Data time series adalah data yang terkumpulkan berdasarkan urutan waktu yang sistematik. Data time series banyak diaplikasikan sebagai sarana peramalan keadaan untuk waktu di masa mendatang. Analisis deret waktu merupakan metodologi statistik yang dapat membantu untuk memahami proses naturalistik yang mendasarinya, pola perubahan dari waktu ke waktu, atau mengevaluasi efek dari intervensi yang direncanakan atau tidak direncanakan (Wayne et all. 2022). Dengan demikian, data time series merupakan komponen penting dalam mengendalian kondisi dan pengambilan keputusan di masa depan.
Masalah umum yang selalu bahkan hampir pasti ada dalam data time series adalah adanya keterkaitan antar data yang diakibatkan adanya pengaruh kondisi waktu lampau dengan waktu kini, atau kemudian dikenal dengan istilah autokorelasi (Korelasi diri). Secara harfiah autokorelasi dapat diartikansebagai adanya hubungan antara anggota observasisatu dengan observasi lain yang berlainan waktu (Fathurahman M, 2012). Autokorelasiseringkali terjadi pada data time series dan dapatjuga terjadi pada data cross section tetapi jarang (Widarjono, 2007). Autokorelasi ini merupakan salah satu pelanggaran terhadap asumsi dasar analisis regresi karena menyebabkan pendugaan OLS model regresi tidak menghasilkan pendugaan yang BLUE melainkan hanya LUE (Fathurahman M, 2012). Oleh sebab itu, setiap data termasuk data time series yang memiliki masalah autokorelasi mesti ditangani. Penanganan autokorelasi dapat melalui metode cochrane-orcutt (Fathurahman M, 2012), hildreth-lu (Subhi KT, Azkiya AA. 2022), dan peubah Lag.
Peubah lag dapat dibangun dengan 3 metode, yakni metode koyck,
Pada Kasus ini kita akan membuktikan apakah keberadaan peubah lag dalam model regresi time series akan menangani masalah autokorelasi dalam model tersebut dengan menggunakan bantuan R. Adapun packages yang digunakan adalah sebagai berikut :
#install.packages("dLagM")
#install.packages("dynlm")
#install.packages("MLmetrics")
library(dLagM) #bisa otomatis timeseries datanya
## Loading required package: nardl
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## Loading required package: dynlm
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
library(dynlm) #data harus timeseries
library(MLmetrics) #MAPE
##
## Attaching package: 'MLmetrics'
## The following object is masked from 'package:dLagM':
##
## MAPE
## The following object is masked from 'package:base':
##
## Recall
library(lmtest)
library(car)
## Loading required package: carData
library(readxl)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:car':
##
## recode
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
Data yang digunakan ini adalah data harga minyak harian di Equador sejak 2 Januari 2013 hingga 31 Agustus 2017. Data ini dapat diakses pada link https://www.kaggle.com/competitions/store-sales-time-series-forecasting/data?select=oil.csv . Di dalamnya terdapat beberapa missing value yang dapat mengganggu analisis deret waktu. Oleh karena itu, data hilang tersebut saya duga untuk dimasukkan sebagai representasi harga minyak pada hari tersebut.
#membuka file data
datprak <- read_excel("C:/Users/ASUS/Downloads/oil.xlsx")
str(datprak)
## tibble [1,217 x 2] (S3: tbl_df/tbl/data.frame)
## $ date : num [1:1217] 1 2 3 4 5 6 7 8 9 10 ...
## $ dcoilwtico: num [1:1217] 93.1 93 93.1 93.2 93.2 ...
knitr::kable(datprak, align = "c")
| date | dcoilwtico |
|---|---|
| 1 | 93.14 |
| 2 | 92.97 |
| 3 | 93.12 |
| 4 | 93.20 |
| 5 | 93.21 |
| 6 | 93.08 |
| 7 | 93.81 |
| 8 | 93.60 |
| 9 | 94.27 |
| 10 | 93.26 |
| 11 | 94.28 |
| 12 | 95.49 |
| 13 | 95.61 |
| 14 | 95.65 |
| 15 | 96.09 |
| 16 | 95.06 |
| 17 | 95.35 |
| 18 | 95.15 |
| 19 | 95.95 |
| 20 | 97.62 |
| 21 | 97.98 |
| 22 | 97.65 |
| 23 | 97.46 |
| 24 | 96.21 |
| 25 | 96.68 |
| 26 | 96.44 |
| 27 | 95.84 |
| 28 | 95.71 |
| 29 | 97.01 |
| 30 | 97.48 |
| 31 | 97.03 |
| 32 | 97.30 |
| 33 | 95.95 |
| 34 | 96.04 |
| 35 | 96.69 |
| 36 | 94.92 |
| 37 | 92.79 |
| 38 | 93.12 |
| 39 | 92.74 |
| 40 | 92.63 |
| 41 | 92.84 |
| 42 | 92.03 |
| 43 | 90.71 |
| 44 | 90.13 |
| 45 | 90.88 |
| 46 | 90.47 |
| 47 | 91.53 |
| 48 | 92.01 |
| 49 | 92.07 |
| 50 | 92.44 |
| 51 | 92.47 |
| 52 | 93.03 |
| 53 | 93.49 |
| 54 | 93.71 |
| 55 | 92.44 |
| 56 | 93.21 |
| 57 | 92.46 |
| 58 | 93.41 |
| 59 | 94.55 |
| 60 | 95.99 |
| 61 | 96.53 |
| 62 | 97.24 |
| 63 | 97.20 |
| 64 | 97.10 |
| 65 | 97.23 |
| 66 | 95.02 |
| 67 | 93.26 |
| 68 | 92.76 |
| 69 | 93.36 |
| 70 | 94.18 |
| 71 | 94.59 |
| 72 | 93.44 |
| 73 | 91.23 |
