R Markdown

setwd("/home/martha/Descargas/TalleresEspacial/Taller12020EspacialExpl_geoR")
aquifer=read.table("aquifer.txt",head=T,dec=",")

Including Plots

g1=ggplot(aquifer, aes(Profundidad, Este)) + 
  geom_point() + 
  geom_line() +
  xlab("Este") + 
  ylab("Profundidad")

g2=ggplot(aquifer, aes(Profundidad, Norte)) + 
  geom_point() + 
  geom_line() +
  xlab("Norte") + 
  ylab("Profundidad")

g3=ggplot(aquifer, aes(Profundidad, Este*Norte)) + 
  geom_point() + 
  geom_line() +
  xlab("Interacción este,norte") + 
  ylab("Profundidad")

g3=ggplot(aquifer, aes(Profundidad, Este*Norte)) + 
  geom_point() + 
  geom_line() +
  xlab("Interacción este,norte") + 
  ylab("Profundidad")
plot_grid(g1,g2,g3)

cor(aquifer)
##                   Este      Norte Profundidad
## Este         1.0000000  0.1147565  -0.7788885
## Norte        0.1147565  1.0000000  -0.6200923
## Profundidad -0.7788885 -0.6200923   1.0000000
scatterplot3d(aquifer, highlight.3d=TRUE, col.axis="blue",
col.grid="lightblue", main="Tendencia de Profundidad", pch=20)

reg1 <- lm(Profundidad ~ Este + Norte, data = aquifer)
residuales1  <-  residuals(reg1)
summary(reg1)
## 
## Call:
## lm(formula = Profundidad ~ Este + Norte, data = aquifer)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -366.96 -161.53  -30.71  148.15  651.20 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 2591.4302    38.9599   66.52   <2e-16 ***
## Este          -6.7514     0.3438  -19.64   <2e-16 ***
## Norte         -5.9872     0.4066  -14.73   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 203.3 on 82 degrees of freedom
## Multiple R-squared:  0.8921, Adjusted R-squared:  0.8894 
## F-statistic: 338.9 on 2 and 82 DF,  p-value: < 2.2e-16
anova(reg1)
## Analysis of Variance Table
## 
## Response: Profundidad
##           Df   Sum Sq  Mean Sq F value    Pr(>F)    
## Este       1 19045642 19045642  460.95 < 2.2e-16 ***
## Norte      1  8960172  8960172  216.86 < 2.2e-16 ***
## Residuals 82  3388069    41318                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
reg2 <- lm(Profundidad ~ Este*Norte, data = aquifer)
residuales2  <-  residuals(reg2)
summary(reg2)
## 
## Call:
## lm(formula = Profundidad ~ Este * Norte, data = aquifer)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -406.30 -138.88  -13.04  129.36  722.48 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.627e+03  3.833e+01  68.546  < 2e-16 ***
## Este        -8.287e+00  5.658e-01 -14.646  < 2e-16 ***
## Norte       -6.649e+00  4.327e-01 -15.366  < 2e-16 ***
## Este:Norte   2.452e-02  7.401e-03   3.314  0.00138 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 191.9 on 81 degrees of freedom
## Multiple R-squared:  0.905,  Adjusted R-squared:  0.9014 
## F-statistic: 257.1 on 3 and 81 DF,  p-value: < 2.2e-16
anova(reg2)
## Analysis of Variance Table
## 
## Response: Profundidad
##            Df   Sum Sq  Mean Sq F value    Pr(>F)    
## Este        1 19045642 19045642  517.06 < 2.2e-16 ***
## Norte       1  8960172  8960172  243.25 < 2.2e-16 ***
## Este:Norte  1   404448   404448   10.98  0.001379 ** 
## Residuals  81  2983621    36835                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
reg3 <- lm(Profundidad ~ Este*Norte+I(Este^2)*I(Norte^2), data = aquifer)
residuales3  <-  residuals(reg3)
summary(reg3)
## 
## Call:
## lm(formula = Profundidad ~ Este * Norte + I(Este^2) * I(Norte^2), 
##     data = aquifer)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -372.7 -133.6  -20.3  129.9  505.1 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           2.538e+03  7.038e+01  36.055   <2e-16 ***
## Este                 -7.728e+00  6.028e-01 -12.822   <2e-16 ***
## Norte                -3.075e+00  1.770e+00  -1.737   0.0863 .  
## I(Este^2)            -6.792e-03  5.967e-03  -1.138   0.2585    
## I(Norte^2)           -2.372e-02  9.049e-03  -2.622   0.0105 *  
## Este:Norte            1.155e-02  9.680e-03   1.193   0.2365    
## I(Este^2):I(Norte^2)  2.251e-06  9.541e-07   2.360   0.0208 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 180.7 on 78 degrees of freedom
## Multiple R-squared:  0.9189, Adjusted R-squared:  0.9126 
## F-statistic: 147.2 on 6 and 78 DF,  p-value: < 2.2e-16
anova(reg3)
## Analysis of Variance Table
## 
## Response: Profundidad
##                      Df   Sum Sq  Mean Sq  F value    Pr(>F)    
## Este                  1 19045642 19045642 583.2335 < 2.2e-16 ***
## Norte                 1  8960172  8960172 274.3868 < 2.2e-16 ***
## I(Este^2)             1    55368    55368   1.6955 0.1967061    
## I(Norte^2)            1   152170   152170   4.6599 0.0339500 *  
## Este:Norte            1   451567   451567  13.8283 0.0003755 ***
## I(Este^2):I(Norte^2)  1   181854   181854   5.5689 0.0207829 *  
## Residuals            78  2547110    32655                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
aquifer=data.frame(aquifer,resi=residuales2)
aquifer_points=point(aquifer, x="Este", y="Norte")
aquifer_pair=pair(aquifer_points,,num.lags=10)
