956527 6.455474e-01
## 298 1.2378963984 -1.094279e-02 6.354226e-01 1.566661577 1.171938e-01
## 299 0.1551474557 -1.171665e-04 6.878059e-03 1.872145358 6.118650e-02
## 300 0.2699164678 -4.046624e-04 3.341003e-02 1.478909339 1.391645e-01
## 301 -0.1652836760 -4.637367e-04 3.828510e-02 -0.842354402 3.995896e-01
## 302 0.3768838763 -5.252943e-03 4.315937e-01 0.581676224 5.607848e-01
## 303 0.4026392007 -5.060820e-04 5.235115e-02 1.761969769 7.807441e-02
## 304 0.0912336879 -3.582011e-04 2.458623e-02 0.584132108 5.591314e-01
## 305 0.2789658581 -6.794537e-04 3.986373e-02 1.400614378 1.613294e-01
## 306 0.2810426772 -1.627848e-03 1.115904e-01 0.846188469 3.974476e-01
## 307 -0.2512156141 -1.443451e-04 9.909687e-03 -2.522127585 1.166474e-02
## 308 1.5840736818 -7.360908e-03 6.035073e-01 2.048554495 4.050570e-02
## 309 0.1886348761 -2.737753e-04 1.402599e-02 1.595089637 1.106922e-01
## 310 2.0165941095 -9.544500e-03 7.808146e-01 2.292953250 2.185070e-02
## 311 0.0933532933 -1.369358e-03 9.389497e-02 0.309123963 7.572272e-01
## 312 0.6496181757 -1.039724e-03 8.578787e-02 2.221466492 2.631938e-02
## 313 0.2576450782 -5.719076e-04 3.924624e-02 1.303424249 1.924300e-01
## 314 0.5512876528 -3.815161e-03 1.947650e-01 1.257818387 2.084574e-01
## 315 0.1573882386 -1.725291e-03 1.782533e-01 0.376867199 7.062723e-01
## 316 0.0193356942 -5.134272e-06 3.525309e-04 1.030093080 3.029663e-01
## 317 0.9841617338 -3.526810e-03 2.063293e-01 2.174400703 2.967506e-02
## 318 0.0347049758 -3.582011e-04 2.957543e-02 0.203885209 8.384432e-01
## 319 0.1965021628 -1.266400e-03 6.481545e-02 0.776815659 4.372675e-01
## 320 0.3459788433 -3.145721e-04 3.254683e-02 1.919507859 5.492009e-02
## 321 0.8703621955 -2.509517e-03 2.590741e-01 1.714898495 8.636384e-02
## 322 -0.3550620556 -3.582011e-04 2.957543e-02 -2.062530431 3.915726e-02
## 323 0.2605413464 -1.646322e-03 8.422819e-02 0.903407185 3.663098e-01
## 324 0.0757602391 -6.302416e-04 3.227687e-02 0.425200286 6.706907e-01
## 325 1.5032240403 -9.499943e-03 9.738694e-01 1.532884175 1.253044e-01
## 326 -0.1160515004 -7.130628e-05 4.186104e-03 -1.792581062 7.303994e-02
## 327 -0.2332766701 -4.114842e-03 4.241189e-01 -0.351883137 7.249259e-01
## 328 0.0488361061 -1.743560e-04 8.933451e-03 0.518536295 6.040841e-01
## 329 -0.0572658362 -4.539561e-04 3.115568e-02 -0.321862631 7.475568e-01
## 330 -0.0001923652 -1.303040e-08 6.677532e-07 -0.235390634 8.139056e-01
## 331 0.5450364417 -6.794537e-04 4.662139e-02 2.527399948 1.149106e-02
## 332 0.0620009345 -2.055261e-03 1.408296e-01 0.170692375 8.644657e-01
## 333 -0.2302244101 -3.668950e-04 1.879492e-02 -1.676634674 9.361394e-02
## 334 0.6906887909 -7.554064e-04 5.182902e-02 3.037180716 2.388022e-03
## 335 7.6281242072 -3.859959e-02 1.686269e+00 5.904000677 3.547907e-09
## 336 -0.1072513203 -1.683789e-04 1.390511e-02 -0.908098759 3.638260e-01
## 337 0.4488324467 -3.249787e-03 4.480825e-01 0.675364815 4.994440e-01
## 338 1.9978029437 -5.114463e-03 7.038658e-01 2.387361049 1.696982e-02
## 339 -0.1531797452 -3.668950e-04 3.795837e-02 -0.784343113 4.328388e-01
## 340 0.2587988292 -5.610403e-04 3.850090e-02 1.321804826 1.862332e-01
## 341 -0.0086965931 -2.375820e-05 9.692086e-04 -0.278581608 7.805659e-01
## 342 0.4399925480 -2.034613e-03 1.677093e-01 1.079370185 2.804227e-01
## 343 0.0654039281 -5.719076e-04 