| 74 | 88.75 |
| 75 | 88.73 |
| 76 | 86.65 |
| 77 | 87.83 |
| 78 | 88.04 |
| 79 | 88.81 |
| 80 | 89.21 |
| 81 | 91.07 |
| 82 | 93.27 |
| 83 | 92.63 |
| 84 | 94.09 |
| 85 | 93.22 |
| 86 | 90.74 |
| 87 | 93.70 |
| 88 | 95.25 |
| 89 | 95.80 |
| 90 | 95.28 |
| 91 | 96.24 |
| 92 | 96.09 |
| 93 | 95.81 |
| 94 | 94.76 |
| 95 | 93.96 |
| 96 | 93.95 |
| 97 | 94.85 |
| 98 | 95.72 |
| 99 | 96.29 |
| 100 | 95.55 |
| 101 | 93.98 |
| 102 | 94.12 |
| 103 | 93.84 |
| 104 | 94.43 |
| 105 | 94.65 |
| 106 | 93.13 |
| 107 | 93.57 |
| 108 | 91.93 |
| 109 | 93.41 |
| 110 | 93.36 |
| 111 | 93.66 |
| 112 | 94.71 |
| 113 | 96.11 |
| 114 | 95.82 |
| 115 | 95.50 |
| 116 | 95.98 |
| 117 | 96.66 |
| 118 | 97.83 |
| 119 | 97.86 |
| 120 | 98.46 |
| 121 | 98.24 |
| 122 | 94.89 |
| 123 | 93.81 |
| 124 | 95.07 |
| 125 | 95.25 |
| 126 | 95.47 |
| 127 | 97.00 |
| 128 | 96.36 |
| 129 | 97.94 |
| 130 | 99.65 |
| 131 | 101.92 |
| 132 | 102.54 |
| 133 | 103.09 |
| 134 | 103.03 |
| 135 | 103.46 |
| 136 | 106.41 |
| 137 | 104.77 |
| 138 | 105.85 |
| 139 | 106.20 |
| 140 | 105.88 |
| 141 | 106.39 |
| 142 | 107.94 |
| 143 | 108.00 |
| 144 | 106.61 |
| 145 | 107.13 |
| 146 | 105.41 |
| 147 | 105.47 |
| 148 | 104.76 |
| 149 | 104.61 |
| 150 | 103.14 |
| 151 | 105.10 |
| 152 | 107.93 |
| 153 | 106.94 |
| 154 | 106.61 |
| 155 | 105.32 |
| 156 | 104.41 |
| 157 | 103.45 |
| 158 | 106.04 |
| 159 | 106.19 |
| 160 | 106.78 |
| 161 | 106.89 |
| 162 | 107.43 |
| 163 | 107.58 |
| 164 | 107.14 |
| 165 | 104.90 |
| 166 | 103.93 |
| 167 | 104.93 |
| 168 | 106.48 |
| 169 | 105.88 |
| 170 | 109.11 |
| 171 | 110.17 |
| 172 | 108.51 |
| 173 | 107.98 |
| 174 | 107.78 |
| 175 | 108.67 |
| 176 | 107.29 |
| 177 | 108.50 |
| 178 | 110.62 |
| 179 | 109.62 |
| 180 | 107.48 |
| 181 | 107.65 |
| 182 | 108.72 |
| 183 | 108.31 |
| 184 | 106.54 |
| 185 | 105.36 |
| 186 | 108.23 |
| 187 | 106.26 |
| 188 | 104.70 |
| 189 | 103.62 |
| 190 | 103.22 |
| 191 | 102.68 |
| 192 | 103.10 |
| 193 | 102.86 |
| 194 | 102.36 |
| 195 | 102.09 |
| 196 | 104.15 |
| 197 | 103.29 |
| 198 | 103.83 |
| 199 | 103.07 |
| 200 | 103.54 |
| 201 | 101.63 |
| 202 | 103.08 |
| 203 | 102.17 |
| 204 | 102.46 |
| 205 | 101.15 |
| 206 | 102.34 |
| 207 | 100.72 |
| 208 | 100.87 |
| 209 | 99.28 |
| 210 | 97.63 |
| 211 | 96.90 |
| 212 | 96.65 |
| 213 | 97.40 |
| 214 | 98.74 |
| 215 | 98.29 |
| 216 | 96.81 |
| 217 | 96.29 |
| 218 | 94.56 |
| 219 | 94.58 |
| 220 | 93.40 |
| 221 | 94.74 |
| 222 | 94.25 |
| 223 | 94.56 |
| 224 | 95.13 |
| 225 | 93.12 |
| 226 | 93.91 |
| 227 | 93.76 |
| 228 | 93.80 |
| 229 | 93.03 |
| 230 | 93.35 |
| 231 | 93.34 |
| 232 | 95.35 |
| 233 | 94.53 |
| 234 | 93.86 |
| 235 | 93.41 |
| 236 | 92.05 |
| 237 | 92.31 |
| 238 | 92.55 |
| 239 | 93.61 |
| 240 | 95.83 |
| 241 | 96.97 |
| 242 | 97.14 |
| 243 | 97.48 |
| 244 | 97.10 |
| 245 | 98.32 |
| 246 | 97.25 |
| 247 | 97.21 |
| 248 | 96.27 |
| 249 | 97.18 |
| 250 | 96.99 |
| 251 | 97.59 |
| 252 | 98.40 |
| 253 | 99.11 |
| 254 | 98.62 |
| 255 | 98.87 |
| 256 | 99.09 |
| 257 | 99.18 |
| 258 | 99.94 |
| 259 | 98.90 |
| 260 | 98.17 |
| 261 | 96.24 |
| 262 | 95.14 |
| 263 | 93.66 |
| 264 | 93.12 |
| 265 | 93.31 |
| 266 | 91.90 |
| 267 | 91.36 |
| 268 | 92.39 |
| 269 | 91.45 |
| 270 | 92.15 |
| 271 | 93.78 |
| 272 | 93.54 |
| 273 | 93.96 |
| 274 | 94.09 |
| 275 | 94.51 |
| 276 | 96.35 |
| 277 | 97.23 |
| 278 | 96.66 |
| 279 | 95.82 |
| 280 | 97.49 |
| 281 | 97.34 |
| 282 | 98.25 |
| 283 | 97.55 |
| 284 | 96.44 |
| 285 | 97.24 |
| 286 | 97.40 |
| 287 | 97.84 |
| 288 | 99.98 |
| 289 | 100.12 |
| 290 | 99.96 |
| 291 | 100.38 |
| 292 | 100.27 |
| 293 | 100.31 |
| 294 | 101.32 |
| 295 | 102.54 |
| 296 | 103.46 |
| 297 | 103.20 |
| 298 | 102.53 |
| 299 | 103.17 |
| 300 | 102.20 |
| 301 | 102.93 |
| 302 | 102.68 |
| 303 | 102.88 |
| 304 | 105.34 |
| 305 | 103.64 |
| 306 | 101.75 |
| 307 | 101.82 |
| 308 | 102.82 |
| 309 | 101.39 |
| 310 | 100.29 |
| 311 | 98.29 |
| 312 | 98.57 |
| 313 | 99.23 |
| 314 | 98.43 |
| 315 | 100.08 |
| 316 | 100.71 |
| 317 | 99.68 |
| 318 | 99.97 |
| 319 | 100.05 |
| 320 | 99.66 |
| 321 | 100.61 |
| 322 | 101.25 |
| 323 | 101.73 |
| 324 | 101.57 |
| 325 | 99.69 |
| 326 | 99.60 |
| 327 | 100.29 |
| 328 | 101.16 |
| 329 | 100.43 |
| 330 | 102.57 |
| 331 | 103.55 |
| 332 | 103.37 |
| 333 | 103.68 |
| 334 | 104.05 |
| 335 | 103.70 |
| 336 | 103.71 |
| 337 | 104.33 |
| 338 | 104.40 |
| 339 | 104.35 |
| 340 | 101.69 |
| 341 | 101.47 |
| 342 | 102.20 |
| 343 | 100.85 |
| 344 | 101.13 |
| 345 | 101.56 |
| 346 | 100.07 |
| 347 | 99.69 |