## ....................................................................................
aquifer_pair$bins
##  [1]  13.55308  40.65923  67.76539  94.87154 121.97770 149.08385 176.19001
##  [8] 203.29616 230.40231 257.50847
aquifer_pair$dist
##    [1]  79.2593133  61.2927436  79.9283065  82.8019360  79.5299809  84.5144082
##    [7] 100.2085578 107.1520083  89.9783035 104.1785410  99.2510576  88.8997176
##   [13]  87.9450514  70.1659872 101.6742104 112.8721648 120.9613079 119.0479060
##   [19]  32.7546337  46.1569203  27.6896467  74.0103755  65.7292774 107.8859461
##   [25]  23.2298281  87.3555316  98.8808622 107.5814605 104.1008788 104.1504384
##   [31]  52.2851327  71.5833717  76.0112193  87.0333421  51.1947513 129.8052624
##   [37] 135.5551366 122.8514650 125.3405455  49.2197721 119.7078074 119.9051079
##   [43] 123.1557730 112.0018224 114.9164083 115.4601984 103.8292559 104.1798969
##   [49] 113.2504713  96.5435190  97.5662872  96.7002581  82.7814952  63.1565458
##   [55]  64.2183216  65.8354765  24.5676156  35.1069244  54.8325215  45.8091863
##   [61]  40.3302803  56.1105548  43.9356951  46.5192162  45.7131772  50.4315630
##   [67]  50.8015119  61.1248068  55.9028462  44.6047036  62.4495436 185.8524317
##   [73] 212.7705615 123.3237129 143.2560523 141.1356104 169.6416077 148.1832290
##   [79] 143.1877052 166.1767438 149.4170564 150.2519410 166.0777066 163.2085761
##   [85]  26.8873847  16.8097266 126.6044524 136.1865843 120.7447679 128.2465529
##   [91] 133.6773833 129.6834923 130.5118433 129.5851654 130.7696492  94.0379994
##   [97]  23.3256506 105.3079496 123.5224481 133.0497595 131.8534947  97.7230762
##  [103] 103.9266182  93.9280588  79.9593580  72.4409726 147.3195921  99.6011936
##  [109]  54.1018186  55.6329165  65.8730346  62.2256499  62.4215776  91.3215244
##  [115]  85.9480431  81.5641567  68.6568038 129.9548287  75.9680821  81.4631040
##  [121]  69.0797198  74.3157117 101.9670041 145.1282667 145.4707669 148.4430852
##  [127]  60.9434255  61.3098442  61.9531843  55.4778792  53.8750660  81.9573509
##  [133] 106.2165676 112.4762888 109.9583251  60.8357496  47.6471372  41.4888353
##  [139]  46.6221840  68.6026477  50.3023781  25.5363793 116.4047820 113.6012622
##  [145] 129.4675978 121.0216648 123.6656592 117.7738613 122.2443828 123.3298729
##  [151]  35.0353117  47.5693087 123.2564912 138.7454566 109.2440817 133.5121599
##  [157]  46.6811504  67.2138470  63.0447052  93.4013595  69.0210498  65.8441336
##  [163]  87.1193059  71.7112919  71.6234788  87.6078339  85.9550742  19.3904667
##  [169]  99.7196915 109.7430526  93.9359473 101.9860994 107.6397974 102.8358862
##  [175] 104.4380247 103.1696116 103.8915231 102.4631993  38.3589598  81.6642162
##  [181]  99.3167644 108.8815930 107.5352105  73.6451017  78.3520295  70.4047502
##  [187]  54.4430626  46.2992483 120.5688925  83.8510477  37.2888028  44.5698629
##  [193]  54.9952344  51.0900484  51.2242064  64.6129451  90.7284518  88.8279912
##  [199]  82.5926106 112.3225761  72.8551855  78.7356698  65.6000155  69.3849095
##  [205]  95.4322643 119.3895442 119.7217632 122.7705740  55.2186707  57.2865259
##  [211]  57.9026933  47.5583720  47.0881510  67.3932029  81.5421592  87.2602498
##  [217]  84.8859773  74.9540067  55.9934648  51.0665203  56.3780900  58.7656408
##  [223]  42.8645368  23.9778242 103.9637324  99.8207261 115.9629295 105.0875573
##  [229] 107.6991341 104.6917424 109.3931023 110.1478361   8.9355703  20.8103421
##  [235] 102.7591223 116.2264345 124.9340602 154.8925990  72.8951983  93.3349656
##  [241]  88.0682208 119.1677182  90.1872661  82.9345749 107.5495626  89.3061405
##  [247]  91.0203855 106.4414364 102.6848662 115.6943948 127.3451903 108.8349383
##  [253] 114.8496924 119.9174843 117.9668867 116.8184895 116.4603831 119.3676331
##  [259] 108.4513561  38.3522809  89.8333914 108.2376359 117.6999989 116.5951923
##  [265]  92.8964671  97.0061660  89.7466538  66.0860347  59.4788666 135.0074501
##  [271] 102.0022720  37.4639752  38.9725866  49.3417474  45.6262792  45.8169067
##  [277]  81.8992196  98.9724480  95.4656796  84.4677581 131.1068938  61.5089578
##  [283]  67.2198141  54.3798474  59.2292765 109.9629369 130.9496647 131.3022063
##  [289] 134.1794085  45.3913863  46.2733388  46.9222092  39.2893894  37.8949742
##  [295]  65.1770650  91.3351667  97.9653982  95.3459937  76.6158039  61.3391429
##  [301]  55.4382308  60.8001598  74.3396578  56.8378397  32.9704654 121.0922178
##  [307] 117.4124709 133.5342149 123.3973834 126.0281776 122.0607268 126.7017579
##  [313] 127.5796742  24.3880902  36.8776001 122.0449373 135.6078638 105.9378983
##  [319] 135.5637545  56.5606428  76.5427723  70.2320736 101.7322113  70.9332016
##  [325]  63.6204738  88.1879461  69.9688830  71.6327455  87.0606709  83.4675403
##  [331]  21.9724714  11.4756710  26.1243657  31.6935766   8.3803675  30.0706461
##  [337]  23.1611154   6.2091400 170.2140092 132.1471563  55.1246639  51.3539131
##  [343]  54.4308987  52.5342994  51.2732361  37.2752731  55.8869120  54.1899846
##  [349]  57.4458793  25.0841642  93.3282810  91.7839379 103.1435497 104.6082076
##  [355] 103.5038133 103.3799138  36.4354835 154.0091309 157.6413974 164.5082971
##  [361]  95.4688674 128.2303306 132.1004225 124.0796631 122.5944666 129.0382369
##  [367]  41.8398398  41.8960694  44.7578797 