# load the essential package
Packages <- c("tidyverse", "moments")

lapply(Packages, library, character.only = TRUE)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.3.6     ✔ purrr   0.3.4
## ✔ tibble  3.1.8     ✔ dplyr   1.0.9
## ✔ tidyr   1.2.0     ✔ stringr 1.4.0
## ✔ readr   2.1.2     ✔ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## [[1]]
##  [1] "forcats"   "stringr"   "dplyr"     "purrr"     "readr"     "tidyr"    
##  [7] "tibble"    "ggplot2"   "tidyverse" "stats"     "graphics"  "grDevices"
## [13] "utils"     "datasets"  "methods"   "base"     
## 
## [[2]]
##  [1] "moments"   "forcats"   "stringr"   "dplyr"     "purrr"     "readr"    
##  [7] "tidyr"     "tibble"    "ggplot2"   "tidyverse" "stats"     "graphics" 
## [13] "grDevices" "utils"     "datasets"  "methods"   "base"
# load the dataset

df = read_csv('Data samples to analyze.csv')
## Rows: 580 Columns: 190
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (190): a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15,...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
sum(is.na(df)) # caculate the total missing value
## [1] 61
colSums(is.na(df)) # check which column contain missing value
##   a1   a2   a3   a4   a5   a6   a7   a8   a9  a10  a11  a12  a13  a14  a15  a16 
##    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
##  a17  a18  a19  a20  a21  a22  a23  a24  a25  a26  a27  a28  a29  a30  a31  a32 
##    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
##  a33  a34  a35  a36  a37  a38  a39  a40  a41  a42  a43  a44  a45  a46  a47  a48 
##    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
##  a49  a50  a51  a52  a53  a54  a55  a56  a57  a58  a59  a60  a61  a62  a63  a64 
##    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
##  a65  a66  a67  a68  a69  a70  a71  a72  a73  a74  a75  a76  a77  a78  a79  a80 
##    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
##  a81  a82  a83  a84  a85  a86  a87  a88  a89  a90  a91  a92  a93  a94  a95  a96 
##    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
##  a97  a98  a99 a100 a101 a102 a103 a104 a105 a106 a107 a108 a109 a110 a111 a112 
##   22    0    0    0    0    0   21    0    0    0    0    0    0    0    0    0 
## a113 a114 a115 a116 a117 a118 a119 a120 a121 a122 a123 a124 a125 a126 a127 a128 
##    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
## a129 a130 a131 a132 a133 a134 a135 a136 a137 a138 a139 a140 a141 a142 a143 a144 
##    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
## a145 a146 a147 a148 a149 a150 a151 a152 a153 a154 a155 a156 a157 a158 a159 a160 
##    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
## a161 a162 a163 a164 a165 a166 a167 a168 a169 a170 a171 a172 a173 a174 a175 a176 
##    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
## a177 a178 a179 a180 a181 a182 a183 a184 a185 a186 a187 a188 a189 a190 
##    0    0    0   18    0    0    0    0    0    0    0    0    0    0
#which(colSums(is.na(df))>0)
names(which(colSums(is.na(df))>0)) # get the column name of missing value
## [1] "a97"  "a103" "a180"
library(magicfor)               # load library
magic_for(silent = TRUE) # call magic_for()
#count all the min
for (i in names(df)){

 smallest =  min(df[i],na.rm = TRUE)
 biggest =  max(df[i],na.rm = TRUE)
 average = mean(df[[i]],na.rm = TRUE)
 middle = median(df[[i]],na.rm = TRUE)
 quantile_25 = quantile(df[i],.25,na.rm = TRUE)
 quantile_75 = quantile(df[i],.75,na.rm = TRUE)
 stdev = sd(df[[i]],na.rm = TRUE)
 variance = var(df[[i]],na.rm = TRUE)
 skew = skewness(df[[i]],na.rm = TRUE)
 

 put(smallest, biggest,average,middle, quantile_25,quantile_75,stdev,variance,skew)
}
df1 = magic_result_as_dataframe()
rownames(df1) <- df1$i

df1
##         i smallest biggest   average middle quantile_25 quantile_75     stdev
## a1     a1        2      34 18.177586   18.0       14.00       23.00  5.640145
## a2     a2        1      34 17.672414   18.0       14.00       22.00  5.649179
## a3     a3        3      34 17.434483   17.0       14.00       21.00  5.665170
## a4     a4        2      32 18.034483   18.0       14.00       22.00  5.838250
## a5     a5        2      33 18.124138   18.0       14.00       22.00  5.791880
## a6     a6        2      35 18.065517   18.0       14.00       22.00  5.903880
## a7     a7        4      34 17.534483   18.0       13.00       22.00  5.844311
## a8     a8        2      33 18.089655   18.0       14.00       23.00  5.856862
## a9     a9        1      34 18.234483   18.0       14.00       22.00  5.836593
## a10   a10        1      34 18.051724   18.0       14.00       22.00  5.759493
## a11   a11        3      35 18.379310   18.0       14.00       22.25  5.810263
## a12   a12        3      34 17.658621   18.0       13.75       22.00  5.616471
## a13   a13        4      32 17.518966   17.0       13.00       21.00  5.666127
## a14   a14        2      34 18.189655   18.0       14.00       22.00  5.787715
## a15   a15        3      34 17.870690   18.0       14.00       22.00  5.689323
## a16   a16        1      35 18.006897   18.0       14.00       22.00  5.935167
## a17   a17        3      35 17.743103   18.0       13.00       22.00  5.828393
## a18   a18        2      33 17.956897   18.0       14.00       22.00  5.745904
## a19   a19        2      34 17.915517   18.0       14.00       22.00  5.740933
## a20   a20        2      32 17.844828   18.0       14.00       22.00  5.718200
## a21   a21        2      33 17.874138   18.0       14.00       22.00  5.758198
## a22   a22        4      34 18.265517   18.0       14.00       22.00  5.642044
## a23   a23        2      34 17.831034   18.0       14.00       22.00  5.808612
## a24   a24        0      36 18.020690   16.0        8.00       28.00 11.750997
## a25   a25        1      34 17.793103   18.0       14.00       22.00  5.681101
## a26   a26        3      34 18.298276   19.0       14.00       22.00  5.634124
## a27   a27        4      34 18.139655   18.0       14.00       22.00  5.706961
## a28   a28        4      35 17.698276   18.0       13.00       22.00  5.897249
## a29   a29        1      35 17.948276   18.0       14.00       22.00  5.721886
## a30   a30        5      34 17.993103   18.0       14.00       22.00  5.468385
## a31   a31        2      36 17.813793   18.0       14.00       22.00  5.919420
## a32   a32        3      35 18.081034   18.0       14.00       22.00  5.559102
## a33   a33        2      32 18.203448   18.0       15.00       22.00  5.302913
## a34   a34        0      33 17.965517   18.0       14.00       22.00  5.826109
## a35   a35        3      34 17.408621   17.0       14.00       22.00  5.602577
## a36   a36        1      32 17.998276   18.0       14.00       