| 348 | 100.09 |
| 349 | 99.74 |
| 350 | 99.81 |
| 351 | 101.06 |
| 352 | 100.52 |
| 353 | 100.32 |
| 354 | 100.89 |
| 355 | 102.01 |
| 356 | 102.63 |
| 357 | 101.74 |
| 358 | 102.31 |
| 359 | 102.95 |
| 360 | 102.80 |
| 361 | 104.31 |
| 362 | 104.03 |
| 363 | 105.01 |
| 364 | 104.92 |
| 365 | 104.78 |
| 366 | 103.37 |
| 367 | 104.26 |
| 368 | 103.40 |
| 369 | 103.07 |
| 370 | 103.34 |
| 371 | 103.27 |
| 372 | 103.17 |
| 373 | 103.32 |
| 374 | 105.09 |
| 375 | 105.02 |
| 376 | 105.04 |
| 377 | 107.20 |
| 378 | 107.49 |
| 379 | 107.52 |
| 380 | 106.95 |
| 381 | 106.64 |
| 382 | 107.08 |
| 383 | 107.95 |
| 384 | 106.83 |
| 385 | 106.64 |
| 386 | 107.04 |
| 387 | 106.49 |
| 388 | 106.46 |
| 389 | 106.07 |
| 390 | 106.06 |
| 391 | 105.18 |
| 392 | 104.76 |
| 393 | 104.44 |
| 394 | 104.19 |
| 395 | 104.06 |
| 396 | 102.93 |
| 397 | 103.61 |
| 398 | 101.48 |
| 399 | 101.73 |
| 400 | 100.56 |
| 401 | 101.88 |
| 402 | 103.84 |
| 403 | 103.83 |
| 404 | 105.34 |
| 405 | 104.59 |
| 406 | 103.81 |
| 407 | 102.76 |
| 408 | 105.23 |
| 409 | 105.68 |
| 410 | 104.91 |
| 411 | 104.29 |
| 412 | 98.23 |
| 413 | 97.86 |
| 414 | 98.26 |
| 415 | 97.34 |
| 416 | 96.93 |
| 417 | 97.34 |
| 418 | 97.61 |
| 419 | 98.09 |
| 420 | 97.36 |
| 421 | 97.57 |
| 422 | 95.54 |
| 423 | 97.30 |
| 424 | 96.44 |
| 425 | 94.35 |
| 426 | 96.40 |
| 427 | 93.97 |
| 428 | 93.61 |
| 429 | 95.39 |
| 430 | 95.78 |
| 431 | 95.82 |
| 432 | 96.44 |
| 433 | 97.86 |
| 434 | 94.80 |
| 435 | 92.92 |
| 436 | 95.50 |
| 437 | 94.51 |
| 438 | 93.32 |
| 439 | 92.64 |
| 440 | 92.73 |
| 441 | 91.71 |
| 442 | 92.89 |
| 443 | 92.18 |
| 444 | 92.86 |
| 445 | 94.91 |
| 446 | 94.33 |
| 447 | 93.07 |
| 448 | 92.43 |
| 449 | 91.46 |
| 450 | 91.55 |
| 451 | 93.60 |
| 452 | 93.59 |
| 453 | 95.55 |
| 454 | 94.53 |
| 455 | 91.17 |
| 456 | 90.74 |
| 457 | 91.02 |
| 458 | 89.76 |
| 459 | 90.33 |
| 460 | 88.89 |
| 461 | 87.29 |
| 462 | 85.76 |
| 463 | 85.87 |
| 464 | 85.73 |
| 465 | 81.72 |
| 466 | 81.82 |
| 467 | 82.33 |
| 468 | 82.80 |
| 469 | 82.76 |
| 470 | 83.25 |
| 471 | 80.52 |
| 472 | 82.81 |
| 473 | 81.27 |
| 474 | 81.26 |
| 475 | 81.36 |
| 476 | 82.25 |
| 477 | 81.06 |
| 478 | 80.53 |
| 479 | 78.77 |
| 480 | 77.15 |
| 481 | 78.71 |
| 482 | 77.87 |
| 483 | 78.71 |
| 484 | 77.43 |
| 485 | 77.85 |
| 486 | 77.16 |
| 487 | 74.13 |
| 488 | 75.91 |
| 489 | 75.64 |
| 490 | 74.55 |
| 491 | 74.55 |
| 492 | 75.63 |
| 493 | 76.52 |
| 494 | 75.74 |
| 495 | 74.04 |
| 496 | 73.70 |
| 497 | 71.90 |
| 498 | 65.94 |
| 499 | 68.98 |
| 500 | 66.99 |
| 501 | 67.30 |
| 502 | 66.73 |
| 503 | 65.89 |
| 504 | 63.13 |
| 505 | 63.74 |
| 506 | 60.99 |
| 507 | 60.01 |
| 508 | 57.81 |
| 509 | 55.96 |
| 510 | 55.97 |
| 511 | 56.43 |
| 512 | 54.18 |
| 513 | 56.91 |
| 514 | 55.25 |
| 515 | 56.78 |
| 516 | 55.70 |
| 517 | 55.12 |
| 518 | 54.59 |
| 519 | 53.46 |
| 520 | 54.14 |
| 521 | 53.45 |
| 522 | 53.23 |
| 523 | 52.72 |
| 524 | 50.05 |
| 525 | 47.98 |
| 526 | 48.69 |
| 527 | 48.80 |
| 528 | 48.35 |
| 529 | 46.06 |
| 530 | 45.92 |
| 531 | 48.49 |
| 532 | 46.37 |
| 533 | 48.49 |
| 534 | 47.88 |
| 535 | 46.79 |
| 536 | 47.85 |
| 537 | 45.93 |
| 538 | 45.26 |
| 539 | 44.80 |
| 540 | 45.84 |
| 541 | 44.08 |
| 542 | 44.12 |
| 543 | 47.79 |
| 544 | 49.25 |
| 545 | 53.04 |
| 546 | 48.45 |
| 547 | 50.48 |
| 548 | 51.66 |
| 549 | 52.99 |
| 550 | 50.06 |
| 551 | 48.80 |
| 552 | 51.17 |
| 553 | 52.66 |
| 554 | 52.87 |
| 555 | 53.56 |
| 556 | 52.13 |
| 557 | 51.12 |
| 558 | 49.95 |
| 559 | 49.56 |
| 560 | 48.48 |
| 561 | 50.25 |
| 562 | 47.65 |
| 563 | 49.84 |
| 564 | 49.59 |
| 565 | 50.43 |
| 566 | 51.53 |
| 567 | 50.76 |
| 568 | 49.61 |
| 569 | 49.95 |
| 570 | 48.42 |
| 571 | 48.06 |
| 572 | 47.12 |
| 573 | 44.88 |
| 574 | 43.93 |
| 575 | 43.39 |
| 576 | 44.63 |
| 577 | 44.02 |
| 578 | 46.00 |
| 579 | 47.40 |
| 580 | 47.03 |
| 581 | 48.75 |
| 582 | 51.41 |
| 583 | 48.83 |
| 584 | 48.66 |
| 585 | 47.72 |
| 586 | 50.12 |
| 587 | 49.13 |
| 588 | 50.14 |
| 589 | 52.08 |
| 590 | 53.95 |
| 591 | 50.44 |
| 592 | 50.79 |
| 593 | 51.63 |
| 594 | 51.95 |
| 595 | 53.30 |
| 596 | 56.25 |
| 597 | 56.69 |
| 598 | 55.71 |
| 599 | 56.37 |
| 600 | 55.58 |
| 601 | 56.17 |
| 602 | 56.59 |
| 603 | 55.98 |
| 604 | 55.56 |
| 605 | 57.05 |
| 606 | 58.55 |
| 607 | 59.62 |
| 608 | 59.10 |
| 609 | 58.92 |
| 610 | 60.38 |
| 611 | 60.93 |
| 612 | 58.99 |
| 613 | 59.41 |
| 614 | 59.23 |
| 615 | 60.72 |
| 616 | 60.50 |
| 617 | 59.89 |
| 618 | 59.73 |
| 619 | 59.44 |
| 620 | 57.30 |
| 621 | 58.96 |
| 622 | 60.18 |
| 623 | 58.88 |
| 624 | 58.55 |