3.355758e-02 0.360155091 7.187312e-01
## 344 0.0578878123 -2.813825e-04 1.441561e-02 0.484480809 6.280447e-01
## 345 -0.0021641021 -5.134272e-06 3.525309e-04 -0.114986689 9.084557e-01
## 346 0.0153348861 -1.743560e-04 1.804207e-02 0.115464217 9.080772e-01
## 347 -0.0335098007 -6.750271e-05 3.962827e-03 -0.531243415 5.952501e-01
## 348 2.0438766941 -3.843417e-03 1.561921e-01 5.181327774 2.203120e-07
## 349 0.4669563441 -1.594070e-02 8.038718e-01 0.538593563 5.901673e-01
## 350 -0.3801345242 -1.458847e-03 1.203193e-01 -1.091690867 2.749690e-01
## 351 -0.3827844312 -3.145721e-04 2.159256e-02 -2.602826298 9.245879e-03
## 352 0.5955109279 -3.009089e-03 2.059903e-01 1.318728192 1.872600e-01
## 353 1.4283043963 -2.879947e-03 1.971753e-01 3.223066733 1.268260e-03
## 354 0.1885165578 -2.879947e-03 1.971753e-01 0.431030224 6.664464e-01
## 355 0.6130540647 -6.914078e-04 3.139596e-02 3.463788930 5.326243e-04
## 356 4.6381973799 -9.085123e-03 7.435787e-01 5.389340342 7.071677e-08
## 357 -0.0129273542 -5.134272e-06 3.014324e-04 -0.744290016 4.567010e-01
## 358 0.8646324091 -1.551169e-03 1.602913e-01 2.163490327 3.050349e-02
## 359 -0.2341210745 -3.249787e-03 2.675476e-01 -0.446343696 6.553490e-01
## 360 0.1210645081 -2.486695e-03 1.703185e-01 0.299375381 7.646536e-01
## 361 -0.0160293634 -1.157499e-06 9.560483e-05 -1.639249243 1.011614e-01
## 362 2.4651138453 -5.637838e-03 2.547399e-01 4.895314377 9.814870e-07
## 363 0.3444636621 -5.719076e-04 4.721035e-02 1.587980819 1.122907e-01
## 364 1.5615374740 -6.338918e-03 3.697998e-01 2.578270603 9.929620e-03
## 365 0.9926180894 -7.554064e-04 4.431652e-02 4.718780054 2.372632e-06
## 366 0.4251332243 -2.855496e-03 1.955060e-01 0.967948454 3.330701e-01
## 367 0.2548022762 -2.391704e-03 1.400815e-01 0.687179872 4.919694e-01
## 368 0.1627563594 -6.302416e-04 4.324678e-02 0.785668838 4.320615e-01
## 369 -0.1658182630 -7.360908e-03 5.016991e-01 -0.223712750 8.229808e-01
## 370 0.0062599753 -1.700867e-06 1.404848e-04 0.528294336 5.972951e-01
## 371 0.1253903679 -1.122762e-04 4.579868e-03 1.854498040 6.366794e-02
## 372 -0.0540110340 -2.813825e-04 2.323457e-02 -0.352489943 7.244709e-01
## 373 -0.1049066696 -1.102669e-03 6.466650e-02 -0.408201320 6.831259e-01
## 374 -0.2733158319 -2.276724e-03 1.032192e-01 -0.843629526 3.988765e-01
## 375 0.0195590981 -2.158473e-05 1.782777e-03 0.463745061 6.428304e-01
## 376 5.7758244778 -9.313395e-03 7.620862e-01 6.626919101 3.427654e-11
## 377 -0.0721581712 -1.266400e-03 1.044673e-01 -0.219333881 8.263900e-01
## 378 1.3779295094 -5.252943e-03 3.587864e-01 2.309199763 2.093250e-02
## 379 0.2315625359 -1.948778e-03 2.012984e-01 0.520460467 6.027427e-01
## 380 -0.0151387618 -5.134272e-06 4.240689e-04 -0.734894220 4.624039e-01
## 381 -0.0399437957 -1.389114e-04 1.437483e-02 -0.331997608 7.398911e-01
## 382 0.1832773510 -4.046624e-04 2.777395e-02 1.102167990 2.703886e-01
## 383 0.0417170505 -3.677526e-05 3.037383e-03 0.757611405 4.486837e-01
## 384 0.0640103449 -1.357345e-05 1.404784e-03 1.708194936 8.760018e-02
## 385 0.1924013551 -1.102669e-03 9.097581e-02 0.641544877 5.211687e-01
## 386 -0.0004184062 -1.303040e-08 1.348600e-06 -0.360282458 7.186359e-01
## 387 0.8316100076 -1.175189e-02 9.592540e-01 0.861087261 3.891900e-01
## 388 0.0017088011 -1.303040e-08 7.650170e-07 1.953706367 5.073595e-02
## 389 