22.00  5.623630
## a37   a37        0       9  4.487931    4.0        2.00        7.00  2.957650
## a38   a38        2      35 18.272414   18.0       14.00       22.00  5.839973
## a39   a39        2      35 18.475862   18.0       14.75       22.25  5.851747
## a40   a40        3      33 17.951724   18.0       14.00       22.00  5.610662
## a41   a41        4      34 17.855172   18.0       14.00       22.00  5.670856
## a42   a42        3      35 17.870690   18.0       14.00       21.25  5.760820
## a43   a43        3      35 18.025862   18.0       14.00       22.00  5.595861
## a44   a44        4     120 62.612069   61.0       36.00       90.00 30.936665
## a45   a45        3      34 18.053448   18.0       14.00       22.00  5.764423
## a46   a46        3      33 18.329310   18.0       15.00       22.00  5.506802
## a47   a47        2      33 17.801724   18.0       14.00       22.00  5.690066
## a48   a48        2      34 17.641379   18.0       14.00       22.00  5.709642
## a49   a49        3      35 18.022414   18.0       14.00       22.00  5.568960
## a50   a50        1      34 17.832759   18.0       14.00       21.00  5.729175
## a51   a51        2      33 18.003448   18.0       14.00       22.00  5.869036
## a52   a52        2      33 18.312069   18.0       14.00       23.00  5.822432
## a53   a53        1      32 18.025862   18.0       14.00       22.00  5.779275
## a54   a54        0      34 18.598276   19.0       15.00       23.00  5.946712
## a55   a55        4      35 17.858621   18.0       14.00       22.00  5.743271
## a56   a56        2      33 18.327586   18.0       15.00       22.00  5.460450
## a57   a57        3      34 17.363793   17.0       13.00       21.00  5.623820
## a58   a58        2      33 18.120690   18.0       14.00       22.00  5.652510
## a59   a59        2      34 17.639655   17.0       14.00       22.00  5.998804
## a60   a60        2      32 18.025862   18.0       14.00       22.00  5.799859
## a61   a61        3      36 17.910345   18.0       14.00       21.00  5.655226
## a62   a62        2      32 17.887931   18.0       14.00       22.00  5.688171
## a63   a63        2      26 13.151724   13.0        9.00       17.00  5.088619
## a64   a64        3      33 17.886207   18.0       14.00       22.00  5.929419
## a65   a65        5      34 18.305172   19.0       14.00       22.00  5.674685
## a66   a66        3      31 17.755172   18.0       14.00       22.00  5.485927
## a67   a67        1      34 18.144828   18.0       15.00       22.00  5.585547
## a68   a68        2      33 18.117241   18.0       14.00       22.00  5.661436
## a69   a69        2      34 18.341379   19.0       15.00       22.00  5.774461
## a70   a70        1      34 17.694828   17.5       14.00       22.00  5.852089
## a71   a71        3      32 18.208621   18.0       14.00       22.00  5.585844
## a72   a72        3      34 17.351724   17.0       13.00       21.00  5.789074
## a73   a73        4      33 18.020690   18.0       14.00       22.00  5.626509
## a74   a74        2      34 18.224138   18.0       14.00       22.00  5.891486
## a75   a75        3      34 17.927586   18.0       14.00       22.00  5.813295
## a76   a76        2      32 17.955172   18.0       14.00       22.00  5.730390
## a77   a77        3      35 17.906897   18.0       14.00       22.00  5.632525
## a78   a78        2      34 17.722414   18.0       14.00       22.00  5.577885
## a79   a79        3      34 17.565517   17.0       14.00       22.00  5.640728
## a80   a80        2      33 18.334483   19.0       15.00       22.00  5.496916
## a81   a81        2      35 18.196552   18.0       14.00       22.00  5.790766
## a82   a82        1      35 17.860345   18.0       14.00       22.00  5.772259
## a83   a83        0       9  4.350000    4.0        2.00        7.00  2.824134
## a84   a84        3      34 17.537931   17.5       14.00       21.00  5.484814
## a85   a85        1      34 18.243103   18.0       14.00       22.00  5.893517
## a86   a86        3      34 18.210345   18.0       14.00       22.00  5.786402
## a87   a87        3      35 17.887931   18.0       14.00       22.00  5.849836
## a88   a88        3      33 18.136207   18.0       14.00       22.00  5.650476
## a89   a89        1      36 17.963793   18.0       14.00       22.00  5.951189
## a90   a90        3      32 17.915517   18.0       14.00       22.00  5.600836
## a91   a91        3      33 17.812069   18.0       14.00       22.00  5.680089
## a92   a92        2      36 17.851724   18.0       13.00       22.00  5.808583
## a93   a93        2      34 18.439655   18.5       14.00       22.00  5.735519
## a94   a94        4      32 18.131034   18.0       14.00       22.00  5.584960
## a95   a95        3      34 18.250000   18.0       14.00       22.00  5.686203
## a96   a96        4      33 18.056897   18.0       14.00       22.00  5.631322
## a97   a97        2      34 18.084229   18.0       14.00       22.00  5.685826
## a98   a98        1      33 17.989655   18.0       14.00       22.00  5.933998
## a99   a99        1      33 17.986207   18.0       14.00       22.00  5.987882
## a100 a100        3      33 17.905172   18.0       14.00       22.00  5.533035
## a101 a101        3      34 18.013793   18.0       14.00       22.00  5.578439
## a102 a102        2      34 17.515517   17.0       14.00       22.00  5.655764
## a103 a103        3      34 18.078712   18.0       14.00       22.00  5.798983
## a104 a104        2      33 18.024138   18.0       14.00       22.00  5.595715
## a105 a105        2      34 18.100000   18.0       14.00       22.00  5.774729
## a106 a106        4      35 18.020690   18.0       14.00       22.00  5.608677
## a107 a107        3      33 17.808621   18.0       14.00       22.00  5.822320
## a108 a108        2      32 18.339655   19.0       14.00       22.25  5.694904
## a109 a109        5     118 62.410345   61.0       34.75       90.00 30.816644
## a110 a110        1      32 18.070690   18.0       14.00       22.00  5.768131
## a111 a111        0      34 18.106897   18.0       14.00       22.00  5.513584
## a112 a112        4      34 18.196552   18.0       14.00       22.00  5.697255
## a113 a113        6     121 62.437931   60.0       36.00       90.00 30.959184
## a114 a114        2      34 17.617241   18.0       13.00       22.00  5.881828
## a115 a115        4      43 22.970690   23.0       17.00       28.00  7.313661
## a116 a116        3      35 17.998276   18.0       13.00       22.00  6.059150
## a117 a117        1      32 18.063793   18.0       14.00       22.00  5.580722
## a118 a118        0      81 19.815517   12.0        2.00       32.75 20.757222
## a119 a119        3      33 17.932759   