| 625 | 57.29 |
| 626 | 57.51 |
| 627 | 57.69 |
| 628 | 60.25 |
| 629 | 60.24 |
| 630 | 61.30 |
| 631 | 59.67 |
| 632 | 58.00 |
| 633 | 59.11 |
| 634 | 58.15 |
| 635 | 60.15 |
| 636 | 61.36 |
| 637 | 60.74 |
| 638 | 59.96 |
| 639 | 59.53 |
| 640 | 60.01 |
| 641 | 59.89 |
| 642 | 60.41 |
| 643 | 59.62 |
| 644 | 60.01 |
| 645 | 61.05 |
| 646 | 60.01 |
| 647 | 59.59 |
| 648 | 59.41 |
| 649 | 58.34 |
| 650 | 59.48 |
| 651 | 56.94 |
| 652 | 56.93 |
| 653 | 55.78 |
| 654 | 52.48 |
| 655 | 52.33 |
| 656 | 51.61 |
| 657 | 52.76 |
| 658 | 52.74 |
| 659 | 52.19 |
| 660 | 53.05 |
| 661 | 51.40 |
| 662 | 50.90 |
| 663 | 50.88 |
| 664 | 50.11 |
| 665 | 50.59 |
| 666 | 49.27 |
| 667 | 48.11 |
| 668 | 47.98 |
| 669 | 47.17 |
| 670 | 47.97 |
| 671 | 48.77 |
| 672 | 48.53 |
| 673 | 47.11 |
| 674 | 45.25 |
| 675 | 45.75 |
| 676 | 45.13 |
| 677 | 44.69 |
| 678 | 43.87 |
| 679 | 44.94 |
| 680 | 43.11 |
| 681 | 43.22 |
| 682 | 42.27 |
| 683 | 42.45 |
| 684 | 41.93 |
| 685 | 42.58 |
| 686 | 40.75 |
| 687 | 41.00 |
| 688 | 40.45 |
| 689 | 38.22 |
| 690 | 39.15 |
| 691 | 38.50 |
| 692 | 42.47 |
| 693 | 45.29 |
| 694 | 49.20 |
| 695 | 45.38 |
| 696 | 46.30 |
| 697 | 46.75 |
| 698 | 46.02 |
| 699 | 45.98 |
| 700 | 45.92 |
| 701 | 44.13 |
| 702 | 45.85 |
| 703 | 44.75 |
| 704 | 44.07 |
| 705 | 44.58 |
| 706 | 47.12 |
| 707 | 46.93 |
| 708 | 44.71 |
| 709 | 46.67 |
| 710 | 46.17 |
| 711 | 44.53 |
| 712 | 44.94 |
| 713 | 45.55 |
| 714 | 44.40 |
| 715 | 45.24 |
| 716 | 45.06 |
| 717 | 44.75 |
| 718 | 45.54 |
| 719 | 46.28 |
| 720 | 48.53 |
| 721 | 47.86 |
| 722 | 49.46 |
| 723 | 49.67 |
| 724 | 47.09 |
| 725 | 46.70 |
| 726 | 46.63 |
| 727 | 46.38 |
| 728 | 47.30 |
| 729 | 45.91 |
| 730 | 45.84 |
| 731 | 45.22 |
| 732 | 44.90 |
| 733 | 43.91 |
| 734 | 43.19 |
| 735 | 43.21 |
| 736 | 45.93 |
| 737 | 46.02 |
| 738 | 46.60 |
| 739 | 46.12 |
| 740 | 47.88 |
| 741 | 46.32 |
| 742 | 45.27 |
| 743 | 44.32 |
| 744 | 43.87 |
| 745 | 44.23 |
| 746 | 42.95 |
| 747 | 41.74 |
| 748 | 40.69 |
| 749 | 41.68 |
| 750 | 40.73 |
| 751 | 40.75 |
| 752 | 40.55 |
| 753 | 39.39 |
| 754 | 39.27 |
| 755 | 40.89 |
| 756 | 41.22 |
| 757 | 40.97 |
| 758 | 40.57 |
| 759 | 40.43 |
| 760 | 40.58 |
| 761 | 39.93 |
| 762 | 41.08 |
| 763 | 40.00 |
| 764 | 37.64 |
| 765 | 37.46 |
| 766 | 37.16 |
| 767 | 36.76 |
| 768 | 35.65 |
| 769 | 36.31 |
| 770 | 37.32 |
| 771 | 35.55 |
| 772 | 34.98 |
| 773 | 34.72 |
| 774 | 34.55 |
| 775 | 36.12 |
| 776 | 36.76 |
| 777 | 37.62 |
| 778 | 36.89 |
| 779 | 36.36 |
| 780 | 37.88 |
| 781 | 36.59 |
| 782 | 37.13 |
| 783 | 37.23 |
| 784 | 36.81 |
| 785 | 35.97 |
| 786 | 33.97 |
| 787 | 33.29 |
| 788 | 33.20 |
| 789 | 31.42 |
| 790 | 30.42 |
| 791 | 30.42 |
| 792 | 31.22 |
| 793 | 29.45 |
| 794 | 29.07 |
| 795 | 28.47 |
| 796 | 26.68 |
| 797 | 29.55 |
| 798 | 32.07 |
| 799 | 30.31 |
| 800 | 29.54 |
| 801 | 32.32 |
| 802 | 33.21 |
| 803 | 33.66 |
| 804 | 31.62 |
| 805 | 29.90 |
| 806 | 32.29 |
| 807 | 31.63 |
| 808 | 30.86 |
| 809 | 29.71 |
| 810 | 27.96 |
| 811 | 27.54 |
| 812 | 26.19 |
| 813 | 29.32 |
| 814 | 29.13 |
| 815 | 29.05 |
| 816 | 30.68 |
| 817 | 30.77 |
| 818 | 29.59 |
| 819 | 31.37 |
| 820 | 31.84 |
| 821 | 30.35 |
| 822 | 31.40 |
| 823 | 31.65 |
| 824 | 32.74 |
| 825 | 34.39 |
| 826 | 34.57 |
| 827 | 34.56 |
| 828 | 35.91 |
| 829 | 37.90 |
| 830 | 36.67 |
| 831 | 37.62 |
| 832 | 37.77 |
| 833 | 38.51 |
| 834 | 37.20 |
| 835 | 36.32 |
| 836 | 38.43 |
| 837 | 40.17 |
| 838 | 39.47 |
| 839 | 39.91 |
| 840 | 41.45 |
| 841 | 38.28 |
| 842 | 38.14 |
| 843 | 38.11 |
| 844 | 37.99 |
| 845 | 36.91 |
| 846 | 36.91 |
| 847 | 36.94 |
| 848 | 35.36 |
| 849 | 34.30 |
| 850 | 34.52 |
| 851 | 37.74 |
| 852 | 37.30 |
| 853 | 39.74 |
| 854 | 40.46 |
| 855 | 42.12 |
| 856 | 41.70 |
| 857 | 41.45 |
| 858 | 40.40 |
| 859 | 39.74 |
| 860 | 40.88 |
| 861 | 42.72 |
| 862 | 43.18 |
| 863 | 42.76 |
| 864 | 41.67 |
| 865 | 42.52 |
| 866 | 45.29 |
| 867 | 46.03 |
| 868 | 45.98 |
| 869 | 44.75 |
| 870 | 43.65 |
| 871 | 43.77 |
| 872 | 44.33 |
| 873 | 44.58 |
| 874 | 43.45 |
| 875 | 44.68 |
| 876 | 46.21 |
| 877 | 46.64 |
| 878 | 46.22 |
| 879 | 47.72 |
| 880 | 48.29 |
| 881 | 48.12 |
| 882 | 48.16 |
| 883 | 47.67 |
| 884 | 48.12 |
| 885 | 48.04 |
| 886 | 49.10 |
| 887 | 49.00 |
| 888 | 49.36 |
| 889 | 49.23 |
| 890 | 49.10 |
| 891 | 49.07 |
| 892 | 49.14 |
| 893 | 48.69 |
| 894 | 49.71 |
| 895 | 50.37 |
| 896 | 51.23 |
| 897 | 50.52 |
| 898 | 49.09 |
| 899 | 48.89 |
| 900 | 48.49 |
| 901 | 47.92 |
| 902 | 46.14 |
| 903 | 48.00 |
| 904 | 49.40 |
| 905 | 48.95 |
