Problem 2

Carefully explain the differences between the KNN classifier and KNN regression methods.

KNN (k-nearest neighbor) Classifier is an algorithm that uses proximity to make classifications about the grouping of an individual data point. KNN regression methods approximate the association between independent variables and the continuous outcome by averaging the observations in the same neighborhood. The key difference is that the KNN classification attempts to predict the class in which the output variable belongs (used to solve classification problems) and the KNN regression tries to predict the value of the output (used to solve quantitative problems)

Problem 9

This question involves the use of multiple linear regression on the Auto data set.

(a) Produce a scatterplot matrix which includes all of the variables in the data set.

(b) Compute the matrix of correlations between the variables using the function cor(). You will need to exclude the name variable, which is qualitative.

cor(subset(Auto, select = -name))
##                     mpg  cylinders displacement horsepower     weight
## mpg           1.0000000 -0.7776175   -0.8051269 -0.7784268 -0.8322442
## cylinders    -0.7776175  1.0000000    0.9508233  0.8429834  0.8975273
## displacement -0.8051269  0.9508233    1.0000000  0.8972570  0.9329944
## horsepower   -0.7784268  0.8429834    0.8972570  1.0000000  0.8645377
## weight       -0.8322442  0.8975273    0.9329944  0.8645377  1.0000000
## acceleration  0.4233285 -0.5046834   -0.5438005 -0.6891955 -0.4168392
## year          0.5805410 -0.3456474   -0.3698552 -0.4163615 -0.3091199
## origin        0.5652088 -0.5689316   -0.6145351 -0.4551715 -0.5850054
##              acceleration       year     origin
## mpg             0.4233285  0.5805410  0.5652088
## cylinders      -0.5046834 -0.3456474 -0.5689316
## displacement   -0.5438005 -0.3698552 -0.6145351
## horsepower     -0.6891955 -0.4163615 -0.4551715
## weight         -0.4168392 -0.3091199 -0.5850054
## acceleration    1.0000000  0.2903161  0.2127458
## year            0.2903161  1.0000000  0.1815277
## origin          0.2127458  0.1815277  1.0000000

Use the lm() function to perform a multiple linear regression with mpg as the response and all other variables except name as the predictors. Use the summary() function to print the results.

lm.fit11 <- lm(mpg~ . -name, data = Auto)
summary(lm.fit11)
## 
## Call:
## lm(formula = mpg ~ . - name, data = Auto)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.5903 -2.1565 -0.1169  1.8690 13.0604 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -17.218435   4.644294  -3.707  0.00024 ***
## cylinders     -0.493376   0.323282  -1.526  0.12780    
## displacement   0.019896   0.007515   2.647  0.00844 ** 
## horsepower    -0.016951   0.013787  -1.230  0.21963    
## weight        -0.006474   0.000652  -9.929  < 2e-16 ***
## acceleration   0.080576   0.098845   0.815  0.41548    
## year           0.750773   0.050973  14.729  < 2e-16 ***
## origin         1.426141   0.278136   5.127 4.67e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.328 on 384 degrees of freedom
## Multiple R-squared:  0.8215, Adjusted R-squared:  0.8182 
## F-statistic: 252.4 on 7 and 384 DF,  p-value: < 2.2e-16

Comment on the output. For instance: i. Is there a relationship between the predictors and the response? Yes. There is a relationship between the predictors and the response. The p-value that relates to the f-statistic has a small value, so we reject the Null Hypothesis.

  1. Which predictors appear to have a statistically significant relationship to the response? The p-values of displacement, weight, year, and origin in association with the t-statisticm it appears that these predictors have a statistically significant relationship.

  2. What does the coefficient for the year variable suggest? The coefficient of the yeear variable suggests that for every year, the mpg increases by 0.750773. Each year, cars become more fuel efficient.