18.0       13.00       22.00  5.796845
## a120 a120        1      32 17.624138   17.0       14.00       22.00  5.718204
## a121 a121        1      35 17.967241   18.0       14.00       22.00  5.668502
## a122 a122        3      35 17.653448   17.5       14.00       22.00  5.668040
## a123 a123        3      32 18.034483   18.0       14.00       22.00  5.849776
## a124 a124        3      34 18.039655   18.0       14.00       22.00  5.696723
## a125 a125        3      33 18.156897   18.0       14.00       22.00  5.686806
## a126 a126        3      35 17.600000   18.0       14.00       21.25  5.744593
## a127 a127        1      34 17.525862   18.0       13.00       21.00  5.844356
## a128 a128        1      32 18.065517   18.0       14.75       22.00  5.779110
## a129 a129        2      36 17.660345   17.0       14.00       21.00  5.812572
## a130 a130        3      31 17.793103   18.0       14.00       21.25  5.414299
## a131 a131        3      33 17.772414   18.0       14.00       21.25  5.501446
## a132 a132        3      34 17.713793   17.0       14.00       22.00  5.974397
## a133 a133        2      33 18.212069   18.0       14.00       22.00  5.638033
## a134 a134        3      36 18.277586   18.0       14.00       22.00  5.884658
## a135 a135        2      34 18.141379   18.0       14.00       22.00  5.435190
## a136 a136        0      33 17.765517   18.0       13.75       22.00  6.028732
## a137 a137        1      36 17.936207   18.0       14.00       22.00  6.037682
## a138 a138        2      33 18.037931   18.0       14.00       22.00  5.680492
## a139 a139        1      36 18.322414   18.0       14.00       23.00  5.894687
## a140 a140        1      34 17.756897   18.0       14.00       22.00  5.755034
## a141 a141        0       9  4.505172    4.0        2.00        7.00  2.937749
## a142 a142        3      33 17.500000   18.0       13.00       22.00  5.800512
## a143 a143        0      31 17.977586   18.0       14.00       22.00  5.614979
## a144 a144        2      34 18.068966   18.0       14.00       22.00  5.685670
## a145 a145        2      35 17.837931   18.0       14.00       22.00  5.811484
## a146 a146        5      34 17.979310   18.0       14.00       22.00  5.500471
## a147 a147        0       9  4.296552    4.0        2.00        7.00  2.967001
## a148 a148        1      32 17.784483   18.0       14.00       22.00  5.739609
## a149 a149        3      33 18.020690   18.0       14.00       22.00  5.638161
## a150 a150        3      35 18.631034   19.0       15.00       23.00  5.927169
## a151 a151        2      43 22.950000   23.0       17.00       29.00  7.925337
## a152 a152        1      34 18.218966   18.0       14.00       22.00  5.805005
## a153 a153        2      33 18.144828   18.0       14.00       22.00  5.368274
## a154 a154        3      33 18.036207   18.0       14.00       22.00  5.504942
## a155 a155        3      35 18.236207   18.0       15.00       22.00  5.549999
## a156 a156        2      33 18.143103   18.0       14.00       22.00  5.802912
## a157 a157        2      34 17.550000   17.0       13.00       21.00  5.827922
## a158 a158        3      33 18.425862   18.0       14.00       22.00  5.622833
## a159 a159        2      35 18.068966   18.0       14.00       22.00  5.639921
## a160 a160        2      36 18.129310   18.0       14.00       22.00  5.759621
## a161 a161        3      34 18.434483   18.0       14.00       23.00  5.852610
## a162 a162        2      35 18.246552   18.0       14.00       22.00  5.841567
## a163 a163        2      34 17.924138   18.0       14.00       22.00  5.880600
## a164 a164        3      43 22.660345   23.0       17.00       28.00  7.391365
## a165 a165        3      34 17.839655   18.0       14.00       22.00  5.649841
## a166 a166        3      36 18.246552   18.0       14.00       23.00  5.847773
## a167 a167        1      35 18.124138   18.0       14.00       22.00  5.671348
## a168 a168        2      34 18.341379   18.0       15.00       22.00  5.664239
## a169 a169        4      33 17.860345   18.0       14.00       22.00  5.687864
## a170 a170        3      34 18.115517   18.0       14.00       22.00  5.602747
## a171 a171        4      32 18.201724   18.0       14.00       22.00  5.616931
## a172 a172        4      34 17.724138   18.0       14.00       22.00  5.719080
## a173 a173        3      34 18.068966   18.0       14.00       22.00  5.775184
## a174 a174        2      34 17.925862   18.0       14.00       22.00  5.665978
## a175 a175        2      33 18.172414   18.0       14.00       22.00  5.795710
## a176 a176        0      32 18.079310   18.0       14.00       22.00  5.709482
## a177 a177        1      32 17.765517   17.0       13.75       22.00  5.949719
## a178 a178        1      44 22.953448   23.0       17.00       29.00  7.743485
## a179 a179        3      34 17.660345   18.0       13.75       22.00  6.006917
## a180 a180        2      34 18.215302   18.0       14.00       22.00  5.831097
## a181 a181        2      34 18.229310   18.0       14.00       22.00  5.704663
## a182 a182        4      32 18.110345   18.0       14.00       22.00  5.761365
## a183 a183        2      33 18.481034   18.0       15.00       23.00  5.810299
## a184 a184        4      34 18.046552   18.0       14.00       22.00  5.746478
## a185 a185        3      36 18.205172   18.0       14.00       22.00  5.828668
## a186 a186        0      35 18.444828   19.0       14.00       23.00  5.934477
## a187 a187        3      35 18.070690   18.0       14.00       22.00  5.685801
## a188 a188        7     122 62.706897   60.0       37.00       89.00 30.832496
## a189 a189        4      34 18.341379   18.0       14.00       22.00  5.617701
## a190 a190        2      33 18.037931   18.0       14.00       22.00  6.105459
##        variance         skew
## a1    31.811241 -0.033171032
## a2    31.913227  0.137568276
## a3    32.094146  0.066922752
## a4    34.085165 -0.054304994
## a5    33.545876  0.008180447
## a6    34.855804  0.060994052
## a7    34.155976  0.019112968
## a8    34.302829 -0.058683120
## a9    34.065821 -0.076214501
## a10   33.171759  0.085407774
## a11   33.759157  0.010590387
## a12   31.544744 -0.011860837
## a13   32.104994  0.080686639
## a14   33.497648 -0.038010394
## a15   32.368397  0.021594988
## a16   35.226205 -0.009756053
## a17   33.970160  0.108289792
## a18   33.015410  0.012729070
## a19   32.958308 -0.131667026
## a20   32.697814 -0.072876919
## a21   33.156843  0.017772703
## a22   31.832660  0.105157537
## a23   33.739968  0.117513887
## a24  138.085927  0.029535952
## a25   32.274909 -0.132305492
## a26   31.743348 -0.074276039
## a27   32.569409 -0.017775031
## a28   34.777545  