| 906 | 49.16 |
| 907 | 49.34 |
| 908 | 46.70 |
| 909 | 45.80 |
| 910 | 47.93 |
| 911 | 49.85 |
| 912 | 48.27 |
| 913 | 49.02 |
| 914 | 47.87 |
| 915 | 46.73 |
| 916 | 47.37 |
| 917 | 45.22 |
| 918 | 45.37 |
| 919 | 44.73 |
| 920 | 46.82 |
| 921 | 44.87 |
| 922 | 45.64 |
| 923 | 45.93 |
| 924 | 45.23 |
| 925 | 44.64 |
| 926 | 44.96 |
| 927 | 43.96 |
| 928 | 43.41 |
| 929 | 42.40 |
| 930 | 42.16 |
| 931 | 41.90 |
| 932 | 41.13 |
| 933 | 41.54 |
| 934 | 40.05 |
| 935 | 39.50 |
| 936 | 40.80 |
| 937 | 41.92 |
| 938 | 41.83 |
| 939 | 43.06 |
| 940 | 42.78 |
| 941 | 41.75 |
| 942 | 43.51 |
| 943 | 44.47 |
| 944 | 45.72 |
| 945 | 46.57 |
| 946 | 46.81 |
| 947 | 48.20 |
| 948 | 48.48 |
| 949 | 46.80 |
| 950 | 47.54 |
| 951 | 46.29 |
| 952 | 46.97 |
| 953 | 47.64 |
| 954 | 46.97 |
| 955 | 46.32 |
| 956 | 44.68 |
| 957 | 43.17 |
| 958 | 44.39 |
| 959 | 44.55 |
| 960 | 44.85 |
| 961 | 45.47 |
| 962 | 47.63 |
| 963 | 45.88 |
| 964 | 46.28 |
| 965 | 44.91 |
| 966 | 43.62 |
| 967 | 43.85 |
| 968 | 43.04 |
| 969 | 43.34 |
| 970 | 43.85 |
| 971 | 45.33 |
| 972 | 46.10 |
| 973 | 44.36 |
| 974 | 45.60 |
| 975 | 44.65 |
| 976 | 47.07 |
| 977 | 47.72 |
| 978 | 47.72 |
| 979 | 48.80 |
| 980 | 48.67 |
| 981 | 49.75 |
| 982 | 50.44 |
| 983 | 49.76 |
| 984 | 49.76 |
| 985 | 50.72 |
| 986 | 50.14 |
| 987 | 50.47 |
| 988 | 50.35 |
| 989 | 49.97 |
| 990 | 50.30 |
| 991 | 51.59 |
| 992 | 50.31 |
| 993 | 50.61 |
| 994 | 50.18 |
| 995 | 49.45 |
| 996 | 48.75 |
| 997 | 49.71 |
| 998 | 48.72 |
| 999 | 46.83 |
| 1000 | 46.66 |
| 1001 | 45.32 |
| 1002 | 44.66 |
| 1003 | 44.07 |
| 1004 | 44.88 |
| 1005 | 44.96 |
| 1006 | 45.20 |
| 1007 | 44.62 |
| 1008 | 43.39 |
| 1009 | 43.29 |
| 1010 | 45.86 |
| 1011 | 45.56 |
| 1012 | 45.37 |
| 1013 | 45.69 |
| 1014 | 47.48 |
| 1015 | 48.07 |
| 1016 | 46.72 |
| 1017 | 46.92 |
| 1018 | 46.72 |
| 1019 | 45.66 |
| 1020 | 45.29 |
| 1021 | 49.41 |
| 1022 | 51.08 |
| 1023 | 51.70 |
| 1024 | 51.72 |
| 1025 | 50.95 |
| 1026 | 49.85 |
| 1027 | 50.84 |
| 1028 | 51.51 |
| 1029 | 52.74 |
| 1030 | 52.99 |
| 1031 | 51.01 |
| 1032 | 50.90 |
| 1033 | 51.93 |
| 1034 | 52.13 |
| 1035 | 52.22 |
| 1036 | 51.44 |
| 1037 | 51.98 |
| 1038 | 52.01 |
| 1039 | 52.46 |
| 1040 | 52.82 |
| 1041 | 54.01 |
| 1042 | 53.80 |
| 1043 | 53.75 |
| 1044 | 53.61 |
| 1045 | 52.36 |
| 1046 | 53.26 |
| 1047 | 53.77 |
| 1048 | 53.98 |
| 1049 | 51.95 |
| 1050 | 50.82 |
| 1051 | 52.19 |
| 1052 | 53.01 |
| 1053 | 52.36 |
| 1054 | 52.21 |
| 1055 | 52.45 |
| 1056 | 51.12 |
| 1057 | 51.39 |
| 1058 | 52.33 |
| 1059 | 52.77 |
| 1060 | 52.38 |
| 1061 | 52.14 |
| 1062 | 53.24 |
| 1063 | 53.18 |
| 1064 | 52.63 |
| 1065 | 52.75 |
| 1066 | 53.90 |
| 1067 | 53.55 |
| 1068 | 53.81 |
| 1069 | 53.01 |
| 1070 | 52.19 |
| 1071 | 52.37 |
| 1072 | 52.99 |
| 1073 | 53.84 |
| 1074 | 52.96 |
| 1075 | 53.21 |
| 1076 | 53.11 |
| 1077 | 53.41 |
| 1078 | 53.41 |
| 1079 | 53.88 |
| 1080 | 54.02 |
| 1081 | 53.61 |
| 1082 | 54.48 |
| 1083 | 53.99 |
| 1084 | 54.04 |
| 1085 | 54.00 |
| 1086 | 53.82 |
| 1087 | 52.63 |
| 1088 | 53.33 |
| 1089 | 53.19 |
| 1090 | 52.68 |
| 1091 | 49.83 |
| 1092 | 48.75 |
| 1093 | 48.05 |
| 1094 | 47.95 |
| 1095 | 47.24 |
| 1096 | 48.34 |
| 1097 | 48.30 |
| 1098 | 48.34 |
| 1099 | 47.79 |
| 1100 | 47.02 |
| 1101 | 47.29 |
| 1102 | 47.00 |
| 1103 | 47.30 |
| 1104 | 47.02 |
| 1105 | 48.36 |
| 1106 | 49.47 |
| 1107 | 50.30 |
| 1108 | 50.54 |
| 1109 | 50.25 |
| 1110 | 50.99 |
| 1111 | 51.14 |
| 1112 | 51.69 |
| 1113 | 52.25 |
| 1114 | 53.06 |
| 1115 | 53.38 |
| 1116 | 53.12 |
| 1117 | 53.19 |
| 1118 | 53.07 |
| 1119 | 52.62 |
| 1120 | 52.46 |
| 1121 | 50.49 |
| 1122 | 50.26 |
| 1123 | 49.64 |
| 1124 | 48.90 |
| 1125 | 49.22 |
| 1126 | 49.22 |
| 1127 | 48.96 |
| 1128 | 49.31 |
| 1129 | 48.83 |
| 1130 | 47.65 |
| 1131 | 47.79 |
| 1132 | 45.55 |
| 1133 | 46.23 |
| 1134 | 46.46 |
| 1135 | 45.84 |
| 1136 | 47.28 |
| 1137 | 47.81 |
| 1138 | 47.83 |
| 1139 | 48.86 |
| 1140 | 48.64 |
| 1141 | 49.04 |
| 1142 | 49.36 |
| 1143 | 50.32 |
| 1144 | 50.81 |
| 1145 | 51.12 |
| 1146 | 50.99 |
| 1147 | 48.57 |
| 1148 | 49.58 |
| 1149 | 49.49 |
| 1150 | 49.63 |
| 1151 | 48.29 |
| 1152 | 48.32 |
| 1153 | 47.68 |
| 1154 | 47.40 |
| 1155 | 48.13 |
| 1156 | 45.80 |
| 1157 | 45.68 |
| 1158 | 45.82 |
| 1159 | 46.10 |
| 1160 | 46.41 |
| 1161 | 44.79 |
| 1162 | 44.47 |
| 1163 | 44.73 |
| 1164 | 44.24 |
| 1165 | 43.34 |
| 1166 | 42.48 |
| 1167 | 42.53 |
| 1168 | 42.86 |
| 1169 | 43.24 |
| 1170 | 44.25 |
| 1171 | 44.74 |
| 1172 | 44.88 |
| 1173 | 46.02 |
| 1174 | 45.98 |
| 1175 | 45.78 |