115.6774343 119.6514503 119.8271872
##  [373] 109.5897130 111.5748011  96.4071879  47.0085408  40.8633325  42.7079436
##  [379] 158.6646744 137.1808192 135.6100545 139.2274996 106.0667682 108.4341735
##  [385] 113.3511951 113.8514923 106.7578334 115.9743653 100.1192801 101.1674277
##  [391] 111.7585152 115.0452745 114.1357149  91.9894847  79.2603390  76.0044145
##  [397]  67.9986561 205.3175097 244.4510254 172.0561897 192.2157080 185.7118426
##  [403] 217.3279239 182.7758273 170.6150693 197.8309330 176.9036367 181.0606547
##  [409] 194.2230646 187.3543598  33.2962922  47.4303500  52.1855861  28.8072391
##  [415]  51.0921352  44.1741390  25.4382379 167.2205175 138.1824318  76.6682607
##  [421]  73.2344600  75.7876143  73.9481947  46.8568650  34.7176036  51.9583325
##  [427]  71.4532254  72.5671626  37.6155538  84.6193529 108.1149369 120.1424728
##  [433] 122.8225023 121.3066583 121.2045829  45.4672595 150.8022422 155.5288329
##  [439] 165.4283647  80.3201124 146.9867778 151.1988548 142.3296200 141.3663268
##  [445] 121.1959380  60.4309208  60.3981688  62.8045664 133.2904413 137.2364034
##  [451] 137.4750976 126.6317566 128.4299275 116.2363349  68.5151807  62.7054897
##  [457]  64.4259052 160.3457662 139.3655709 138.7628557 141.7047153 103.9974894
##  [463] 110.0218015 119.5076370 102.4359547  95.4939034 102.2978076  87.0285251
##  [469]  87.6078330  99.9597425 102.6157123 101.4461718 103.0068197  90.4842648
##  [475]  61.3198959  49.2321303 222.2824774 259.6688630 182.6253800 203.0780103
##  [481] 197.5100149 228.8315895 196.6716994 185.6759872 212.5387873 192.0690185
##  [487] 195.6720244 209.5414616 203.2916400  17.2770151  23.8841346   9.2490783
##  [493]  21.4915730  15.2862868  11.4503447 170.6016557 128.1156457  43.6569039
##  [499]  40.5772000  44.5790138  42.6188327  54.9094646  41.3108046  59.0012638
##  [505]  45.0564892  49.5967664  26.7637153  97.5240428  82.6320407  93.5550964
##  [511]  94.4022632  93.5059304  93.3717576  34.1041120 154.6265137 157.6590036
##  [517] 162.8909517 102.7946624 117.6980589 121.4107919 113.7885134 112.0684928
##  [523] 132.2910919  35.7513373  35.8997053  39.0653426 105.7187149 109.6907660
##  [529] 109.8353957  99.9428229 102.0119103  85.4787264  35.5509702  29.4221072
##  [535]  31.2336868 156.6920638 135.1303688 133.0660262 137.0031842 106.6550033
##  [541] 107.0654223 109.4722705 119.0952427 112.0122742 122.3418001 106.3708482
##  [547] 107.6378514 117.2199911 120.7890568 120.0207995  85.7765600  73.1757825
##  [553]  83.4064574  77.4041665 195.4488959 235.3237773 165.3878956 185.3181523
##  [559] 178.3673416 210.0342994 174.4006253 161.7074756 189.0239007 167.9281111
##  [565] 172.3415798 185.1333788 177.9875187   6.9452457  18.6276904   4.2176050
##  [571]   3.5388549  22.0285624 184.9151659 138.1227299  35.9721382  26.5391573
##  [577]  28.3790032  26.5220295  71.7219800  58.3528712  75.5977154  48.8049760
##  [583]  55.8074809  23.6153085 114.3069084  84.3988315  93.8538205  92.7448831
##  [589]  92.5637863  92.3994379  48.3584365 169.1788145 171.7151923 175.4095230
##  [595] 120.0556741 114.4396787 117.4612025 111.4845514 108.9141530 148.5832510
##  [601]  19.5774461  19.8025965  23.0799744 104.6585087 108.5567551 108.6000185
##  [607]  99.9362921 102.2055963  81.0272083  29.0444374  21.1764383  23.9204457
##  [613] 168.8761999 147.3702808 144.7939734 149.0464100 121.4383414 120.2202006
##  [619] 119.8846787 136.1501364 129.0785552 139.5898272 123.6139200 124.8991923
##  [625] 134.3276964 137.9503331 137.2071829  93.3394946  81.2936931 100.6530309
##  [631]  93.9839018 193.8078254 235.5467573 171.1159520 190.5066988 182.7702490
##  [637] 214.3580156 176.7134334 162.8782294 190.2506863 168.8847547 173.8838273
##  [643] 185.6905393 177.8707346  23.6407098   3.2498055   8.7159445  26.8529873
##  [649] 191.7303231 144.1552982  37.4132929  24.6244564  24.1756435  22.5292147
##  [655]  78.5785757  65.1321664  82.4953502  53.8537889  61.3495348  23.2677154
##  [661] 121.1793856  88.3698291  97.2552089  95.4551327  95.5374949  95.3636286
##  [667]  55.2598203 176.0269203 178.4989737 181.9365563 126.4552896 116.3807508
##  [673] 119.1076480 113.8151779 110.9305364 155.5198928  12.7109860  12.9569067
##  [679]  16.2351445 107.4983752 111.3443441 111.3500445 103.1860850 105.5097798
##  [685]  82.7642842  31.4816603  23.6056440  26.4650797 175.3429137 153.8638013
##  [691] 151.1900089 155.5007215 128.3232235 126.8964570 126.0400520 142.9356590
##  [697] 135.8579634 146.2069965 130.2410218 131.4873467 141.0843713 144.6698247
##  [703] 143.9047617  98.9084724  87.0588884 107.0205322  99.6865682 196.0998766
##  [709] 238.4623955 175.9544786 195.1504457 187.1834438 218.6983577 180.4592547
##  [715] 166.2666839 193.5966569 172.1831642 177.3737211 188.8095222 180.7646650
##  [721]  22.3173072  15.3820031   3.4378851 176.9595304 136.5122231  50.7399463
##  [727]  44.7477686  46.9816305  45.1412000  58.9883985  45.0246074  63.4633607
##  [733]  54.2798268  58.8120415  18.6011186 101.2874651  91.8238680 102.6505517
##  [739] 103.2646543 102.4643972 102.3261131  41.4925464 160.8414219 164.2184446
##  [745] 170.3010152 103.8492032 126.3384998 129.9222612 122.5872358 120.7186036
##  [751] 136.7810632  33.4643630  33.5181403  36.3787378 114.6827912 118.6511733