0.161182859
## a29   32.739980 -0.089675415
## a30   29.903234  0.143916865
## a31   35.039533  0.022826929
## a32   30.903612  0.008621030
## a33   28.120886 -0.033970075
## a34   33.943541 -0.110790907
## a35   31.388872 -0.097622743
## a36   31.625213 -0.122138609
## a37    8.747695 -0.016727374
## a38   34.105283 -0.026260179
## a39   34.242940 -0.105164862
## a40   31.479531 -0.064107556
## a41   32.158609  0.066974440
## a42   33.187050  0.092119587
## a43   31.313665  0.148154963
## a44  957.077229  0.071103725
## a45   33.228572  0.054797297
## a46   30.324873 -0.006748124
## a47   32.376854 -0.254578406
## a48   32.600012 -0.062332704
## a49   31.013314 -0.059155310
## a50   32.823450  0.133883292
## a51   34.445584 -0.050331455
## a52   33.900718 -0.051100139
## a53   33.400021 -0.116520067
## a54   35.363382 -0.136507646
## a55   32.985159  0.019307831
## a56   29.816509 -0.094434864
## a57   31.627357  0.115665173
## a58   31.950867 -0.048690619
## a59   35.985644  0.050049369
## a60   33.638363 -0.071148584
## a61   31.981585  0.023711718
## a62   32.355295 -0.020961838
## a63   25.894038  0.062337390
## a64   35.158013 -0.003564410
## a65   32.202046 -0.008242009
## a66   30.095396 -0.095307791
## a67   31.198332 -0.052338253
## a68   32.051861 -0.045079919
## a69   33.344399 -0.034110501
## a70   34.246951 -0.077166365
## a71   31.201653  0.066164451
## a72   33.513382  0.202786852
## a73   31.657602 -0.023967667
## a74   34.709606 -0.078597417
## a75   33.794402  0.157509101
## a76   32.837365 -0.043332537
## a77   31.725341 -0.023728179
## a78   31.112796 -0.078978213
## a79   31.817807  0.090962701
## a80   30.216080 -0.171920029
## a81   33.532976 -0.012488708
## a82   33.318977 -0.030962161
## a83    7.975734  0.027879670
## a84   30.083187  0.068331018
## a85   34.733545  0.067468873
## a86   33.482449  0.152008330
## a87   34.220579 -0.107322300
## a88   31.927875 -0.022309244
## a89   35.416649  0.022819657
## a90   31.369362 -0.127443653
## a91   32.263412 -0.001879013
## a92   33.739634  0.056271229
## a93   32.896180 -0.042698097
## a94   31.191781 -0.104296659
## a95   32.332902 -0.045268030
## a96   31.711783 -0.020029003
## a97   32.328620 -0.088133977
## a98   35.212328 -0.082970437
## a99   35.854732  0.013083930
## a100  30.614481 -0.034327268
## a101  31.118980  0.008488230
## a102  31.987669 -0.058665894
## a103  33.628202 -0.002053521
## a104  31.312024  0.029095573
## a105  33.347496  0.065608015
## a106  31.457257  0.163867802
## a107  33.899407 -0.140285708
## a108  32.431931 -0.200922023
## a109 949.665523  0.071927802
## a110  33.271333 -0.029728542
## a111  30.399607 -0.080538874
## a112  32.458710 -0.074744604
## a113 958.471098  0.068211390
## a114  34.595903  0.005298020
## a115  53.489640 -0.059412196
## a116  36.713296 -0.030298414
## a117  31.144455 -0.106935862
## a118 430.862280  1.005016026
## a119  33.603416  0.174995898
## a120  32.697862 -0.004397678
## a121  32.131913 -0.079574621
## a122  32.126672  0.042927920
## a123  34.219880 -0.038510734
## a124  32.452656 -0.030728570
## a125  32.339762 -0.022396163
## a126  33.000345  0.026039949
## a127  34.156498  0.037610642
## a128  33.398118 -0.215597186
## a129  33.785990  0.213161271
## a130  29.314633 -0.139010990
## a131  30.265904  0.054954871
## a132  35.693419  0.026655194
## a133  31.787419 -0.037267932
## a134  34.629203  0.060205956
## a135  29.541290 -0.048363476
## a136  36.345614 -0.151807319
## a137  36.453609  0.078511703
## a138  32.267989 -0.213471004
## a139  34.747338  0.008843810
## a140  33.120419 -0.108126906
## a141   8.630370  0.029535952
## a142  33.645941  0.049423253
## a143  31.527994 -0.168941342
## a144  32.326842  0.019987883
## a145  33.773343 -0.101650899
## a146  30.255184  0.013413072
## a147   8.803097  0.083542622
## a148  32.943109  0.039029499
## a149  31.788863 -0.074093879
## a150  35.131332 -0.070391677
## a151  62.810967 -0.010639045
## a152  33.698085  0.016542910
## a153  28.818367 -0.077806838
## a154  30.304386 -0.083007987
## a155  30.802486 -0.007387882
## a156  33.673787 -0.025397668
## a157  33.964680  0.154574049
## a158  31.616256  0.036686959
## a159  31.808707  0.010323023
## a160  33.173233  0.088451249
## a161  34.253040  0.096107620
## a162  34.123909 -0.038152423
## a163  34.581454 -0.011516680
## a164  54.632276  0.037549802
## a165  31.920705 -0.042346912
## a166  34.196448  0.035297066
## a167  32.164183 -0.028150153
## a168  32.083604 -0.094833387
## a169  32.351793  0.081318904
## a170  31.390778  0.105396718
## a171  31.549911 -0.088712881
## a172  32.707879  0.021816909
## a173  33.352748  0.014308387
## a174  32.103302 -0.116553197
## a175  33.590257 -0.053459068
## a176  32.598190 -0.103084423
## a177  35.399154  0.023468560
## a178  59.961560  0.020653308
## a179  36.083053  0.073260480
## a180  34.001691  0.031897555
## a181  32.543181  0.039029473
## a182  33.193330 -0.020761751
## a183  33.759571 -0.046403285
## a184  33.022009  0.008660971
## a185  33.973376  0.122827256
## a186  35.218022 -0.082218610
## a187  32.328328 -0.056638915
## a188 950.642785  0.047287837
## a189  31.558561  0.067116169
## a190  37.276624 -0.099832142
df2 = data.frame(t(df1[-1]))

df2
##                      a1         a2          a3          a4           a5
## smallest     2.00000000  1.0000000  3.00000000  2.00000000  2.000000000
## biggest     34.00000000 34.0000000 34.00000000 32.00000000 33.000000000
## average     18.17758621 17.6724138 17.43448276 18.03448276 18.124137931
## middle      18.00000000 18.0000000 17.00000000 18.00000000 18.000000000
## quantile_25 14.00000000 14.0000000 14.00000000 14.00000000 14.000000000
## quantile_75 23.00000000 22.0000000 21.00000000 22.00000000 22.000000000
## stdev        5.64014549  5.6491793  5.66516952  5.83825014  5.791880158
## variance    31.81124114 31.9132273 32.09414567 34.08516467 33.545875767
## skew        -0.03317103  0.1375683  0.06692275 -0.05430499  0.008180447
##                      a6          a7          a8         a9         a10
## smallest     2.00000000  4.00000000  2.00000000  1.0000000  1.00000000
## biggest     35.00000000 34.00000000 33.00000000 34.0000000 34.00000000
## average     18.06551724 17.53448276 18.08965517 18.2344828 18.05172414
## middle      18.00000000 18.00000000 18.00000000 18.0000000 18.00000000
## quantile_25 14.00000000 13.00000000 14.00000000 14.0000000 14.00000000
## quantile_75 22.00000000 22.00000000 23.00000000 22.0000000 22.00000000
## stdev        5.90388039  5.84431146  5.85686169  5.8365933  5.75949292
## variance    34.85580370 34.15597642 34.30282890 34.0658210 33.17175868
## skew         0.06099405  0.01911297 -0.05868312 -0.0762145  0.08540777
##                     a11         a12         a13         a14         a15
## smallest     3.00000000  3.00000000  4.00000000  2.00000000  3.00000000
## biggest     35.00000000 34.00000000 32.00000000 34.00000000 34.00000000
## average     18.37931034 17.65862069 17.51896552 18.18965517 17.87068966
## middle      18.00000000 18.00000000 17.00000000 18.00000000 18.00000000
## quantile_25 14.00000000 13.75000000 13.00000000 14.00000000 14.00000000
## quantile_75 22.25000000 22.00000000 21.00000000 22.00000000 22.00000000
## stdev        5.81026305  5.61647080  5.66612687  5.78771523  5.68932305
## variance    33.75915669 31.54474421 32.10499375 33.49764755 32.36839676
## skew         0.01059039 -0.01186084  0.08068664 -0.03801039  0.02159499
##                      a16        a17         a18       a19         a20
## smallest     1.000000000  3.0000000  2.00000000  2.000000  2.00000000
## biggest     35.000000000 35.0000000 33.00000000 34.000000 32.00000000
## average     18.006896552 17.7431034 17.95689655 17.915517 17.84482759
## middle      18.000000000 18.0000000 18.00000000 18.000000 18.00000000
## quantile_25 14.000000000 13.0000000 14.00000000 14.000000 14.00000000
## quantile_75 22.000000000 22.0000000 22.00000000 22.000000 22.00000000
## stdev        5.935166764  5.8283925  5.74590376  5.740933  5.71820027
## variance    35.226204514 33.9701596 33.01541004 32.958308 32.69781431
## skew        -0.009756053  0.1082898  0.01272907 -0.131667 -0.07287692
##                    a21        a22        a23          a24        a25
## smallest     2.0000000  4.0000000  2.0000000   0.00000000  1.0000000
## biggest     33.0000000 34.0000000 34.0000000  36.00000000 34.0000000
## average     17.8741379 18.2655172 17.8310345  18.02068966 17.7931034
## middle      18.0000000 18.0000000 18.0000000  16.00000000 18.0000000
## quantile_25 14.0000000 14.0000000 14.0000000   8.00000000 14.0000000
## quantile_75 22.0000000 22.0000000 22.0000000  28.00000000 22.0000000
## stdev        5.7581979  5.6420440  5.8086115  11.75099685  5.6811011
## variance    33.1568430 31.8326604 33.7399678 138.08592698 32.2749092
## skew         0.0177727  0.1051575  0.1175139   0.02953595 -0.1323055
##                     a26         a27        a28         a29        a30
## smallest     3.00000000  4.00000000  4.0000000  1.00000000  5.0000000
## biggest     34.00000000 34.00000000 35.0000000 35.00000000 34.0000000
## average     18.29827586 18.13965517 17.6982759 17.94827586 17.9931034
## middle      19.00000000 18.00000000 18.0000000 18.00000000 18.0000000
## quantile_25 14.00000000 14.00000000 13.0000000 14.00000000 14.0000000
## quantile_75 22.00000000 22.00000000 22.0000000 22.00000000 22.0000000
## stdev        5.63412350  5.70696147  5.8972489  5.72188603  5.4683849
## variance    31.74334763 32.56940921 34.7775445 32.73997975 29.9032339
## skew        -0.07427604 -0.01777503  0.1611829 -0.08967542  0.1439169
##                     a31         a32         a33        a34         a35
## smallest     2.00000000  3.00000000  2.00000000  0.0000000  3.00000000
## biggest     36.00000000 35.00000000 32.00000000 33.0000000 34.00000000
## average     17.81379310 18.08103448 18.20344828 17.9655172 17.40862069
## middle      18.00000000 18.00000000 18.00000000 18.0000000 17.00000000
## quantile_25 14.00000000 14.00000000 15.00000000 14.0000000 14.00000000
## quantile_75 22.00000000 22.00000000 22.00000000 22.0000000 22.00000000
## stdev        5.91942000  5.55910173  5.30291299  5.8261086  5.60257727
## variance    35.03953308 30.90361205 28.12088619 33.9435412 31.38887201
## skew         0.02282693  0.00862103 -0.03397008 -0.1107909 -0.09762274
##                    a36         a37         a38        a39         a40
## smallest     1.0000000  0.00000000  2.00000000  2.0000000  3.00000000
## biggest     32.0000000  9.00000000 35.00000000 35.0000000 33.00000000
## average     17.9982759  4.48793103 18.27241379 18.4758621 17.95172414
## middle      18.0000000  4.00000000 18.00000000 18.0000000 18.00000000
## quantile_25 14.0000000  2.00000000 14.00000000 14.7500000 14.00000000
## quantile_75 22.0000000  7.00000000 22.00000000 22.2500000 22.00000000
## stdev        5.6236299  2.95765028  5.83997282  5.8517467  5.61066223
## variance    31.6252129  8.74769519 34.10528259 34.2429397 31.47953070
## skew        -0.1221386 -0.01672737 -0.02626018 -0.1051649 -0.06410756
##                     a41         a42       a43          a44        a45
## smallest     4.00000000  3.00000000  3.000000   4.00000000  3.0000000
## biggest     34.00000000 35.00000000 35.000000 120.00000000 34.0000000
## average     17.85517241 17.87068966 18.025862  62.61206897 18.0534483
## middle      18.00000000 18.00000000 18.000000  61.00000000 18.0000000
## quantile_25 14.00000000 14.00000000 14.000000  36.00000000 14.0000000
## quantile_75 22.00000000 21.25000000 22.000000  90.00000000 22.0000000
## stdev        5.67085609  5.76082022  5.595861  30.93666480  5.7644229
## variance    32.15860878 33.18704961 31.313665 957.07722887 33.2285719
## skew         0.06697444  0.09211959  0.148155   0.07110372  0.0547973
##                      a46        a47        a48         a49        a50
## smallest     3.000000000  2.0000000  2.0000000  3.00000000  1.0000000
## biggest     33.000000000 33.0000000 34.0000000 35.00000000 34.0000000
## average     18.329310345 17.8017241 17.6413793 18.02241379 17.8327586
## middle      18.000000000 18.0000000 18.0000000 18.00000000 18.0000000
## quantile_25 15.000000000 14.0000000 14.0000000 14.00000000 14.0000000
## quantile_75 22.000000000 22.0000000 22.0000000 22.00000000 21.0000000
## stdev        5.506802470  5.6900662  5.7096420  5.56895984  5.7291753
## variance    30.324873444 32.3768537 32.6000119 31.01331368 32.8234501
## skew        -0.006748124 -0.2545784 -0.0623327 -0.05915531  0.1338833
##                     a51         a52        a53        a54         a55
## smallest     2.00000000  2.00000000  1.0000000  0.0000000  4.00000000
## biggest     33.00000000 33.00000000 32.0000000 34.0000000 35.00000000
## average     18.00344828 18.31206897 18.0258621 18.5982759 17.85862069
## middle      18.00000000 18.00000000 18.0000000 19.0000000 18.00000000
## quantile_25 14.00000000 14.00000000 14.0000000 15.0000000 14.00000000
## quantile_75 22.00000000 23.00000000 22.0000000 23.0000000 22.00000000
## stdev        5.86903603  5.82243228  5.7792751  5.9467119  5.74327073
## variance    34.44558394 33.90071765 33.4000208 35.3633822 32.98515872
## skew        -0.05033145 -0.05110014 -0.1165201 -0.1365076  0.01930783
##                     a56        a57         a58         a59         a60
## smallest     