| 1176 | 45.11 |
| 1177 | 45.52 |
| 1178 | 44.25 |
| 1179 | 44.40 |
| 1180 | 45.06 |
| 1181 | 45.48 |
| 1182 | 46.06 |
| 1183 | 46.53 |
| 1184 | 46.02 |
| 1185 | 46.40 |
| 1186 | 47.10 |
| 1187 | 46.73 |
| 1188 | 45.78 |
| 1189 | 46.21 |
| 1190 | 47.77 |
| 1191 | 48.58 |
| 1192 | 49.05 |
| 1193 | 49.72 |
| 1194 | 50.21 |
| 1195 | 49.19 |
| 1196 | 49.60 |
| 1197 | 49.03 |
| 1198 | 49.57 |
| 1199 | 49.37 |
| 1200 | 49.07 |
| 1201 | 49.59 |
| 1202 | 48.54 |
| 1203 | 48.81 |
| 1204 | 47.59 |
| 1205 | 47.57 |
| 1206 | 46.80 |
| 1207 | 47.07 |
| 1208 | 48.59 |
| 1209 | 47.39 |
| 1210 | 47.65 |
| 1211 | 48.45 |
| 1212 | 47.24 |
| 1213 | 47.65 |
| 1214 | 46.40 |
| 1215 | 46.46 |
| 1216 | 45.96 |
| 1217 | 47.26 |
Dapat dilihat bahwa data tersebut terdiri atas 1217 series dengan hanya terdiri dari dua kolom, yakni date dan dcoilwtico (harga minyak harian). Selanjutnya untuk kepentingan analisis time series, maka data tersebut harus diformat terlebih dahulu ke dalam clas (ts). Berikut plot time series harga harian oli.
yt <- datprak$dcoilwtico
xt <- datprak$date
#Plot Fluktuasi Harga Oli
ts.y <-ts(yt)
ts.x <- ts(xt)
plot(ts.y, lwd=2,type='o', main = "Time Series Plot: Harga Oli", ylab="Harga")
points(ts.y)
Berdasarkan plot diatas terlihat ada kecenderungan penurunan harga oli
dalam rentang waktu ke-400 hingga 1200 walau selalu fluktuatif. Dengan
mengamati korelasi antara Harga dengan Time, kita dapat menduga apakah
ada autokorelasi atau tidak dalam model tersebut.
cor(datprak$date, datprak$dcoilwtico)
## [1] -0.8373827
Didapatkan adanya korelasi yang cukup tinggi antara time dengan harga harian oli yakni sebesar 0.837 dan bernilai negatif yang sesuai dengan apa yang ditampilkan dalam plot diatas. Melalui data ini, kita dapat menduga adanya autokorelasi dalam time series tersebut.
Sebelum melakukan analisis, data tersebut akan dibagi menjadi dua dengan proporsi 75% sebagai data training dan 25% sebagai data testing. Data training digunakan untuk membangun model analisis dan data testing akan digunakan untuk pendugaan dengan menggunakan model yang telah dihasilkan oleh data training.
#SPLIT DATA
trains<-as.vector(datprak[1:913,])
tests<-as.vector(datprak[914:1217,])
#data time series
trains.ts<-ts(trains)
tests.ts<-ts(tests)
datas.ts<-ts(datprak)
modelawal <- lm(dcoilwtico ~ date,trains)
summary(modelawal)
##
## Call:
## lm(formula = dcoilwtico ~ date, data = trains)
##
## Residuals:
## Min 1Q Median 3Q Max
## -22.6014 -11.0797 -0.6917 9.1941 27.3245
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 114.527678 0.842646 135.91 <2e-16 ***
## date -0.088440 0.001597 -55.37 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.72 on 911 degrees of freedom
## Multiple R-squared: 0.7709, Adjusted R-squared: 0.7707
## F-statistic: 3066 on 1 and 911 DF, p-value: < 2.2e-16
dwtest(modelawal)
##
## Durbin-Watson test
##
## data: modelawal
## DW = 0.0098255, p-value < 2.2e-16
## alternative hypothesis: true autocorrelation is greater than 0
Berdasarkan model analisis diatas yang dites menggunakan Durbin-Watson test, alpha yang diperoleh adalah < 2.2e-16 yang menunjukkan adanya autokorelasi di dalam model. Oleh karena itu, perlu ditangani salah satunya dengan peubah Lag.
Metode Koyck didasarkan asumsi bahwa semakin jauh jarak lag peubah independen dari periode sekarang maka semakin kecil pengaruh peubah lag terhadap peubah dependen
Koyck mengusulkan suatu metode untuk menduga model dinamis distributed lag dengan mengasumsikan bahwa semua koefisien 𝛽 mempunyai tanda sama.
Model Koyck merupakan jenis paling umum dari model infinite distributed lag dan juga dikenal sebagai geometric lag.
#MODEL KOYCK
model.koycks = dLagM::koyckDlm(x = trains$date, y = trains$dcoilwtico)
summary(model.koycks)
##
## Call:
## "Y ~ (Intercept) + Y.1 + X.t"
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.902204 -0.761215 -0.007357 0.763272 3.944300
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6218043 0.3855878 1.613 0.1072
## Y.1 0.9943292 0.0032831 302.859 <2e-16 ***
## X.t -0.0005459 0.0003311 -1.649 0.0995 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.26 on 909 degrees of freedom
## Multiple R-Squared: 0.9978, Adjusted R-squared: 0.9978
## Wald test: 2.022e+05 on 2 and 909 DF, p-value: < 2.2e-16
##
## Diagnostic tests:
## NULL
##
## alpha beta phi
## Geometric coefficients: 109.65 -0.0005459222 0.9943292
Berdasarkan hasil pembentukan model dengan model koycks berparameter alpha = 109.65 , beta -0.0005459222, dan phi 0.9943292.