0.2450056185 -1.102669e-03 1.139965e-01 0.728921189 4.660499e-01
## 390 0.6722792308 -2.143385e-03 1.255687e-01 1.903230286 5.701050e-02
## 391 -0.5387022915 -3.582011e-04 2.957543e-02 -3.130360877 1.745917e-03
## 392 1.1480950150 -6.150842e-03 4.197354e-01 1.781601361 7.481426e-02
## 393 0.2947605409 -3.145721e-04 2.159256e-02 2.008077880 4.463502e-02
## 394 -0.0734569652 -1.743560e-04 1.196966e-02 -0.669823026 5.029706e-01
## 395 0.1036445166 -2.006788e-04 1.028188e-02 1.024118508 3.057793e-01
## 396 -0.1551427700 -4.138997e-04 2.840769e-02 -0.918022699 3.586070e-01
## 397 0.0076184818 -1.157499e-06 9.560483e-05 0.779281727 4.358138e-01
## 398 0.0557301802 -7.554064e-04 6.234652e-02 0.226220280 8.210301e-01
## 399 1.0088905798 -8.816757e-03 7.218095e-01 1.197875302 2.309656e-01
## 400 0.0313733197 -1.627848e-03 1.115904e-01 0.098790659 9.213045e-01
## 401 0.0340132903 -2.375820e-05 2.458830e-03 0.686416416 4.924506e-01
## 402 0.2572523320 -6.914078e-04 9.557640e-02 0.834352674 4.040823e-01
## 403 0.0128125274 -2.158473e-05 1.482033e-03 0.333377973 7.388490e-01
## 404 -0.1954769625 -1.198876e-03 8.221931e-02 -0.677543046 4.980615e-01
## 405 0.6942758968 -2.630161e-03 2.714962e-01 1.337495578 1.810609e-01
## 406 0.5251999304 -4.268931e-03 2.918648e-01 0.980052929 3.270600e-01
## 407 0.2328036423 -5.060820e-04 4.177927e-02 1.141438231 2.536876e-01
## 408 -0.0423069838 -2.143385e-03 2.213571e-01 -0.085366181 9.319703e-01
## 409 -0.1230663737 -8.847331e-05 6.074274e-03 -1.577901421 1.145883e-01
## 410 1.7036277600 -3.697281e-03 3.812405e-01 2.765137431 5.689882e-03
## 411 -0.2864328032 -4.046624e-04 2.777395e-02 -1.716287050 8.610952e-02
## 412 -1.6239586546 -1.001521e-02 5.080969e-01 -2.264201389 2.356173e-02
## 413 0.0321484520 -6.750271e-05 5.575087e-03 0.431464609 6.661306e-01
## 414 -0.0373633963 -5.262462e-05 3.613156e-03 -0.620713079 5.347884e-01
## 415 0.4871708854 -3.526810e-03 1.596936e-01 1.227920544 2.194768e-01
## 416 0.2386945536 -1.122762e-04 9.272541e-03 2.479975293 1.313915e-02
## attr(,"call")
## localmoran(x = Ba_shape$IDHM, listw = vizinhanca, zero.policy = T,
## alternative = "two.sided")
## attr(,"class")
## [1] "localmoran" "matrix" "array"
## attr(,"quadr")
## mean median pysal
## 1 High-Low High-High High-Low
## 2 Low-Low Low-Low Low-Low
## 3 Low-Low Low-Low Low-Low
## 4 Low-Low Low-Low Low-Low
## 5 Low-Low Low-Low Low-Low
## 6 Low-High Low-High Low-High
## 7 Low-High Low-High Low-High
## 8 High-High High-High High-High
## 9 High-High High-High High-High
## 10 Low-Low Low-High Low-High
## 11 High-High High-High High-High
## 12 High-High High-High High-High
## 13 Low-Low Low-Low Low-Low
## 14 Low-Low Low-Low Low-Low
## 15 Low-Low Low-Low Low-Low
## 16 Low-High Low-High Low-High
## 17 High-High High-High High-High
## 18 Low-High Low-High Low-High
## 19 Low-Low High-Low Low-Low
## 20 Low-High Low-High Low-High
## 21 High-Low High-Low High-Low
## 22 Low-Low Low-Low Low-Low
## 23 Low-High Low-High Low-High
## 24 Low-Low Low-Low Low-Low
## 25 Low-High Low-High Low-High
## 26 Low-Low Low-Low Low-Low
## 27 Low-High Low-High Low-High
## 28 Low-Low Low-Low Low-Low
## 29 Low-High Low-High Low-High
## 30 Low-High Low-High Low-High
## 31 Low-Low Low-High Low-High
## 32 Low-Low Low-Low Low-Low
## 33 Low-Low Low-Low Low-Low
## 34 Low-Low Low-Low Low-Low
## 