2.00000000  3.0000000  2.00000000  2.00000000  2.00000000
## biggest     33.00000000 34.0000000 33.00000000 34.00000000 32.00000000
## average     18.32758621 17.3637931 18.12068966 17.63965517 18.02586207
## middle      18.00000000 17.0000000 18.00000000 17.00000000 18.00000000
## quantile_25 15.00000000 13.0000000 14.00000000 14.00000000 14.00000000
## quantile_75 22.00000000 21.0000000 22.00000000 22.00000000 22.00000000
## stdev        5.46044951  5.6238205  5.65250976  5.99880356  5.79985886
## variance    29.81650884 31.6273569 31.95086654 35.98564410 33.63836281
## skew        -0.09443486  0.1156652 -0.04869062  0.05004937 -0.07114858
##                     a61         a62         a63         a64          a65
## smallest     3.00000000  2.00000000  2.00000000  3.00000000  5.000000000
## biggest     36.00000000 32.00000000 26.00000000 33.00000000 34.000000000
## average     17.91034483 17.88793103 13.15172414 17.88620690 18.305172414
## middle      18.00000000 18.00000000 13.00000000 18.00000000 19.000000000
## quantile_25 14.00000000 14.00000000  9.00000000 14.00000000 14.000000000
## quantile_75 21.00000000 22.00000000 17.00000000 22.00000000 22.000000000
## stdev        5.65522638  5.68817146  5.08861852  5.92941930  5.674684638
## variance    31.98158537 32.35529450 25.89403847 35.15801322 32.202045739
## skew         0.02371172 -0.02096184  0.06233739 -0.00356441 -0.008242009
##                     a66         a67         a68        a69         a70
## smallest     3.00000000  1.00000000  2.00000000  2.0000000  1.00000000
## biggest     31.00000000 34.00000000 33.00000000 34.0000000 34.00000000
## average     17.75517241 18.14482759 18.11724138 18.3413793 17.69482759
## middle      18.00000000 18.00000000 18.00000000 19.0000000 17.50000000
## quantile_25 14.00000000 15.00000000 14.00000000 15.0000000 14.00000000
## quantile_75 22.00000000 22.00000000 22.00000000 22.0000000 22.00000000
## stdev        5.48592712  5.58554674  5.66143631  5.7744609  5.85208943
## variance    30.09539634 31.19833244 32.05186112 33.3443988 34.24695075
## skew        -0.09530779 -0.05233825 -0.04507992 -0.0341105 -0.07716637
##                     a71        a72         a73         a74        a75
## smallest     3.00000000  3.0000000  4.00000000  2.00000000  3.0000000
## biggest     32.00000000 34.0000000 33.00000000 34.00000000 34.0000000
## average     18.20862069 17.3517241 18.02068966 18.22413793 17.9275862
## middle      18.00000000 17.0000000 18.00000000 18.00000000 18.0000000
## quantile_25 14.00000000 13.0000000 14.00000000 14.00000000 14.0000000
## quantile_75 22.00000000 21.0000000 22.00000000 22.00000000 22.0000000
## stdev        5.58584395  5.7890744  5.62650889  5.89148592  5.8132953
## variance    31.20165267 33.5133822 31.65760229 34.70960634 33.7944018
## skew         0.06616445  0.2027869 -0.02396767 -0.07859742  0.1575091
##                     a76         a77         a78        a79       a80
## smallest     2.00000000  3.00000000  2.00000000  3.0000000  2.000000
## biggest     32.00000000 35.00000000 34.00000000 34.0000000 33.000000
## average     17.95517241 17.90689655 17.72241379 17.5655172 18.334483
## middle      18.00000000 18.00000000 18.00000000 17.0000000 19.000000
## quantile_25 14.00000000 14.00000000 14.00000000 14.0000000 15.000000
## quantile_75 22.00000000 22.00000000 22.00000000 22.0000000 22.000000
## stdev        5.73038963  5.63252527  5.57788450  5.6407275  5.496916
## variance    32.83736526 31.72534096 31.11279555 31.8178072 30.216080
## skew        -0.04333254 -0.02372818 -0.07897821  0.0909627 -0.171920
##                     a81         a82        a83         a84         a85
## smallest     2.00000000  1.00000000 0.00000000  3.00000000  1.00000000
## biggest     35.00000000 35.00000000 9.00000000 34.00000000 34.00000000
## average     18.19655172 17.86034483 4.35000000 17.53793103 18.24310345
## middle      18.00000000 18.00000000 4.00000000 17.50000000 18.00000000
## quantile_25 14.00000000 14.00000000 2.00000000 14.00000000 14.00000000
## quantile_75 22.00000000 22.00000000 7.00000000 21.00000000 22.00000000
## stdev        5.79076644  5.77225930 2.82413421  5.48481426  5.89351718
## variance    33.53297600 33.31897743 7.97573402 30.08318742 34.73354476
## skew        -0.01248871 -0.03096216 0.02787967  0.06833102  0.06746887
##                    a86        a87         a88         a89        a90
## smallest     3.0000000  3.0000000  3.00000000  1.00000000  3.0000000
## biggest     34.0000000 35.0000000 33.00000000 36.00000000 32.0000000
## average     18.2103448 17.8879310 18.13620690 17.96379310 17.9155172
## middle      18.0000000 18.0000000 18.00000000 18.00000000 18.0000000
## quantile_25 14.0000000 14.0000000 14.00000000 14.00000000 14.0000000
## quantile_75 22.0000000 22.0000000 22.00000000 22.00000000 22.0000000
## stdev        5.7864021  5.8498359  5.65047565  5.95118886  5.6008358
## variance    33.4824489 34.2205795 31.92787505 35.41664880 31.3693616
## skew         0.1520083 -0.1073223 -0.02230924  0.02281966 -0.1274437
##                      a91         a92        a93        a94         a95
## smallest     3.000000000  2.00000000  2.0000000  4.0000000  3.00000000
## biggest     33.000000000 36.00000000 34.0000000 32.0000000 34.00000000
## average     17.812068966 17.85172414 18.4396552 18.1310345 18.25000000
## middle      18.000000000 18.00000000 18.5000000 18.0000000 18.00000000
## quantile_25 14.000000000 13.00000000 14.0000000 14.0000000 14.00000000
## quantile_75 22.000000000 22.00000000 22.0000000 22.0000000 22.00000000
## stdev        5.680089079  5.80858282  5.7355191  5.5849603  5.68620274
## variance    32.263411947 33.73963433 32.8961795 31.1917813 32.33290155
## skew        -0.001879013  0.05627123 -0.0426981 -0.1042967 -0.04526803
##                   a96         a97         a98         a99        a100
## smallest     4.000000  2.00000000  1.00000000  1.00000000  3.00000000
## biggest     33.000000 34.00000000 33.00000000 33.00000000 33.00000000
## average     18.056897 18.08422939 17.98965517 17.98620690 17.90517241
## middle      18.000000 18.00000000 18.00000000 18.00000000 18.00000000
## quantile_25 14.000000 14.00000000 14.00000000 14.00000000 14.00000000
## quantile_75 22.000000 22.00000000 22.00000000 22.00000000 22.00000000
## stdev        5.631322  5.68582622  5.93399764  5.98788207  5.53303542
## variance    31.711783 32.32861978 35.21232803 35.85473170 30.61448097
## skew        -0.020029 -0.08813398 -0.08297044  0.01308393 -0.03432727
##                    a101        a102         a103        a104        a105
## smallest     3.00000000  2.00000000  3.000000000  2.00000000  2.00000000
## biggest     34.00000000 