AIC(model.koycks)
## [1] 3013.966
BIC(model.koycks)
## [1] 3033.229
#ramalan
(fore.koycks <- forecast(model.koycks, x=tests$date, h=304))
## $forecasts
## [1] 48.86485 48.71003 48.55554 48.40139 48.24756 48.09406 47.94088 47.78803
## [9] 47.63550 47.48328 47.33139 47.17981 47.02854 46.87758 46.72694 46.57660
## [17] 46.42657 46.27684 46.12742 45.97830 45.82948 45.68095 45.53273 45.38480
## [25] 45.23716 45.08981 44.94275 44.79598 44.64949 44.50330 44.35738 44.21175
## [33] 44.06639 43.92131 43.77651 43.63199 43.48774 43.34376 43.20005 43.05661
## [41] 42.91344 42.77054 42.62790 42.48552 42.34340 42.20154 42.05995 41.91861
## [49] 41.77752 41.63669 41.49611 41.35578 41.21571 41.07588 40.93629 40.79696
## [57] 40.65787 40.51902 40.38041 40.24204 40.10391 39.96602 39.82836 39.69094
## [65] 39.55376 39.41680 39.28008 39.14358 39.00731 38.87127 38.73546 38.59987
## [73] 38.46450 38.32935 38.19443 38.05972 37.92523 37.79096 37.65691 37.52307
## [81] 37.38944 37.25602 37.12281 36.98982 36.85703 36.72445 36.59207 36.45990
## [89] 36.32793 36.19617 36.06461 35.93324 35.80208 35.67111 35.54034 35.40977
## [97] 35.27939 35.14920 35.01921 34.88941 34.75980 34.63037 34.50114 34.37209
## [105] 34.24323 34.11455 33.98606 33.85775 33.72962 33.60167 33.47390 33.34631
## [113] 33.21890 33.09166 32.96460 32.83771 32.71100 32.58446 32.45810 32.33190
## [121] 32.20587 32.08001 31.95432 31.82880 31.70344 31.57825 31.45322 31.32835
## [129] 31.20365 31.07910 30.95472 30.83050 30.70643 30.58253 30.45878 30.33518
## [137] 30.21174 30.08846 29.96533 29.84235 29.71952 29.59684 29.47432 29.35194
## [145] 29.22971 29.10762 28.98568 28.86389 28.74225 28.62074 28.49938 28.37817
## [153] 28.25709 28.13615 28.01536 27.89470 27.77418 27.65380 27.53356 27.41345
## [161] 27.29348 27.17364 27.05394 26.93436 26.81493 26.69562 26.57644 26.45739
## [169] 26.33847 26.21968 26.10102 25.98249 25.86408 25.74579 25.62763 25.50960
## [177] 25.39169 25.27390 25.15623 25.03869 24.92127 24.80396 24.68678 24.56971
## [185] 24.45276 24.33593 24.21921 24.10262 23.98613 23.86976 23.75351 23.63737
## [193] 23.52134 23.40542 23.28962 23.17392 23.05834 22.94286 22.82750 22.71224
## [201] 22.59709 22.48205 22.36711 22.25228 22.13755 22.02293 21.90842 21.79400
## [209] 21.67969 21.56549 21.45138 21.33738 21.22347 21.10967 20.99596 20.88236
## [217] 20.76885 20.65544 20.54213 20.42891 20.31579 20.20276 20.08984 19.97700
## [225] 19.86426 19.75161 19.63906 19.52659 19.41422 19.30194 19.18976 19.07766
## [233] 18.96565 18.85373 18.74190 18.63016 18.51850 18.40694 18.29546 18.18406
## [241] 18.07275 17.96153 17.85039 17.73934 17.62837 17.51748 17.40668 17.29596
## [249] 17.18532 17.07476 16.96428 16.85389 16.74357 16.63333 16.52318 16.41310
## [257] 16.30310 16.19317 16.08333 15.97356 15.86387 15.75425 15.64471 15.53525
## [265] 15.42586 15.31655 15.20730 15.09814 14.98904 14.88002 14.77107 14.66219
## [273] 14.55339 14.44465 14.33599 14.22739 14.11887 14.01042 13.90203 13.79371
## [281] 13.68546 13.57728 13.46917 13.36113 13.25315 13.14523 13.03739 12.92961
## [289] 12.82189 12.71424 12.60665 12.49913 12.39167 12.28428 12.17695 12.06968
## [297] 11.96247 11.85533 11.74825 11.64122 11.53426 11.42736 11.32052 11.21374
##
## $call
## forecast.koyckDlm(model = model.koycks, x = tests$date, h = 304)
##
## attr(,"class")
## [1] "forecast.koyckDlm" "dLagM"
Dapat kita lihat bahwa hasil nilai MAPE dari model training dan pendugaan testing hampir sama yang menunjukkan bahwa model yang dibentuk pas pada data testing.
#REGRESSION WITH DISTRIBUTED LAG -> estimasi parameter menggunakan least square
model.dlms = dLagM::dlm(x = trains$date,y = trains$dcoilwtico , q = 2)
summary(model.dlms)
##
## Call:
## lm(formula = model.formula, data = design)
##
## Residuals:
## Min 1Q Median 3Q Max
## -22.6226 -11.0569 -0.7863 9.3323 27.2625
##
## Coefficients: (2 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 114.716158 0.844635 135.82 <2e-16 ***
## x.t -0.088750 0.001599 -55.49 <2e-16 ***
## x.1 NA NA NA NA
## x.2 NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.69 on 909 degrees of freedom
## Multiple R-squared: 0.7721, Adjusted R-squared: 0.7718
## F-statistic: 3080 on 1 and 909 DF, p-value: < 2.2e-16
##
## AIC and BIC values for the model:
## AIC BIC
## 1 7219.302 7233.746
AIC(model.dlms)
## [1] 7219.302
BIC(model.dlms)
## [1] 7233.746
#ramalan
(fore.dlms <- forecast(model.dlms, x=tests$date, h=304))
## $forecasts
## [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [101] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [126] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [151] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [176] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [201] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [226] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [251] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [276] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [301] NA NA NA NA
##
## $call
## forecast.dlm(model = model.dlms, x = tests$date, h = 304)
##
## attr(,"class")
## [1] "forecast.dlm" "dLagM"
Optimum#penentuan lag optimum
finiteDLMauto(formula = dcoilwtico ~ date,
data.frame(trains), q.min = 1, q.max = 4 ,
model.type = "dlm", error.type = "AIC", trace = TRUE) ##q max lag maksimum
## q - k MASE AIC BIC GMRAE MBRAE R.Adj.Sq Ljung-Box
## 4 4 11.10340 7199.795 7214.232 13.37587 1.52986 0.77300 0
## 3 3 11.13259 7209.541 7223.981 13.51762 6.07992 0.77243 0
## 2 2 11.16090 7219.302 7233.746 13.54159 1.19923 0.77184 0
## 1 1 11.18840 7229.099 7243.546 13.65648 1.18870 0.77125 0
#model dlm dengan lag optimum
model.dlms2 = dLagM::dlm(x = trains$date,y = trains$dcoilwtico , q = 4) #terdapat lag yang tidak signifikan sehingga dapat dikurangi jumlah lagnya
summary(model.dlms2)
##
## Call:
## lm(formula = model.formula, data = design)
##
## Residuals:
## Min 1Q Median 3Q Max
## -22.6440 -11.0357 -0.8209 9.3452 27.2003
##
## Coefficients: (4 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 114.904838 0.846647 135.72 <2e-16 ***
## x.t -0.089059 0.001601 -55.62 <2e-16 ***
## x.1 NA NA NA NA
## x.2 NA NA NA NA
## x.3 NA NA NA NA
## x.4 NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.67 on 907 degrees of freedom
## Multiple R-squared: 0.7733, Adjusted R-squared: 0.773
## F-statistic: 3093 on 1 and 907 DF, p-value: < 2.2e-16
##
## AIC and BIC values for the model:
## AIC BIC
## 1 7199.795 7214.232
AIC(model.dlms2)