(d) Use the plot() function to produce diagnostic plots of the linear regression fit. Comment on any problems you see with the fit. Do the residual plots suggest any unusually large outliers? Does the leverage plot identify any observations with unusually high leverage?

Looking at the plots, we can see that the relationship is non-linear. The right end of the data on the “Normal Q-Q” plot has multiple points that deviate from the normal distribution line. There appear to be a few outliers in the standardized residuals/Leverage plot.

(e) Use the * and : symbols to fit linear regression models with interaction effects. Do any interactions appear to be statistically significant?

lm.fit12 <- lm(mpg ~ cylinders * displacement + displacement * weight, data = Auto[, 1:8])
summary(lm.fit12)
## 
## Call:
## lm(formula = mpg ~ cylinders * displacement + displacement * 
##     weight, data = Auto[, 1:8])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -13.2934  -2.5184  -0.3476   1.8399  17.7723 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             5.262e+01  2.237e+00  23.519  < 2e-16 ***
## cylinders               7.606e-01  7.669e-01   0.992    0.322    
## displacement           -7.351e-02  1.669e-02  -4.403 1.38e-05 ***
## weight                 -9.888e-03  1.329e-03  -7.438 6.69e-13 ***
## cylinders:displacement -2.986e-03  3.426e-03  -0.872    0.384    
## displacement:weight     2.128e-05  5.002e-06   4.254 2.64e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.103 on 386 degrees of freedom
## Multiple R-squared:  0.7272, Adjusted R-squared:  0.7237 
## F-statistic: 205.8 on 5 and 386 DF,  p-value: < 2.2e-16

Looking at the data, it appears that there is a statistically significant interaction between displacement and weight.

Problem 10

This question should be answered using the Carseats data set.

(a) Fit a multiple regression model to predict Sales using Price, Urban, and US.

lm.fit13 <- lm(Sales ~ Price+Urban+US, data = Carseats)
summary(lm.fit13)
## 
## Call:
## lm(formula = Sales ~ Price + Urban + US, data = Carseats)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9206 -1.6220 -0.0564  1.5786  7.0581 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.043469   0.651012  20.036  < 2e-16 ***
## Price       -0.054459   0.005242 -10.389  < 2e-16 ***
## UrbanYes    -0.021916   0.271650  -0.081    0.936    
## USYes        1.200573   0.259042   4.635 4.86e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.472 on 396 degrees of freedom
## Multiple R-squared:  0.2393, Adjusted R-squared:  0.2335 
## F-statistic: 41.52 on 3 and 396 DF,  p-value: < 2.2e-16

##(b) Provide an interpretation of each coefficient in the model. Be careful—some of the variables in the model are qualitative!

Price: It appears that there is a relationship between Sales and Price due to the low p-value and t-statistic. The coefficient shows a negative relationship between price and sales; This means that sales decrease when price increases.

Urban: The coefficient of Urban indjicates that, on average, the sales in urban location are 21.92 units less than they are in rural locations.

US: The data indicates that there seems to be relationship between the amount of sales and whether the store is in the US or not. The sales in a US store are 1200.57 unis more per unit than compared to a store outside of the US.

##(c) Write out the model in equation form, being careful to handle the qualitative variables properly.

Sales = 13.043469 - 0.054459Price - 0.0219162Urban + 1.200573*US

(d) For which of the predictors can you reject the null hypothesis H0 : βj = 0?

We can reject the null hypothesis for the predictors Price and US.

(e) On the basis of your response to the previous question, fit a smaller model that only uses the predictors for which there is evidence of association with the outcome.

lm.fit14 <-  lm(Sales ~ Price + US, data = Carseats)
summary(lm.fit14)
## 
## Call:
## lm(formula = Sales ~ Price + US, data = Carseats)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9269 -1.6286 -0.0574  1.5766  7.0515 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.03079    0.63098  20.652  < 2e-16 ***
## Price       -0.05448    0.00523 -10.416  < 2e-16 ***
## USYes        1.19964    0.25846   4.641 4.71e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.469 on 397 degrees of freedom
## Multiple R-squared:  0.2393, Adjusted R-squared:  0.2354 
## F-statistic: 62.43 on 2 and 397 DF,  p-value: < 2.2e-16

(f) How well do the models in (a) and (e) fit the data?