34.00000000 34.000000000 33.00000000 34.00000000
## average     18.01379310 17.51551724 18.078711986 18.02413793 18.10000000
## middle      18.00000000 17.00000000 18.000000000 18.00000000 18.00000000
## quantile_25 14.00000000 14.00000000 14.000000000 14.00000000 14.00000000
## quantile_75 22.00000000 22.00000000 22.000000000 22.00000000 22.00000000
## stdev        5.57843889  5.65576423  5.798982835  5.59571482  5.77472906
## variance    31.11898041 31.98766899 33.628201922 31.31202430 33.34749568
## skew         0.00848823 -0.05866589 -0.002053521  0.02909557  0.06560802
##                   a106       a107      a108        a109        a110        a111
## smallest     4.0000000  3.0000000  2.000000   5.0000000  1.00000000  0.00000000
## biggest     35.0000000 33.0000000 32.000000 118.0000000 32.00000000 34.00000000
## average     18.0206897 17.8086207 18.339655  62.4103448 18.07068966 18.10689655
## middle      18.0000000 18.0000000 19.000000  61.0000000 18.00000000 18.00000000
## quantile_25 14.0000000 14.0000000 14.000000  34.7500000 14.00000000 14.00000000
## quantile_75 22.0000000 22.0000000 22.250000  90.0000000 22.00000000 22.00000000
## stdev        5.6086769  5.8223198  5.694904  30.8166436  5.76813079  5.51358386
## variance    31.4572569 33.8994074 32.431931 949.6655232 33.27133286 30.39960693
## skew         0.1638678 -0.1402857 -0.200922   0.0719278 -0.02972854 -0.08053887
##                   a112         a113        a114       a115        a116
## smallest     4.0000000   6.00000000  2.00000000  4.0000000  3.00000000
## biggest     34.0000000 121.00000000 34.00000000 43.0000000 35.00000000
## average     18.1965517  62.43793103 17.61724138 22.9706897 17.99827586
## middle      18.0000000  60.00000000 18.00000000 23.0000000 18.00000000
## quantile_25 14.0000000  36.00000000 13.00000000 17.0000000 13.00000000
## quantile_75 22.0000000  90.00000000 22.00000000 28.0000000 22.00000000
## stdev        5.6972546  30.95918438  5.88182817  7.3136612  6.05914976
## variance    32.4587100 958.47109761 34.59590257 53.4896403 36.71329581
## skew        -0.0747446   0.06821139  0.00529802 -0.0594122 -0.03029841
##                   a117       a118       a119         a120        a121
## smallest     1.0000000   0.000000  3.0000000  1.000000000  1.00000000
## biggest     32.0000000  81.000000 33.0000000 32.000000000 35.00000000
## average     18.0637931  19.815517 17.9327586 17.624137931 17.96724138
## middle      18.0000000  12.000000 18.0000000 17.000000000 18.00000000
## quantile_25 14.0000000   2.000000 13.0000000 14.000000000 14.00000000
## quantile_75 22.0000000  32.750000 22.0000000 22.000000000 22.00000000
## stdev        5.5807218  20.757222  5.7968453  5.718204434  5.66850182
## variance    31.1444554 430.862280 33.6034155 32.697861950 32.13191293
## skew        -0.1069359   1.005016  0.1749959 -0.004397678 -0.07957462
##                    a122        a123        a124        a125        a126
## smallest     3.00000000  3.00000000  3.00000000  3.00000000  3.00000000
## biggest     35.00000000 32.00000000 34.00000000 33.00000000 35.00000000
## average     17.65344828 18.03448276 18.03965517 18.15689655 17.60000000
## middle      17.50000000 18.00000000 18.00000000 18.00000000 18.00000000
## quantile_25 14.00000000 14.00000000 14.00000000 14.00000000 14.00000000
## quantile_75 22.00000000 22.00000000 22.00000000 22.00000000 21.25000000
## stdev        5.66803952  5.84977604  5.69672328  5.68680599  5.74459271
## variance    32.12667203 34.21987970 32.45265618 32.33976237 33.00034542
## skew         0.04292792 -0.03851073 -0.03072857 -0.02239616  0.02603995
##                    a127       a128       a129      a130        a131        a132
## smallest     1.00000000  1.0000000  2.0000000  3.000000  3.00000000  3.00000000
## biggest     34.00000000 32.0000000 36.0000000 31.000000 33.00000000 34.00000000
## average     17.52586207 18.0655172 17.6603448 17.793103 17.77241379 17.71379310
## middle      18.00000000 18.0000000 17.0000000 18.000000 18.00000000 17.00000000
## quantile_25 13.00000000 14.7500000 14.0000000 14.000000 14.00000000 14.00000000
## quantile_75 21.00000000 22.0000000 21.0000000 21.250000 21.25000000 22.00000000
## stdev        5.84435604  5.7791105  5.8125717  5.414299  5.50144566  5.97439696
## variance    34.15649753 33.3981180 33.7859895 29.314633 30.26590435 35.69341909
## skew         0.03761064 -0.2155972  0.2131613 -0.139011  0.05495487  0.02665519
##                    a133        a134        a135       a136       a137      a138
## smallest     2.00000000  3.00000000  2.00000000  0.0000000  1.0000000  2.000000
## biggest     33.00000000 36.00000000 34.00000000 33.0000000 36.0000000 33.000000
## average     18.21206897 18.27758621 18.14137931 17.7655172 17.9362069 18.037931
## middle      18.00000000 18.00000000 18.00000000 18.0000000 18.0000000 18.000000
## quantile_25 14.00000000 14.00000000 14.00000000 13.7500000 14.0000000 14.000000
## quantile_75 22.00000000 22.00000000 22.00000000 22.0000000 22.0000000 22.000000
## stdev        5.63803324  5.88465829  5.43518997  6.0287323  6.0376824  5.680492
## variance    31.78741886 34.62920314 29.54128998 36.3456137 36.4536091 32.267989
## skew        -0.03726793  0.06020596 -0.04836348 -0.1518073  0.0785117 -0.213471
##                    a139       a140       a141        a142       a143
## smallest     1.00000000  1.0000000 0.00000000  3.00000000  0.0000000
## biggest     36.00000000 34.0000000 9.00000000 33.00000000 31.0000000
## average     18.32241379 17.7568966 4.50517241 17.50000000 17.9775862
## middle      18.00000000 18.0000000 4.00000000 18.00000000 18.0000000
## quantile_25 14.00000000 14.0000000 2.00000000 13.00000000 14.0000000
## quantile_75 23.00000000 22.0000000 7.00000000 22.00000000 22.0000000
## stdev        5.89468726  5.7550342 2.93774921  5.80051216  5.6149794
## variance    34.74733786 33.1204187 8.63037044 33.64594128 31.5279942
## skew         0.00884381 -0.1081269 0.02953595  0.04942325 -0.1689413
##                    a144       a145        a146       a147       a148
## smallest     2.00000000  2.0000000  5.00000000 0.00000000  1.0000000
## biggest     34.00000000 35.0000000 34.00000000 9.00000000 32.0000000
## average     18.06896552 17.8379310 17.97931034 4.29655172 17.7844828
## middle      18.00000000 18.0000000 18.00000000 4.00000000 18.0000000
## quantile_25 14.00000000 14.0000000 14.00000000 2.00000000 14.0000000
## quantile_75 22.00000000 22.0000000 22.00000000 7.00000000 22.0000000
## stdev        5.68566986  5.8114837  5.50047128 2.96700133  5.7396088
## variance    32.32684176 33.7733429 30.25518432 8.80309690 32.9431094
## skew         0.01998788 -0.1016509  