This is a study of linear regression of the height and weight of 15 women
2022-09-18
This is a study of linear regression of the height and weight of 15 women
## height weight ## 1 58 115 ## 2 59 117 ## 3 60 120 ## 4 61 123 ## 5 62 126 ## 6 63 129 ## 7 64 132 ## 8 65 135 ## 9 66 139 ## 10 67 142 ## 11 68 146 ## 12 69 150 ## 13 70 154 ## 14 71 159 ## 15 72 164
model: \(Height = \beta_0 + \beta_1\cdot Weight + \varepsilon\), where \(\varepsilon \sim \mathcal{N}(\mu=0; \,\,\sigma^2)\)
Fitted: \(Height = \hat\beta_0 + \hat\beta_1\cdot Weight\)
y = women$weight; x = women$height mod = lm(y~x, data = women) xax <- list( title = "Height", titlefont = list(family="Modern Computer Roman") ) yax <- list( title = "Weight", titlefont = list(family="Modern Computer Roman") ) plot_ly(x=x, y=y, type="scatter", mode="markers", name="data") %>% add_lines(x = x, y = fitted(mod), name="fitted") %>% layout(xaxis = xax, yaxis = yax)
## `geom_smooth()` using formula 'y ~ x'
Residual = actual y value - predicted y value
\(r_i = y_i - \hat{y_i}\)
\(r_i = y_i - (m \cdot x + b)\)