The RSE and R-Squared indicate that the nodel (e) fits the data slightly better

(g) Using the model from (e), obtain 95 % confidence intervals for the coefficient(s).

confint(lm.fit14)
##                   2.5 %      97.5 %
## (Intercept) 11.79032020 14.27126531
## Price       -0.06475984 -0.04419543
## USYes        0.69151957  1.70776632

(h) Is there evidence of outliers or high leverage observations in the model from (e)?

par(mfrow=c(2,2))
plot(lm.fit14)

Problem 12

This problem involves simple linear regression without an intercept.

(a) Recall that the coefficient estimate βˆ for the linear regression of Y onto X without an intercept is given by (3.38). Under what circumstance is the coefficient estimate for the regression of X onto Y the same as the coefficient estimate for the regression of Y onto X?

The coefficient estimates are the same when the coefficient is 1, and there is no noise. Otherwise, they would be different.

(b) Generate an example in R with n = 100 observations in which the coefficient estimate for the regression of X onto Y is different from the coefficient estimate for the regression of Y onto X.

set.seed(1)
x <- 1:100
sum(x^2)
## [1] 338350
y <-  2 * x + rnorm(100, sd = 0.1)
sum(y^2)
## [1] 1353606
lm.fity <- lm(y ~ x + 0)
lm.fitx <- lm(x ~ y + 0)
summary(lm.fity)
## 
## Call:
## lm(formula = y ~ x + 0)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.223590 -0.062560  0.004426  0.058507  0.230926 
## 
## Coefficients:
##    Estimate Std. Error t value Pr(>|t|)    
## x 2.0001514  0.0001548   12920   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.09005 on 99 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:      1 
## F-statistic: 1.669e+08 on 1 and 99 DF,  p-value: < 2.2e-16
summary(lm.fitx)
## 
## Call:
## lm(formula = x ~ y + 0)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.115418 -0.029231 -0.002186  0.031322  0.111795 
## 
## Coefficients:
##   Estimate Std. Error t value Pr(>|t|)    
## y 5.00e-01   3.87e-05   12920   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.04502 on 99 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:      1 
## F-statistic: 1.669e+08 on 1 and 99 DF,  p-value: < 2.2e-16

(c) Generate an example in R with n = 100 observations in which the coefficient estimate for the regression of X onto Y is the same as the coefficient estimate for the regression of Y onto X

x <-  1:100
sum(x^2)
## [1] 338350
y <-  100:1
sum(y^2)
## [1] 338350
lm.fitx1 <- lm(y ~ x + 0)
lm.fity1 <- lm(x ~ y + 0)
summary(lm.fitx1)
## 
## Call:
## lm(formula = y ~ x + 0)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -49.75 -12.44  24.87  62.18  99.49 
## 
## Coefficients:
##   Estimate Std. Error t value Pr(>|t|)    
## x   0.5075     0.0866    5.86 6.09e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 50.37 on 99 degrees of freedom
## Multiple R-squared:  0.2575, Adjusted R-squared:   0.25 
## F-statistic: 34.34 on 1 and 99 DF,  p-value: 6.094e-08
summary(lm.fity1)
## 
## Call:
## lm(formula = x ~ y + 0)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -49.75 -12.44  24.87  62.18  99.49 
## 
## Coefficients:
##   Estimate Std. Error t value Pr(>|t|)    
## y   0.5075     0.0866    5.86 6.09e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 50.37 on 99 degrees of freedom
## Multiple R-squared:  0.2575, Adjusted R-squared:   0.25 
## F-statistic: 34.34 on 1 and 99 DF,  p-value: 6.094e-08