##  [757] 118.7829309 109.0177401 111.1087314  93.7958028  42.8311792  35.9265400
##  [763]  38.1245408 164.2654156 142.7236117 140.8779888 144.6770251 112.8402008
##  [769] 114.3034361 117.7965299 122.0442369 114.9482898 124.3139027 108.4430274
##  [775] 109.5114560 119.9857733 123.3152274 122.4236775  94.7695513  82.1239396
##  [781]  84.3846815  76.1199130 204.4112568 244.4857836 174.5063691 194.4751902
##  [787] 187.5768237 219.2416180 183.6455203 170.9114319 198.2367714 177.1221558
##  [793] 181.5648905 194.3074777 187.1075561   6.9423807  25.6548229 188.5759245
##  [799] 140.9148859  35.3239765  23.9140202  24.7405599  22.9545540  75.8884279
##  [805]  62.5522594  79.7312375  50.7388323  58.1556139  24.5207856 118.4597329
##  [811]  85.5293790  94.5840420  93.0038402  92.9997885  92.8289119  52.1915955
##  [817] 172.8944512 175.3284661 178.6998406 124.2595111 114.2067927 117.0430936
##  [823] 111.5015890 108.7271690 152.6444819  15.8840705  16.1432703  19.4148249
##  [829] 105.0095575 108.8742737 108.8924606 100.5640818 102.8717534  80.6463170
##  [835]  29.0167166  21.0889732  23.9350072 172.1001231 150.6237394 147.9428452
##  [841] 152.2571466 125.2250804 123.6890401 122.7925853 140.3440618 133.2744477
##  [847] 143.8071456 127.8310191 129.1167807 138.5293244 142.1590447 141.4189516
##  [853]  95.7178234  83.8410328 104.8518240  98.0206181 193.8181363 235.9715881
##  [859] 172.9105436 192.1536054 184.2436545 215.7797146 177.7031731 163.6166386
##  [865] 190.9632448 169.5620234 174.6939658 186.2475406 178.2750556  18.7370508
##  [871] 184.5351914 138.9250183  39.2167105  30.0644392  31.6207896  29.8013764
##  [877]  70.1515968  56.5956208  74.1695018  50.5671708  57.1791509  20.6044363
##  [883] 112.7684111  86.6703825  96.3667368  95.5199593  95.2452821  95.0846229
##  [889]  47.8014327 168.7083836 171.4185630 175.5900617 117.7396583 117.4368531
##  [895] 120.5360781 114.3680160 111.8934820 147.3555891  20.5527398  20.7230732
##  [901]  23.9409595 107.3766794 111.2902716 111.3467140 102.5040821 104.7492929
##  [907]  84.1063861  32.0924361  24.3083466  26.9882693 169.1474305 147.6120111
##  [913] 145.1726411 149.3434944 120.8588411 120.1751158 120.5694804 134.3810342
##  [919] 127.2975350 137.5329330 121.5723298 122.8033836 132.5001002 136.0537069
##  [925] 135.2732156  94.6041713  82.4102136  98.3045947  91.1439633 196.6701439
##  [931] 238.1851621 172.8404028 192.3422182 184.7400275 216.3579208 179.0218936
##  [937] 165.3490180 192.7297497 171.3905385 176.3073137 188.2626637 180.5310089
##  [943] 176.1928741 137.0378721  53.9550442  48.1856385  50.3555417  48.5257178
##  [949]  57.4723192  43.4749347  62.0675796  56.3665832  60.4789972  19.0398069
##  [955]  99.5328812  93.9840235 104.9832027 105.8415360 104.9560886 104.8217818
##  [961]  41.5809054 160.0151831 163.5599356 170.1096851 101.2852843 129.0717608
##  [967] 132.7283963 125.2145828 123.4454900 135.2441170  36.2078505  36.2390038
##  [973]  38.9987218 117.1690361 121.1410498 121.2853024 111.3780786 113.4387398
##  [979]  96.6884921  45.9961457  39.2079332  41.3527163 164.1785576 142.6633543
##  [985] 140.9619994 144.6669760 112.0458070 114.0559453 118.2769896 119.9926932
##  [991] 112.9008913 121.9707507 106.1456695 107.1569852 117.8796193 121.1329698
##  [997] 120.2058210  95.9553384  83.2636543  81.8314682  73.0877762 206.8992213
## [1003] 246.6990437 175.8598251 195.9070034 189.1558915 220.8086481 185.5764453
## [1009] 173.0283952 200.3245903 179.2656004 183.6170682 196.4971844 189.3982793
## [1015]  70.7197266 177.1823454 192.2171786 201.2992849 199.5706797 120.6618932
## [1021] 134.0675769 115.6211881 147.4858451 138.0556605 195.2326161  86.6029605
## [1027] 139.7408669 145.7769723 156.3873155 152.4989628 152.6601886 136.7516396
## [1033]  16.4247297  13.8166207  29.9843743 110.2381999 169.7559607 175.3526711
## [1039] 162.7217275 167.6753331  54.8286013 204.4412577 204.6848893 207.9642049
## [1045] 153.8106718 154.6989916 155.3477818 147.3055692 146.1411864 169.8328436
## [1051] 174.3646763 177.6455766 176.0498298  36.1161565  47.1989030  53.0133325
## [1057]  47.6600952  64.1483473  66.0601570  78.5809836  81.8953664  85.4929388
## [1063]  93.3396426  97.8064428  99.4825983  85.0036685  86.5747031  88.4438094
## [1069] 109.7717042 115.4115131 118.6033408 139.4958052 190.6149812 198.1169560
## [1075] 108.9109138 120.7878446 125.9879139 141.6655443 144.3732311 149.8184373
## [1081] 160.9924458 154.0119378 150.5695129 165.2384845 167.8440598 119.9522917
## [1087] 137.4151393 146.9690192 145.5673456  95.1102192 104.0451630  90.5990331
## [1093]  92.0869070  83.3983021 154.8551208  87.1224908  73.2064674  76.9593225
## [1099]  87.4728567  83.6813558  83.8627147  95.7478994  62.9231876  58.2731189
## [1105]  46.1810169 118.1313651  99.1408625 104.6901932  92.1743324  97.2773426
## [1111]  82.8267099 156.2759023 156.5929035 159.7240712  83.6391004  84.2674137
## [1117]  84.9145388  77.6336647  76.2416823 102.5319224 119.5079950 124.8601120
## [1123] 122.6042490  38.3321222  24.5872419  18.3790511  23.3571212  53.5087182
## [1129]  36.0801618  18.8158646 100.6058782  98.9109976 114.1136229 107.8894906
## [1135] 110.4834257 102.4121432 106.5828933 107.8870666  47.2056655  57.5241780
## [1141] 114.6776723 132.3630356 