35 Low-Low Low-Low Low-Low
## 36 Low-Low Low-High Low-High
## 37 High-High High-High High-High
## 38 Low-High Low-High Low-High
## 39 High-High High-High High-High
## 40 High-High High-High High-High
## 41 High-Low High-Low High-Low
## 42 High-High High-High High-High
## 43 High-High High-High High-High
## 44 Low-Low Low-Low Low-Low
## 45 Low-Low Low-Low Low-Low
## 46 Low-Low Low-Low Low-Low
## 47 Low-Low Low-Low Low-Low
## 48 High-Low High-Low High-Low
## 49 Low-Low Low-Low Low-Low
## 50 High-High High-High High-High
## 51 Low-Low Low-Low Low-Low
## 52 High-Low High-Low High-Low
## 53 Low-High Low-High Low-High
## 54 High-Low High-Low High-Low
## 55 Low-Low High-Low Low-Low
## 56 Low-Low Low-Low Low-Low
## 57 High-Low High-Low High-Low
## 58 High-High High-High High-High
## 59 Low-Low Low-Low Low-Low
## 60 Low-Low Low-Low Low-Low
## 61 Low-High Low-High Low-High
## 62 High-High High-High High-High
## 63 High-High High-High High-High
## 64 Low-Low Low-Low Low-Low
## 65 Low-Low Low-Low Low-Low
## 66 High-High High-High High-High
## 67 Low-Low Low-Low Low-Low
## 68 High-Low High-Low High-Low
## 69 Low-Low Low-Low Low-Low
## 70 Low-Low Low-Low Low-Low
## 71 High-High High-High High-High
## 72 Low-Low Low-Low Low-Low
## 73 Low-Low Low-Low Low-Low
## 74 Low-High Low-High Low-High
## 75 Low-High Low-High Low-High
## 76 Low-Low Low-Low Low-Low
## 77 Low-Low High-Low Low-Low
## 78 Low-High Low-High Low-High
## 79 High-High High-High High-High
## 80 Low-High High-High Low-High
## 81 High-Low High-Low High-Low
## 82 Low-Low Low-Low Low-Low
## 83 Low-Low Low-Low Low-Low
## 84 High-Low High-Low High-Low
## 85 High-Low High-Low High-Low
## 86 Low-Low Low-Low Low-Low
## 87 High-High High-High High-High
## 88 Low-High Low-High Low-High
## 89 Low-High Low-High Low-High
## 90 Low-High Low-High Low-High
## 91 High-Low High-High High-High
## 92 Low-High Low-High Low-High
## 93 High-High High-High High-High
## 94 Low-High Low-High Low-High
## 95 High-High High-High High-High
## 96 High-Low High-High High-Low
## 97 Low-Low Low-Low Low-Low
## 98 High-Low High-Low High-Low
## 99 High-High High-High High-High
## 100 High-High High-High High-High
## 101 High-High High-High High-High
## 102 High-High High-High High-High
## 103 High-High High-High High-High
## 104 High-High High-High High-High
## 105 Low-Low Low-Low Low-Low
## 106 Low-Low Low-Low Low-Low
## 107 Low-Low Low-Low Low-Low
## 108 Low-High High-High Low-High
## 109 Low-Low Low-Low Low-Low
## 110 High-High High-High High-High
## 111 Low-Low Low-Low Low-Low
## 112 High-High High-High High-High
## 113 Low-High High-High Low-High
## 114 High-Low High-Low High-Low
## 115 Low-Low Low-Low Low-Low
## 116 High-Low High-High High-High
## 117 High-High High-High High-High
## 118 Low-High Low-High Low-High
## 119 Low-Low Low-Low Low-Low
## 120 High-High High-High High-High
## 121 Low-High High-High Low-High
## 122 High-High High-High High-High
## 123 High-High High-High High-High
## 124 Low-High Low-High Low-High
## 125 High-Low High-High High-High
## 126 Low-Low Low-Low Low-Low
## 127 Low-Low Low-Low Low-Low
## 128 High-High High-High High-High
## 129 Low-Low Low-Low Low-Low
## 130 Low-Low Low-Low Low-Low
## 131 High-High High-High High-High
## 132 Low-Low Low-High Low-Low
## 133 Low-Low Low-High Low-High
## 134 Low-High Low-High