## [1] 7199.795
BIC(model.dlms2)
## [1] 7214.232
Apabila peubah dependen dipengaruhi oleh peubah independen pada waktu sekarang, serta dipengaruhii juga oleh peubah dependen itu sendiri pada satu waktu yang lalu maka model tersebut disebut autoregressive (Gujarati, 2004)
#penentuan lag optimum
ardlBoundOrders(data = data.frame(datprak) , formula = dcoilwtico ~ date, ic = "AIC",15 )
## $p
## date
## 1 15
##
## $q
## [1] 1
##
## $Stat.table
## q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8
## p = 1 3862.692 3862.457 3861.913 3861.731 3860.413 3858.324 3855.759 3854.799
## p = 2 3860.502 3862.457 3861.913 3861.731 3860.413 3858.324 3855.759 3854.799
## p = 3 3860.277 3860.277 3861.913 3861.731 3860.413 3858.324 3855.759 3854.799
## p = 4 3858.066 3859.740 3859.740 3861.731 3860.413 3858.324 3855.759 3854.799
## p = 5 3855.888 3857.685 3859.548 3859.548 3860.413 3858.324 3855.759 3854.799
## p = 6 3853.298 3855.293 3856.493 3857.850 3857.850 3858.324 3855.759 3854.799
## p = 7 3851.107 3852.952 3854.766 3856.765 3856.135 3856.135 3855.759 3854.799
## p = 8 3847.854 3849.444 3851.428 3853.244 3851.283 3853.250 3853.250 3854.799
## p = 9 3844.706 3846.234 3848.217 3850.017 3848.372 3850.354 3851.929 3851.929
## p = 10 3840.916 3842.233 3844.233 3845.905 3843.934 3845.929 3847.674 3849.534
## p = 11 3837.556 3838.961 3840.961 3842.673 3841.183 3843.106 3844.596 3846.593
## p = 12 3835.442 3836.887 3838.884 3840.635 3839.374 3841.193 3842.488 3844.484
## p = 13 3833.597 3835.143 3837.127 3838.960 3838.047 3839.749 3840.733 3842.680
## p = 14 3831.628 3833.265 3835.227 3837.111 3836.589 3838.159 3838.886 3840.743
## p = 15 3829.161 3830.890 3832.809 3834.762 3834.645 3836.046 3836.442 3838.185
## q = 9 q = 10 q = 11 q = 12 q = 13 q = 14 q = 15
## p = 1 3852.408 3851.451 3850.053 3849.841 3849.535 3848.861 3848.002
## p = 2 3852.408 3851.451 3850.053 3849.841 3849.535 3848.861 3848.002
## p = 3 3852.408 3851.451 3850.053 3849.841 3849.535 3848.861 3848.002
## p = 4 3852.408 3851.451 3850.053 3849.841 3849.535 3848.861 3848.002
## p = 5 3852.408 3851.451 3850.053 3849.841 3849.535 3848.861 3848.002
## p = 6 3852.408 3851.451 3850.053 3849.841 3849.535 3848.861 3848.002
## p = 7 3852.408 3851.451 3850.053 3849.841 3849.535 3848.861 3848.002
## p = 8 3852.408 3851.451 3850.053 3849.841 3849.535 3848.861 3848.002
## p = 9 3852.408 3851.451 3850.053 3849.841 3849.535 3848.861 3848.002
## p = 10 3849.534 3851.451 3850.053 3849.841 3849.535 3848.861 3848.002
## p = 11 3848.123 3848.123 3850.053 3849.841 3849.535 3848.861 3848.002
## p = 12 3845.860 3847.859 3847.859 3849.841 3849.535 3848.861 3848.002
## p = 13 3843.783 3845.748 3847.667 3847.667 3849.535 3848.861 3848.002
## p = 14 3841.555 3843.451 3845.277 3847.253 3847.253 3848.861 3848.002
## p = 15 3838.634 3840.430 3842.124 3844.042 3846.011 3846.011 3848.002
##
## $min.Stat
## [1] 3829.161
Lag optimum terjadi saat p = 15 dan q =1
#sama dengan ardl p=1 q=15
model.ardls <- dynlm(dcoilwtico ~ date+L(date)+L(dcoilwtico)+L(date,2)+L(date,3)+L(date,4)
+L(date,5)+L(date,6)+L(date,7)+L(date,8)+L(date,9)+L(date,10)+L(date,11)+L(date,12)
+L(date,13)+L(date,14)+L(date,15),data = trains.ts)
summary(model.ardls)
##
## Time series regression with "ts" data:
## Start = 16, End = 913
##
## Call:
## dynlm(formula = dcoilwtico ~ date + L(date) + L(dcoilwtico) +
## L(date, 2) + L(date, 3) + L(date, 4) + L(date, 5) + L(date,
## 6) + L(date, 7) + L(date, 8) + L(date, 9) + L(date, 10) +
## L(date, 11) + L(date, 12) + L(date, 13) + L(date, 14) + L(date,
## 15), data = trains.ts)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.9010 -0.7688 -0.0013 0.7679 3.9471
##
## Coefficients: (15 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5833573 0.4005678 1.456 0.146
## date -0.0005090 0.0003466 -1.469 0.142
## L(date) NA NA NA NA
## L(dcoilwtico) 0.9945910 0.0033728 294.888 <2e-16 ***
## L(date, 2) NA NA NA NA
## L(date, 3) NA NA NA NA
## L(date, 4) NA NA NA NA
## L(date, 5) NA NA NA NA
## L(date, 6) NA NA NA NA
## L(date, 7) NA NA NA NA
## L(date, 8) NA NA NA NA
## L(date, 9) NA NA NA NA
## L(date, 10) NA NA NA NA
## L(date, 11) NA NA NA NA
## L(date, 12) NA NA NA NA
## L(date, 13) NA NA NA NA
## L(date, 14) NA NA NA NA
## L(date, 15) NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.267 on 895 degrees of freedom
## Multiple R-squared: 0.9977, Adjusted R-squared: 0.9977
## F-statistic: 1.98e+05 on 2 and 895 DF, p-value: < 2.2e-16
lms1 <- dynlm(dcoilwtico ~ date+L(dcoilwtico),data = trains.ts)
summary(lms1)
##
## Time series regression with "ts" data:
## Start = 2, End = 913
##
## Call:
## dynlm(formula = dcoilwtico ~ date + L(dcoilwtico), data = trains.ts)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.9022 -0.7612 -0.0074 0.7633 3.9443
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6218043 0.3855878 1.613 0.1072
## date -0.0005459 0.0003311 -1.649 0.0995 .
## L(dcoilwtico) 0.9943292 0.0032831 302.859 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.26 on 909 degrees of freedom
## Multiple R-squared: 0.9978, Adjusted R-squared: 0.9978
## F-statistic: 2.022e+05 on 2 and 909 DF, p-value: < 2.2e-16
#SSE
deviance(lms1)
## [1] 1441.989
deviance(model.ardls)
## [1] 1437.523
#Diagnostik
#durbin watson
dwtest(lms1)
##
## Durbin-Watson test
##
## data: lms1
## DW = 2.0856, p-value = 0.8902
## alternative hypothesis: true autocorrelation is greater than 0
dwtest(model.ardls)
##
## Durbin-Watson test
##
## data: model.ardls
## DW = 2.0836, p-value = NA
## alternative hypothesis: true autocorrelation is greater than 0
Kedua model hasil regresi dengan peubah lag diatas memiliki nilai Dw diatas 2. Hal ini memunjukkan bahwa model tersebut tidak memiliki autokorelasi.
Fathurahman M. 2012. Metode Cochrane-Orcutt untuk Mengatasi Autokorelasipada Regresi Ordinary Least Squares. Jurnal Eksponensial. 3(1) : 33-35.