128.0968140 146.9939528  54.5768343  73.7196598
## [1147]  73.0639385  99.9122766  84.6218738  84.9826593 102.7542757  90.2828813
## [1153]  88.8068797 104.6959946 104.6533390  18.5575195  27.8926713  26.8935490
## [1159]  81.8948532  72.0135535  83.9479353  29.7052166  39.1327593  59.5387712
## [1165] 120.9884644  54.5529892  61.5934392  58.5890738  59.0531737  58.8653418
## [1171]  53.1071621 162.7243481 163.4322268 162.2877104 134.9683576  78.9709083
## [1177]  81.7241836  76.5392904  73.5332620 150.6072050  44.8047238  45.1842974
## [1183]  47.4360887  70.7272201  74.4874926  74.4483327  67.1237837  69.5316286
## [1189]  45.3527590   8.1558669  15.0115973  12.6197404 155.0128042 134.3757837
## [1195] 130.5308052 135.4541407 117.7754219 111.1719771 103.5566881 144.4168067
## [1201] 137.7272730 150.9343930 135.3255756 137.1646975 143.2971414 147.5595854
## [1207] 147.2538314  72.7631608  63.2536149 116.7342206 115.9518344 158.7496605
## [1213] 201.5183860 143.8988322 162.1790225 153.4548568 184.5872484 144.9386493
## [1219] 130.0875528 157.2733044 135.8344234 141.3425460 152.1598669 143.8557235
## [1225]   9.5655533   8.3601145  88.9920123  77.1855849  91.9160902  45.6627273
## [1231]  54.8853640  47.8790092 130.2989282  73.0999611  79.8007978  76.0731884
## [1237]  76.8661813  76.6698649  61.4072270 177.2958397 178.5748502 178.7722313
## [1243] 140.5978745  94.9196406  97.0661472  93.2071361  89.6800771 162.0911657
## [1249]  28.1762785  28.5500182  30.2627266  88.2230516  91.8708442  91.7804334
## [1255]  85.1347691  87.5707645  61.3814483  18.0739275  15.3227344  16.3230292
## [1261] 171.6548032 150.7007446 147.1589902 151.9394264 131.0886215 126.1970409
## [1267] 120.5141666 153.2556949 146.3421179 158.4190874 142.5159763 144.1081946
## [1273] 151.8144902 155.8209810 155.3136718  90.3830428  80.1597124 121.5953628
## [1279] 117.5985812 174.8753739 218.4667098 162.4561452 180.7000289 171.9071503
## [1285] 202.9620580 162.9727504 147.8258609 174.8697130 153.4507630 159.1451246
## [1291] 169.5040674 160.9372374   2.0023564  95.8421046  83.4675229  99.0496345
## [1297]  55.1392423  64.3050211  46.2947234 137.6826462  82.2878853  88.5450076
## [1303]  84.2907670  85.3058753  85.1041895  69.0204629 186.2651613 187.6925811
## [1309] 188.1872649 146.5279299 102.0977079 103.8807059 100.8261336  97.0043793
## [1315] 170.1366415  23.1030477  23.4367995  24.2625915  96.3987131  99.9567205
## [1321]  99.8319832  93.6995394  96.1525418  68.8814451  27.5406604  23.7350146
## [1327]  25.2559321 181.0996757 160.0957556 156.6087188 161.3630869 139.7653448
## [1333] 135.3319703 130.0207889 160.3882756 153.4138181 165.0194715 149.0598798
## [1339] 150.5490237 158.8316338 162.7287963 162.1463284  99.9476479  89.6790587
## [1345] 127.3165717 121.9658646 181.9201813 226.0290685 171.6821648 189.7750670
## [1351] 180.8548297 211.7896592 171.4516045 156.0624166 182.9640141 161.5829594
## [1357] 167.4230941 177.4076779 168.6580715  93.8502103  81.4659721  97.0678240
## [1363]  53.6421227  62.7566244  44.9192514 135.7101674  81.4056053  87.9021639
## [1369]  83.8667804  84.7946627  84.5950979  67.0729406 184.5030905 185.9768303
## [1375] 186.6159088 144.5270370 102.0333840 103.9250127 100.6210984  96.8925549
## [1381] 168.2143929  22.3111050  22.6583984  23.7367622  95.9953431  99.5881559
## [1387]  99.4760189  93.1384830  95.5847780  68.6959396  26.0714268  21.9481281
## [1393]  23.5695650 179.5515710 158.5123201 155.0661981 159.7996739 137.9381230
## [1399] 133.6266303 128.5374787 158.4027909 151.4262310 163.0196673 147.0595360
## [1405] 148.5475770 156.8419289 160.7355712 160.1511153  98.5997423  88.2180546
## [1411] 125.3179897 120.0139851 181.9161264 225.8647946 170.7797439 188.9693610
## [1417] 180.1206008 211.1191123 170.9394572 155.6477590 182.6070692 161.2093305
## [1423] 166.9933380 177.1204856 168.4341464  13.9979864   5.1023224  59.8373841
## [1429]  54.6000137  76.1915977  42.6170616  86.4059252  99.0742464 105.4204140
## [1435] 102.6581536 102.6378713  28.8269659 104.2758196 108.7562880 118.8038740
## [1441]  53.2973871 129.6846300 134.9554456 123.5058095 124.4900657  77.7962196
## [1447]  90.6605523  90.8089024  93.9659516 112.9928296 116.5545804 116.9778485
## [1453] 105.1004328 106.1883161 105.8201938  75.1657433  73.9695267  73.8719132
## [1459] 113.9729924  93.3449897  93.2899948  95.8103365  57.1483623  64.0562315
## [1465]  77.1707200  64.6387790  57.6204596  69.4740925  53.6468420  55.3721474
## [1471]  63.0030173  66.8912414  66.3389863  69.4162789  59.0130555  36.2029807
## [1477]  43.6076089 196.2059121 228.4476032 144.1976450 164.6838052 160.7189647
## [1483] 191.0166083 163.8147394 155.7005590 181.0357250 162.1426629 164.3747573
## [1489] 179.5065866 174.9357528  18.7068055  53.7134786  50.4837288  62.2105954
## [1495]  56.3571723  84.9089699  97.5850186 102.7110357 100.3437636 100.2937821
## [1501]  21.1104072 117.7280389 121.9147831 130.8831754  63.4812218 127.2770046
## [1507] 132.2450305 121.5564840 121.8745184  91.7813776  77.0217675  77.1569560
## [1513]  80.2805934 111.4363159 115.1864471 115.5477515 103.8844504 105.2568447
## [1519] 100.8000120  64.7376568  62.5582811  62.8111058 125.6878008 104.6559640
## [1525] 104.0607142 106.9881110  70.1777884  75.3195240  85.5468608  