Low-High
## 135 High-Low High-Low High-Low
## 136 High-Low High-Low High-Low
## 137 High-High High-High High-High
## 138 Low-Low Low-Low Low-Low
## 139 Low-High High-High Low-High
## 140 Low-High Low-High Low-High
## 141 High-High High-High High-High
## 142 Low-Low Low-Low Low-Low
## 143 High-High High-High High-High
## 144 Low-High Low-High Low-High
## 145 Low-Low Low-Low Low-Low
## 146 Low-Low Low-Low Low-Low
## 147 High-High High-High High-High
## 148 High-Low High-Low High-Low
## 149 Low-Low High-Low Low-Low
## 150 Low-Low Low-Low Low-Low
## 151 High-Low High-High High-High
## 152 Low-High Low-High Low-High
## 153 Low-Low Low-Low Low-Low
## 154 Low-Low Low-Low Low-Low
## 155 High-High High-High High-High
## 156 Low-Low Low-Low Low-Low
## 157 Low-Low Low-High Low-Low
## 158 High-High High-High High-High
## 159 High-Low High-Low High-Low
## 160 High-High High-High High-High
## 161 High-High High-High High-High
## 162 Low-Low Low-Low Low-Low
## 163 Low-Low Low-Low Low-Low
## 164 High-High High-High High-High
## 165 Low-Low Low-Low Low-Low
## 166 Low-High Low-High Low-High
## 167 High-Low High-Low High-Low
## 168 Low-Low Low-Low Low-Low
## 169 Low-Low High-High Low-Low
## 170 Low-Low Low-Low Low-Low
## 171 Low-Low Low-Low Low-Low
## 172 High-High High-High High-High
## 173 High-Low High-Low High-Low
## 174 High-High High-High High-High
## 175 High-High High-High High-High
## 176 High-Low High-Low High-Low
## 177 High-High High-High High-High
## 178 Low-High Low-High Low-High
## 179 Low-Low Low-Low Low-Low
## 180 Low-Low Low-Low Low-Low
## 181 Low-Low Low-Low Low-Low
## 182 High-High High-High High-High
## 183 Low-Low Low-Low Low-Low
## 184 Low-Low High-Low Low-Low
## 185 High-High High-High High-High
## 186 High-Low High-High High-High
## 187 Low-Low Low-Low Low-Low
## 188 Low-High Low-High Low-High
## 189 Low-High Low-High Low-High
## 190 High-High High-High High-High
## 191 High-High High-High High-High
## 192 High-High High-High High-High
## 193 Low-High Low-High Low-High
## 194 High-High High-High High-High
## 195 Low-Low Low-Low Low-Low
## 196 Low-High Low-High Low-High
## 197 Low-Low Low-Low Low-Low
## 198 High-High High-High High-High
## 199 Low-Low Low-Low Low-Low
## 200 High-High High-High High-High
## 201 Low-Low Low-Low Low-Low
## 202 High-Low High-Low High-Low
## 203 Low-High Low-High Low-High
## 204 High-Low High-Low High-Low
## 205 Low-Low High-Low Low-Low
## 206 High-High High-High High-High
## 207 Low-High High-High Low-High
## 208 High-Low High-Low High-Low
## 209 Low-Low Low-Low Low-Low
## 210 High-High High-High High-High
## 211 Low-High Low-High Low-High
## 212 Low-Low Low-Low Low-Low
## 213 High-Low High-Low High-Low
## 214 Low-Low Low-Low Low-Low
## 215 Low-Low Low-Low Low-Low
## 216 Low-High Low-High Low-High
## 217 Low-High High-High Low-High
## 218 High-High High-High High-High
## 219 Low-Low Low-Low Low-Low
## 220 Low-Low Low-Low Low-Low
## 221 Low-High Low-High Low-High
## 222 High-Low High-Low High-Low
## 223 High-High High-High High-High
## 224 Low-High Low-High Low-High
## 225 Low-High Low-High Low-High
## 226 High-High High-High High-High
## 227 Low-Low Low-Low Low-Low
## 228 Low-Low Low-Low Low-Low
## 229 Low-Low Low-Low Low-Low
## 230 High-High High-High High-High
## 231 High-High High-High High-High
## 232 High-Low High-Low