0.01341307 0.08354262  0.0390295
##                    a149        a150        a151        a152        a153
## smallest     3.00000000  3.00000000  2.00000000  1.00000000  2.00000000
## biggest     33.00000000 35.00000000 43.00000000 34.00000000 33.00000000
## average     18.02068966 18.63103448 22.95000000 18.21896552 18.14482759
## middle      18.00000000 19.00000000 23.00000000 18.00000000 18.00000000
## quantile_25 14.00000000 15.00000000 17.00000000 14.00000000 14.00000000
## quantile_75 22.00000000 23.00000000 29.00000000 22.00000000 22.00000000
## stdev        5.63816132  5.92716899  7.92533704  5.80500519  5.36827412
## variance    31.78886308 35.13133226 62.81096718 33.69808528 28.81836698
## skew        -0.07409388 -0.07039168 -0.01063904  0.01654291 -0.07780684
##                    a154         a155        a156      a157        a158
## smallest     3.00000000  3.000000000  2.00000000  2.000000  3.00000000
## biggest     33.00000000 35.000000000 33.00000000 34.000000 33.00000000
## average     18.03620690 18.236206897 18.14310345 17.550000 18.42586207
## middle      18.00000000 18.000000000 18.00000000 17.000000 18.00000000
## quantile_25 14.00000000 15.000000000 14.00000000 13.000000 14.00000000
## quantile_75 22.00000000 22.000000000 22.00000000 21.000000 22.00000000
## stdev        5.50494199  5.549998779  5.80291190  5.827922  5.62283343
## variance    30.30438628 30.802486451 33.67378655 33.964680 31.61625573
## skew        -0.08300799 -0.007387882 -0.02539767  0.154574  0.03668696
##                    a159        a160        a161        a162        a163
## smallest     2.00000000  2.00000000  3.00000000  2.00000000  2.00000000
## biggest     35.00000000 36.00000000 34.00000000 35.00000000 34.00000000
## average     18.06896552 18.12931034 18.43448276 18.24655172 17.92413793
## middle      18.00000000 18.00000000 18.00000000 18.00000000 18.00000000
## quantile_25 14.00000000 14.00000000 14.00000000 14.00000000 14.00000000
## quantile_75 22.00000000 22.00000000 23.00000000 22.00000000 22.00000000
## stdev        5.63992084  5.75962088  5.85260970  5.84156731  5.88059983
## variance    31.80870705 33.17323268 34.25304032 34.12390864 34.58145435
## skew         0.01032302  0.08845125  0.09610762 -0.03815242 -0.01151668
##                   a164        a165        a166        a167        a168
## smallest     3.0000000  3.00000000  3.00000000  1.00000000  2.00000000
## biggest     43.0000000 34.00000000 36.00000000 35.00000000 34.00000000
## average     22.6603448 17.83965517 18.24655172 18.12413793 18.34137931
## middle      23.0000000 18.00000000 18.00000000 18.00000000 18.00000000
## quantile_25 17.0000000 14.00000000 14.00000000 14.00000000 15.00000000
## quantile_75 28.0000000 22.00000000 23.00000000 22.00000000 22.00000000
## stdev        7.3913650  5.64984111  5.84777287  5.67134756  5.66423908
## variance    54.6322762 31.92070454 34.19644750 32.16418319 32.08360431
## skew         0.0375498 -0.04234691  0.03529707 -0.02815015 -0.09483339
##                   a169       a170        a171        a172        a173
## smallest     4.0000000  3.0000000  4.00000000  4.00000000  3.00000000
## biggest     33.0000000 34.0000000 32.00000000 34.00000000 34.00000000
## average     17.8603448 18.1155172 18.20172414 17.72413793 18.06896552
## middle      18.0000000 18.0000000 18.00000000 18.00000000 18.00000000
## quantile_25 14.0000000 14.0000000 14.00000000 14.00000000 14.00000000
## quantile_75 22.0000000 22.0000000 22.00000000 22.00000000 22.00000000
## stdev        5.6878636  5.6027473  5.61693072  5.71908028  5.77518385
## variance    32.3517926 31.3907778 31.54991067 32.70787922 33.35274850
## skew         0.0813189  0.1053967 -0.08871288  0.02181691  0.01430839
##                   a174        a175       a176        a177        a178
## smallest     2.0000000  2.00000000  0.0000000  1.00000000  1.00000000
## biggest     34.0000000 33.00000000 32.0000000 32.00000000 44.00000000
## average     17.9258621 18.17241379 18.0793103 17.76551724 22.95344828
## middle      18.0000000 18.00000000 18.0000000 17.00000000 23.00000000
## quantile_25 14.0000000 14.00000000 14.0000000 13.75000000 17.00000000
## quantile_75 22.0000000 22.00000000 22.0000000 22.00000000 29.00000000
## stdev        5.6659776  5.79571020  5.7094824  5.94971884  7.74348499
## variance    32.1033024 33.59025669 32.5981895 35.39915431 59.96155976
## skew        -0.1165532 -0.05345907 -0.1030844  0.02346856  0.02065331
##                    a179        a180        a181        a182        a183
## smallest     3.00000000  2.00000000  2.00000000  4.00000000  2.00000000
## biggest     34.00000000 34.00000000 34.00000000 32.00000000 33.00000000
## average     17.66034483 18.21530249 18.22931034 18.11034483 18.48103448
## middle      18.00000000 18.00000000 18.00000000 18.00000000 18.00000000
## quantile_25 13.75000000 14.00000000 14.00000000 14.00000000 15.00000000
## quantile_75 22.00000000 22.00000000 22.00000000 22.00000000 23.00000000
## stdev        6.00691713  5.83109686  5.70466308  5.76136527  5.81029867
## variance    36.08305342 34.00169055 32.54318087 33.19332976 33.75957060
## skew         0.07326048  0.03189756  0.03902947 -0.02076175 -0.04640329
##                     a184       a185        a186        a187         a188
## smallest     4.000000000  3.0000000  0.00000000  3.00000000   7.00000000
## biggest     34.000000000 36.0000000 35.00000000 35.00000000 122.00000000
## average     18.046551724 18.2051724 18.44482759 18.07068966  62.70689655
## middle      18.000000000 18.0000000 19.00000000 18.00000000  60.00000000
## quantile_25 14.000000000 14.0000000 14.00000000 14.00000000  37.00000000
## quantile_75 22.000000000 22.0000000 23.00000000 22.00000000  89.00000000
## stdev        5.746477949  5.8286684  5.93447736  5.68580053  30.83249560
## variance    33.022008814 33.9733756 35.21802156 32.32832768 950.64278483
## skew         0.008660971  0.1228273 -0.08221861 -0.05663892   0.04728784
##                    a189        a190
## smallest     4.00000000  2.00000000
## biggest     34.00000000 33.00000000
## average     18.34137931 18.03793103
## middle      18.00000000 18.00000000
## quantile_25 14.00000000 14.00000000
## quantile_75 22.00000000 22.00000000
## stdev        5.61770070  6.10545857
## variance    31.55856113 37.27662438
## skew         0.06711617 -0.09983214
write.csv(df2,'newfile.csv')


# add the range and size manual
data = read_csv('newfile2.csv')
## New names:
## Rows: 11 Columns: 191
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (191): ...1, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14...
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`
dotchart(df$a1)