77.8038651
## [1531]  70.7282060  81.5934224  65.6182107  67.0818455  75.9780034  79.6439813
## [1537]  78.9474888  72.7635002  61.0546025  44.7968826  46.0556493 197.4394425
## [1543] 231.8240507 150.6060888 171.1376083 166.3704109 197.2469635 167.6739985
## [1549] 158.2918014 184.3829644 164.7476059 167.5646622 182.2364077 176.9650471
## [1555]  60.5628607  54.6510571  80.8851529  38.7892532  85.1753966  97.7708414
## [1561] 104.5261012 101.6331159 101.6236346  30.9219304  99.2439731 103.6761356
## [1567] 113.7273128  52.1788360 128.5965760 133.9624940 122.2717790 123.4923635
## [1573]  73.3774813  94.7146933  94.8746181  98.0588430 111.6546904 115.1371968
## [1579] 115.5808666 103.6731886 104.6565950 105.7844537  77.4968797  76.7587803
## [1585]  76.4971784 108.9318806  88.3639204  88.3961280  90.8477083  52.0514114
## [1591]  59.1094133  72.8408664  61.3599552  54.4268777  67.0035740  51.3901610
## [1597]  53.2821772  59.9015836  63.9577822  63.5225977  66.6464504  56.7894280
## [1603]  36.2787491  46.0181174 193.7518001 225.2966575 140.2586960 160.7109273
## [1609] 156.9685894 187.0820079 160.5794107 152.8662764 177.9344685 159.2942986
## [1615] 161.3418203 176.5966106 172.2514304   9.4301866  69.8751927  94.8290651
## [1621]  37.6377724  49.0150588  51.4169830  49.8564591  49.7529534  32.6057124
## [1627] 133.0294225 133.7434087 133.1412251 112.7400156  75.7632106  80.2339426
## [1633]  70.9021834  70.1764534 122.2601710  65.1695348  65.5116137  68.4941201
## [1639]  61.8840400  65.8423294  66.0639450  55.4848357  57.4219214  47.1602212
## [1645]  27.6002696  32.8301410  30.5200413 125.9975225 105.1038918 101.4999857
## [1651] 106.3016348  88.4897933  81.4670579  74.8958374 118.4000197 112.0256923
## [1657] 126.2502127 111.2211892 113.3106794 117.6205815 122.0928273 122.0022130
## [1663]  45.5562780  34.6095822  96.0175782  99.7677628 151.2690065 190.3611916
## [1669] 122.3143242 141.7751077 134.2478515 165.8922962 129.4232736 116.6630816
## [1675] 143.9696658 122.8996653 127.2859416 140.1472824 133.1727528  75.5397766
## [1681]  87.1542119  35.6692458  48.0122892  52.3062167  50.1121764  50.0472394
## [1687]  29.8219627 123.6153131 124.3136850 123.8888854 106.6477419  76.8948283
## [1693]  81.7868690  71.3860936  71.4478375 113.5017534  73.1197310  73.4487385
## [1699]  76.5203584  61.6020786  65.4640701  65.7705577  54.4666043  56.1201475
## [1705]  51.2219534  36.8132525  41.5329180  39.3938812 116.7968581  95.8167100
## [1711]  92.3096673  97.0599067  79.3172065  72.0394409  65.9045395 110.6794598
## [1717] 104.4678927 119.0633584 104.3544198 106.5372195 110.0497016 114.5937539
## [1723] 114.5947548  37.5631084  25.9012031  90.7101729  96.2318304 149.7957411
## [1729] 187.4193613 116.0159161 135.8111983 128.7706845 160.4380478 125.3349781
## [1735] 113.4549697 140.5551001 119.7996015 123.7420728 137.2142447 130.7627559
## [1741] 117.8438869 106.7087003 116.7225569 116.0929003 115.7618559 115.6039544
## [1747]  60.0908312 179.0532857 182.5888691 188.8950550 117.3770124 138.0240584
## [1753] 141.0749269 134.9710886 132.4869815 153.8283940  25.5094097  25.3473260
## [1759]  26.9496540 127.9150625 131.8375613 131.9018890 122.9155874 125.1335250
## [1765] 104.6408539  52.6430633  44.7912636  47.5236876 182.8665263 161.3243115
## [1771] 159.4594251 163.2741908 131.0856137 132.8842767 136.1858899 137.6648424
## [1777] 130.5990012 138.8041405 123.1797248 124.0032729 135.4205543 138.4618738
## [1783] 137.4354844 112.3027653  99.7752640  98.0918131  86.8287441 217.2680570
## [1789] 258.6354200 191.5547927 211.3174233 204.0479224 235.7092196 199.0243788
## [1795] 185.6117130 212.9946915 191.6981609 196.4974612 208.6479112 201.0095341
## [1801] 110.5210077 122.1042696 130.7422578 127.2865911 127.3334272  68.9063488
## [1807]  70.5324618  77.1097996  93.4532734  31.0160048 153.0349283 158.7846902
## [1813] 146.0770865 148.5652304  36.5892193 133.2753513 133.4220872 136.5731285
## [1819] 135.2284708 138.1291947 138.6753762 127.0568597 127.3954014 135.9344776
## [1825] 115.1109944 115.0361443 114.5671376  90.9661066  74.4891634  77.2312603
## [1831]  77.3618252  34.1998335  51.0826027  74.3041350  23.5720453  17.3877404
## [1837]  32.8999839  21.4688638  24.1130037  22.9312700  27.5546078  27.7527923
## [1843]  84.1975700  79.1007768  32.4321347  53.2135142 207.6551091 232.7008326
## [1849] 141.5284072 160.8369079 159.8022552 186.9569404 168.5633169 164.6498942
## [1855] 186.7026801 170.7711464 171.1573458 187.0995896 184.7597162  12.7088796
## [1861]  20.2262996  16.8112411  16.8443692  65.0475965 127.9085335 126.1164458
## [1867] 118.9244924 134.9257020  43.4669240  48.9503131  37.1089928  38.5148126
## [1873] 129.0107504  98.1149655  98.4855442 101.0852973  26.6275625  30.3011460
## [1879]  30.6838295  18.9823868  20.4859064  30.1056640  57.6483121  65.0870537
## [1885]  62.2765611 111.1518991  93.0701441  87.8878090  93.2681215  92.1655944
## [1891]  78.5251403  61.1835098 132.9333951 127.6807668 143.4188531 130.2931626
## [1897] 132.7365668 133.0237252 137.7550771 138.1559059  30.7637245  31.4882411
## [1903] 121.2414292 129.6008368 114.1706540 152.7242915  89.3966672 107.6564334
## [1909]  99.1317333 130.4869813  92.3539943  79.0964572 106.4442738  85.2983321
## [1915]  89.8411455 