High-Low
## 233 High-High High-High High-High
## 234 High-High High-High High-High
## 235 High-High High-High High-High
## 236 Low-Low Low-Low Low-Low
## 237 High-Low High-Low High-Low
## 238 High-High High-High High-High
## 239 High-Low High-Low High-Low
## 240 High-High High-High High-High
## 241 Low-Low Low-Low Low-Low
## 242 Low-High Low-High Low-High
## 243 Low-Low Low-Low Low-Low
## 244 Low-High Low-High Low-High
## 245 Low-Low Low-Low Low-Low
## 246 Low-Low Low-Low Low-Low
## 247 High-Low High-Low High-Low
## 248 High-Low High-Low High-Low
## 249 High-High High-High High-High
## 250 Low-Low High-Low Low-Low
## 251 Low-Low Low-Low Low-Low
## 252 Low-Low Low-Low Low-Low
## 253 High-High High-High High-High
## 254 Low-High Low-High Low-High
## 255 High-High High-High High-High
## 256 Low-Low Low-Low Low-Low
## 257 High-Low High-Low High-Low
## 258 Low-Low Low-Low Low-Low
## 259 Low-Low Low-Low Low-Low
## 260 Low-Low Low-Low Low-Low
## 261 Low-Low Low-Low Low-Low
## 262 Low-Low Low-Low Low-Low
## 263 High-Low High-Low High-Low
## 264 High-High High-High High-High
## 265 High-High High-High High-High
## 266 Low-Low Low-Low Low-Low
## 267 Low-Low High-Low Low-Low
## 268 High-High High-High High-High
## 269 Low-High Low-High Low-High
## 270 High-High High-High High-High
## 271 High-Low High-Low High-Low
## 272 High-High High-High High-High
## 273 Low-Low Low-Low Low-Low
## 274 Low-Low Low-Low Low-Low
## 275 Low-Low Low-Low Low-Low
## 276 High-High High-High High-High
## 277 Low-Low Low-Low Low-Low
## 278 Low-Low Low-Low Low-Low
## 279 Low-Low Low-Low Low-Low
## 280 Low-Low Low-Low Low-Low
## 281 High-High High-High High-High
## 282 High-Low High-Low High-Low
## 283 Low-Low Low-Low Low-Low
## 284 Low-Low Low-Low Low-Low
## 285 Low-Low Low-Low Low-Low
## 286 High-Low High-Low High-Low
## 287 Low-Low Low-Low Low-Low
## 288 Low-High Low-High Low-High
## 289 High-High High-High High-High
## 290 High-Low High-High High-High
## 291 Low-High High-High Low-High
## 292 Low-Low Low-Low Low-Low
## 293 Low-High Low-High Low-High
## 294 High-Low High-Low High-Low
## 295 Low-Low Low-Low Low-Low
## 296 Low-High Low-High Low-High
## 297 Low-Low Low-Low Low-Low
## 298 Low-High Low-High Low-High
## 299 Low-Low Low-Low Low-Low
## 300 High-High High-High High-High
## 301 Low-Low Low-Low Low-Low
## 302 High-Low High-Low High-Low
## 303 Low-Low Low-Low Low-Low
## 304 Low-Low Low-Low Low-Low
## 305 Low-Low Low-Low Low-Low
## 306 Low-Low Low-Low Low-Low
## 307 Low-Low Low-Low Low-Low
## 308 High-Low High-Low High-Low
## 309 High-High High-High High-High
## 310 Low-Low Low-Low Low-Low
## 311 High-High High-High High-High
## 312 High-High High-High High-High
## 313 High-High High-High High-High
## 314 High-High High-High High-High
## 315 Low-Low Low-Low Low-Low
## 316 Low-Low Low-Low Low-Low
## 317 Low-Low High-Low Low-Low
## 318 Low-Low Low-Low Low-Low
## 319 Low-Low Low-Low Low-Low
## 320 Low-Low Low-Low Low-Low
## 321 Low-Low Low-Low Low-Low
## 322 High-High High-High High-High
## 323 Low-High Low-High Low-High
## 324 High-High High-High High-High
## 325 High-High High-High High-High
## 326 Low-Low Low-Low Low-Low
## 327 High-Low High-Low High-Low
## 328 Low-High Low-High Low-High
## 329 High-High High-High High-High
## 330 Low-High Low-High Low-High
## 331 High-Low High-Low High-Low
## 332 Low-Low Low-Low Low-Low
## 333 High-High High-High High-High
## 334 High-Low High-Low High-Low
## 335 High-High High-High High-High
## 336 High-High High-High High-High
## 337 Low-High Low-High Low-High
## 338 Low-Low Low-Low Low-Low
## 339 High-High High-High High-High
## 340 High-Low High-Low High-Low
## 341 Low-Low Low-Low Low-Low
## 342 High-Low High-Low High-Low
## 343 Low-Low Low-Low Low-Low
## 344 High-High High-High High-High
## 345 High-High High-High High-High
## 346 Low-High High-High Low-High
## 347 High-High High-High High-High
## 348 Low-High Low-High Low-High
## 349 High-High High-High High-High
## 350 High-High High-High High-High
## 351 High-Low High-Low High-Low
## 352 Low-High Low-High Low-High
## 353 High-High High-High High-High
## 354 High-High High-High High-High
## 355 High-High High-High High-High
## 356 High-High High-High High-High
## 357 High-High High-High High-High
## 358 Low-High High-High Low-High
## 359 High-High High-High High-High
## 360 Low-High Low-High Low-High
## 361 Low-Low Low-Low Low-Low
## 362 Low-High High-High Low-High
## 363 High-High High-High High-High
## 364 High-High High-High High-High
## 365 Low-Low Low-Low Low-Low
## 366 High-High High-High High-High
## 367 Low-Low Low-Low Low-Low
## 368 High-High High-High High-High
## 369 High-High High-High High-High
## 370 High-Low High-Low High-Low
## 371 High-High High-High High-High
## 372 Low-Low Low-Low Low-Low
## 373 High-Low High-Low High-Low
## 374 Low-High Low-High Low-High
## 375 High-Low High-Low High-Low
## 376 Low-Low High-Low Low-Low
## 377 High-High High-High High-High
## 378 Low-High Low-High Low-High
## 379 Low-Low Low-Low Low-Low
## 380 High-High High-High High-High
## 381 Low-High High-High Low-High
## 382 Low-High Low-High Low-High
## 383 Low-Low Low-Low Low-Low
## 384 High-High High-High High-High
## 385 High-High High-High High-High
## 386 Low-Low Low-Low Low-Low
## 387 High-Low High-Low High-Low
## 388 High-High High-High High-High
## 389 High-High High-High High-High
## 390 Low-Low Low-Low Low-Low
## 391 Low-Low Low-Low Low-Low
## 392 Low-High Low-High Low-High
## 393 Low-Low Low-Low Low-Low
## 394 Low-Low Low-Low Low-Low
## 395 High-Low High-Low High-Low
## 396 Low-Low Low-Low Low-Low
## 397 High-Low High-Low High-Low
## 398 Low-Low High-Low Low-Low
## 399 High-High High-High High-High
## 400 Low-Low Low-Low Low-Low
## 401 Low-Low Low-Low Low-Low
## 402 High-High High-High High-High
## 403 High-High High-High High-High
## 404 Low-Low High-Low Low-Low
## 405 High-Low High-Low High-Low
## 406 High-High High-High High-High
## 407 Low-Low Low-Low Low-Low
## 408 Low-Low Low-Low Low-Low
## 409 Low-High Low-High Low-High
## 410 Low-High Low-High Low-High
## 411 High-High High-High High-High
## 412 Low-High Low-High Low-High
## 413 High-Low High-Low High-Low
## 414 Low-Low Low-Low Low-Low
## 415 High-Low High-Low High-Low
## 416 Low-Low Low-Low Low-Low
## 417 Low-Low Low-Low Low-Low
indice de moran global para para detecar a presença de dependencias
antes da regressão espacial
Mglobal1 <- moran.test(Ba_shape$IDHM, nb2listw(Ne.nb), alternative = "two.sided")
head(Ba_shape.mloc1)