102.5142965  95.5811507  10.6107852   6.7407266   6.9138876
## [1921]  77.5969169 134.8893596 132.3861187 123.1351523 147.1481040  31.1129166
## [1927]  36.7537554  24.5210733  26.4621081 138.8781262 106.1604258 106.5373812
## [1933] 108.9342666  13.9247661  17.6028085  17.9770319   6.4893977   8.4581912
## [1939]  26.6216847  65.9188730  73.6794984  70.8230614 115.2891277  98.6444206
## [1945]  93.0795217  98.4961877 101.9578327  87.1932866  67.5243705 144.1735584
## [1951] 139.1267746 154.9909610 142.1848358 144.6597317 144.3966812 149.1374228
## [1957] 149.6091829  39.8160385  43.0623122 133.7603590 142.3048445 102.2622073
## [1963] 141.9727494  84.7888599 101.7780650  92.4703122 123.2499879  83.3963605
## [1969]  69.0386145  96.4013046  75.0318583  80.1185204  91.9262178  84.4709496
## [1975]   3.9110922   3.7711699  82.1176845 145.4537245 142.9912417 133.6538401
## [1981] 154.8637094  24.5894798  29.5847320  19.5169163  19.1674677 148.7313332
## [1987] 103.3789625 103.7588224 105.9298517  12.1558699  15.9062226  15.8954823
## [1993]  11.2441050  13.5386493  17.8274746  63.9939092  71.9151798  69.0697634
## [1999] 125.8047645 109.2545822 103.6826268 109.0990664 111.8218621  97.4321987
## [2005]  78.1044865 153.1483507 147.9070624 163.6385551 150.4421030 152.8720913
## [2011] 153.2487418 157.9805538 158.3820897  49.7999756  51.7085108 140.7445080
## [2017] 148.1331345 101.2607711 143.0184597  92.3093453 108.2907288  98.4531727
## [2023] 128.5177555  87.2888596  71.7810112  98.8005382  77.3778861  83.1330067
## [2029]  93.5729365  85.3258352   0.2211656  79.9257224 141.5439127 139.0942961
## [2035] 129.8599699 151.6917293  27.0402443  32.3294375  21.2752457  21.8596309
## [2041] 144.9464096 103.8449774 104.2241508 106.4843891  12.2189800  16.1870078
## [2047]  16.3325749   8.6802948  11.1383852  20.5947820  64.0589112  71.9407309
## [2053]  69.0839118 122.0127953 105.3754609  99.8180135 105.2347501 108.0309226
## [2059]  93.5584480  74.1974962 149.5998455 144.4136424 160.1864900 147.1037460
## [2065] 149.5477865 149.7354656 154.4705870 154.8925507  45.9668146  48.2000734
## [2071] 137.7975626 145.5628007 101.9486128 142.9923128  89.7973523 106.1818321
## [2077]  96.5387341 126.8998392  86.1480533  71.0369243  98.2323877  76.7934504
## [2083]  82.3121353  93.2763230  85.3079937  79.8629901 141.6919935 139.2520079
## [2089] 130.0407211 151.7083900  27.0695355  32.3394278  21.3444778  21.8690266
## [2095] 145.0425486 103.6587180 104.0379203 106.2955113  12.3603728  16.3253617
## [2101]  16.4641349   8.8989748  11.3561028  20.3760777  63.8843254  71.7679712
## [2107]  68.9114056 122.1938373 105.5398663  99.9863561 105.4031376 108.1281305
## [2113]  93.6772235  74.3490841 149.6584815 144.4652264 160.2331753 147.1374353
## [2119] 149.5799814 149.7895707 154.5243079 154.9437325  46.0730305  48.2513426
## [2125] 137.7933937 145.5284468 102.0857564 143.1595217  90.0184423 106.4004190
## [2131]  96.7549058 127.1114942  86.3488822  71.2264129  98.4173422  76.9782736
## [2137]  82.5042721  93.4522101  85.4735973 120.9070110 123.6933242 128.8771837
## [2143]  82.0706810 106.7071309 111.5535203 101.1959117 101.2440035 101.2670348
## [2149]  67.9358754  68.1591046  71.4345313  91.3136149  95.1394621  95.4663378
## [2155]  83.9975408  85.5249761  79.6969728  46.5754177  46.1306179  45.7006502
## [2161] 122.7840057 101.2366939  99.4083986 103.1845020  73.0894506  72.9764808
## [2167]  76.9413183  91.9963146  85.1542065  97.9176194  82.2413083  84.0609943
## [2173]  90.6761859  94.8121671  94.4165396  57.5986931  45.0262310  64.3650843
## [2179]  67.1660322 178.6651039 214.7223388 137.4787879 157.8670502 152.0996887
## [2185] 183.4876248 151.3506648 140.8034958 167.4470002 147.2308540 150.5743090
## [2191] 164.7365912 158.8867500   8.8105924  32.3720569  95.2762665 160.4670610
## [2197] 166.1916249 153.3052083 157.9655335  40.6860829 188.7346975 188.9711466
## [2203] 192.2506487 143.8913685 145.1188293 145.7661156 136.9715257 136.0096995
## [2209] 157.9812699 159.5700205 162.5560045 161.0539496  35.4280455  38.3463290
## [2215]  44.5478427  39.7038283  48.0060826  51.6861439  67.3809728  67.5955149
## [2221]  70.5743666  79.7760970  82.8271201  84.6537017  70.6187689  72.6556241
## [2227]  74.4963481  97.4174989 101.9412058 102.7214189 123.6059201 187.8940665
## [2233] 199.2848313 107.6549528 121.8041420 125.6120042 144.5254781 142.2762910
## [2239] 145.8600711 159.6001289 150.5525867 147.8389205 163.0939794 164.7092393
## [2245]  23.7285831 102.9329788 156.9166665 162.5669473 149.8284769 154.6787807
## [2251]  49.0017414 191.2064144 191.4558593 194.7335782 140.7292778 141.7383453
## [2257] 142.3871819 134.0813448 132.9814223 156.2190200 160.6902443 164.0677692
## [2263] 162.4377882  27.4439853  34.1375385  40.1579675  34.9433028  51.7421620
## [2269]  52.3796861  65.0192916  75.6989424  78.3367105  88.1192392  90.5064401
## [2275]  92.4234857  78.6721187  80.8965397  82.7211129  96.0379556 101.5949001
## [2281] 109.4883877 130.3189758 181.2135558 191.4258159 100.3598701 113.9022317
## [2287] 118.0886591 136.2510054 135.3241649 139.6083554 152.4357474 144.1098337
## [2293] 141.1188064 156.1847917 158.1595852 121.7252210 144.4792180 149.8670012
## [2299] 137.6786954 142.9666333  70.4697111 194.5053847 194.7878223 