## Ii E.Ii Var.Ii Z.Ii Pr(z != E(Ii))
## 0 -0.001272182 -0.0001171665 0.008044022 -0.01287808 0.98972506
## 1 0.037910379 -0.0005060820 0.105210572 0.11843707 0.90572135
## 2 0.216727888 -0.0002006788 0.020765359 1.50538308 0.13222562
## 3 0.979391381 -0.0032497872 0.267547587 1.89974117 0.05746709
## 4 0.634438250 -0.0027297299 0.139505292 1.70591977 0.08802302
## 5 -0.034595336 -0.0001389114 0.009536702 -0.35283455 0.72421248
Gráfico de espalhamento de moran para IDH
moran.plot(Indicadores$IDHM, listw=vizinhanca,zero.policy=T,
labels=as.character(Indicadores$Município),
xlab="IDHM",
ylab="Spatial Lag",
pch=16, col="black",cex=.5, quiet=TRUE)

Gráfico de espalhamento de moran para theil
moran.plot(Indicadores$THEIL, listw=vizinhanca,zero.policy=T,
xlab="Theil",
ylab="Spatial Lag",
pch=16, col="black",cex=.5, quiet=TRUE)

Gráfico de espalhamento de moran para Gini
moran.plot(Indicadores$GINI, listw=vizinhanca,zero.policy=T,
xlab="Gini",
ylab="Spatial Lag",
pch=16, col="black",cex=.5, quiet=TRUE)

LISA MAP Independentes para IDH
LISA1 <- classIntervals(Ba_shape.mloc1[,5], style="fixed",
intervalClosure = c( "right"),
fixedBreaks=c(0, 0.001, 0.01, 0.05, by=1))
colors <- c("red", "blue", "lightpink", "skyblue2", "white")
COL_Lisa1 <- findColours(LISA1, colors)
# window(6,4) # quando quiser salva uma imagem com boa qualidade
#par(mar=c(0,0,0,0))
plot(Ba_shape, col=COL_Lisa1,border=NA)
#title("LISA Map")
TB5 <- attr(COL_Lisa1, "table")
legtext <- paste(names(TB5))
legend("bottomright", fill=attr(COL_Lisa1, "palette"),
legend=c("0.1%", "1.0%", "5.0%", "N.sgf"), bty="n", cex=0.8)
plot(Ba_shape,add=TRUE,lwd=1)
scalebar(500, xy=c(-47.97892, -17.23938),
type="bar", below="km",
cex=0.8, lonlat=T,divs=4)
compassRose(-48.45524, -14.00634,cex=0.8)
title("Lisa MAP para o IDH dos municípios do estado da Bahia ")

LISA MAP Independentes para theil
LISA2 <- classIntervals(Ba_shape.mloc2[,5], style="fixed",
intervalClosure = c( "right"),
fixedBreaks=c(0, 0.001, 0.01, 0.05, by=1))
colors <- c("red", "blue", "lightpink", "skyblue2", "white")
COL_Lisa2 <- findColours(LISA2, colors)
# window(6,4) # quando quiser salva uma imagem com boa qualidade
#par(mar=c(0,0,0,0))
plot(Ba_shape, col=COL_Lisa2,border=NA)
#title("LISA Map")
TB5 <- attr(COL_Lisa2, "table")
legtext <- paste(names(TB5))
legend("bottomright", fill=attr(COL_Lisa2, "palette"),
legend=c("0.1%", "1.0%", "5.0%", "N.sgf"), bty="n", cex=0.8)
plot(Ba_shape,add=TRUE,lwd=1)
scalebar(500, xy=c(-47.97892, -17.23938),
type="bar", below="km",
cex=0.8, lonlat=T,divs=4)
compassRose(-49.45524, -14.00634,cex=0.6)
title("Lisa MAP para o indice de THEIL dos municípios do estado da Bahia ")

LISA MAP Independentes para Gini
LISA3 <- classIntervals(Ba_shape.mloc3[,5], style="fixed",
intervalClosure = c( "right"),
fixedBreaks=c(0, 0.001, 0.01, 0.05, by=1))
colors <- c("red", "blue", "lightpink", "skyblue2", "white")
COL_Lisa3 <- findColours(LISA3, colors)
# window(6,4) # quando quiser salva uma imagem com boa qualidade
#par(mar=c(0,0,0,0))
plot(Ba_shape, col=COL_Lisa3,border=NA)
#title("LISA Map")
TB5 <- attr(COL_Lisa3, "table")
legtext <- paste(names(TB5))
legend("bottomright", fill=attr(COL_Lisa3, "palette"),
legend=c("0.1%", "1.0%", "5.0%", "N.sgf"), bty="n", cex=0.8)
plot(Ba_shape,add=TRUE,lwd=1)
scalebar(500, xy=c(-47.97892, -17.23938),
type="bar", below="km",
cex=0.8, lonlat=T,divs=4)
compassRose(-49.45524, -14.00634,cex=0.6)
title("Lisa MAP para o indice de GINI dos municípios do estado da Bahia")