198.0281093
## [2305] 129.5552013 129.9643397 130.6071015 123.7543315 122.3033292 148.5464316
## [2311] 160.6985048 165.0846485 163.1322673   7.8523069  28.1486367  31.8060898
## [2317]  26.8431658  62.7563180  56.0763515  59.0801935  96.1335970  97.7649552
## [2323] 109.1649689 109.5182818 111.6704561  98.9211094 101.6823476 103.4378149
## [2329]  90.9114639  99.0565061 125.6677613 146.0782755 160.7621796 168.5443042
## [2335]  78.9439070  91.0766092  96.0274824 112.7770480 114.4606920 120.3983862
## [2341] 131.0110861 124.3997372 120.7647983 135.3143341 138.1102035 178.2580049
## [2347] 183.8406024 171.5735392 173.4313579  55.5936199 137.2924620 137.3562384
## [2353] 140.2243465 160.7584207 163.9561070 164.4588048 152.6074997 153.2475875
## [2359] 157.5359985 127.9775615 126.0393816 126.2556254 120.0797975 104.8880324
## [2365] 107.9493699 107.7715829  65.0990700  82.0739841 104.8987306  29.0954868
## [2371]  24.7481698  23.0163284  12.4506089  10.8572000  25.9269905  26.1369096
## [2377]  24.4294995 111.4161210 104.3573403  19.4654329  34.8499904 237.0405567
## [2383] 263.3311417 172.4925799 191.8489117 190.7168159 217.9724782 198.9757614
## [2389] 194.3642274 217.0531695 200.5770346 201.2841266 217.1567410 214.3978639
## [2395]   5.8812757   7.2663202   5.6361669 168.2467456 122.9755673 123.3536183
## [2401] 125.1816937  17.8846853  15.5932239  14.9666191  26.0088205  25.9425194
## [2407]  33.6648467  85.3958523  93.2918266  90.5211134 136.6982734 122.7791748
## [2413] 116.8009999 122.1125703 131.4510446 115.6348210  93.7244299 174.8553009
## [2419] 169.9596665 185.8915007 173.2460730 175.7308736 175.1750738 179.9178357
## [2425] 180.4377542  69.6871050  74.1185533 164.7032964 172.5941472  79.9600483
## [2431] 124.1165198  89.6947963 102.0241404  91.1060500 118.3864148  75.3122690
## [2437]  58.2027696  83.1803589  62.5953775  69.4340699  76.6877612  67.3036617
## [2443]  13.1397180  10.4704387 174.1278341 125.2170347 125.5930309 127.3007370
## [2449]  23.7297599  21.4649650  20.8413250  31.8195961  31.8098061  36.4340762
## [2455]  88.4444994  96.2849127  93.5564928 142.1043296 128.4323576 122.4319938
## [2461] 127.7280545 137.3300241 121.5100640  99.5349404 180.6626482 175.7373617
## [2467] 191.6523668 178.9355582 181.4125723 180.9649985 185.7076539 186.2171090
## [2473]  75.5411336  79.8071457 170.1205960 177.7175888  78.0880028 123.0867994
## [2479]  93.3511896 104.8374706  93.7595301 120.1694396  76.9522850  59.6441835
## [2485]  83.6072180  63.5709304  70.6458888  76.7388318  67.0364111   5.9621198
## [2491] 161.0033636 121.0319085 121.4115554 123.3916546  10.8538356   8.3269569
## [2497]   7.7016509  19.0321422  18.7833177  31.9476280  82.5214490  90.4538777
## [2503]  87.6385109 129.8795480 115.6927149 109.7391273 115.0660843 124.2217667
## [2509] 108.3705859  86.4902938 167.7902135 162.9498153 178.9100913 166.3884236
## [2515] 168.8858131 168.1424462 172.8849992 173.4239005  62.5374747  67.3017272
## [2521] 158.2811364 166.6103493  82.3287165 125.2640222  85.1072571  98.4646064
## [2527]  87.7940425 116.0674014  73.3875144  56.7093193  82.7201010  61.6367197
## [2533]  68.1033655  76.7416831  67.8357387 164.5878304 117.6814058 118.0600293
## [2539] 119.9325044  14.1993585  13.0126363  12.3668922  21.9486425  22.3056835
## [2545]  28.3226319  79.8745083  87.7802002  85.0005340 135.1505634 120.5633045
## [2551] 114.6644041 120.0176964 127.7194779 112.2456829  90.8999012 170.5765960
## [2557] 165.5732744 181.4497764 168.6219082 171.0893635 170.8299883 175.5716538
## [2563] 176.0553514  65.7138220  69.5161378 159.6542087 167.2873533  85.2724403
## [2569] 129.0599201  91.0590336 104.2766547  93.5464914 121.5443539  78.6957527
## [2575]  61.8218327  87.3937882  66.5226252  73.1647002  81.1425499  71.9590976
## [2581] 167.9047076 168.0785460 171.2901818 150.5054789 152.7017584 153.3136592
## [2587] 142.6473673 142.3756847 157.4564826 145.6889508 146.7830536 145.9165996
## [2593]  70.8295021  61.9739509  67.0609451  64.6177318  36.9210936  53.1591931
## [2599]  77.4502991  27.0769294  30.9571303  39.1189078  43.2384308  44.7720216
## [2605]  30.1759361  31.9757058  33.8224218  99.0631057  98.4299121  66.0182661
## [2611]  86.6471107 210.6142954 228.7256705 135.6153155 152.6611414 154.2386681
## [2617] 177.3541974 167.4052494 167.2741324 185.4882089 172.8105129 171.6060779
## [2623] 187.5172396 187.1801064   0.3800265   3.5315777 115.5240497 119.2678618
## [2629] 119.2174981 111.8368318 114.2240529  89.3590078  40.4719496  33.1554832
## [2635]  35.9055249 187.8650816 166.4110401 163.6578901 168.0164156 141.0140409
## [2641] 139.5665204 138.2966238 154.7359938 147.6451871 157.5432155 141.6201747
## [2647] 142.7668465 152.8014910 156.2793327 155.4548776 110.5810367  98.9692430
## [2653] 117.8270463 109.1330753 202.9332036 246.2039195 186.5941919 205.5024291
## [2659] 197.2259069 228.5990836 189.5565362 174.8673099 202.0737051 180.6345249
## [2665] 186.0994282 196.9515243 188.5796086   3.2796562 115.9038528 119.6477883
## [2671] 119.5974662 112.2150194 114.6020227  89.7376690  40.8435878  33.5192420
## [2677]  36.2716646 188.1530272 166.6959595 163.9511235 168.3049045 141.2409266
## [2683] 139.8310578 138.6055192 154.8585471 147.7670809 157.6345898 141.7150418
## [2689] 142.8555294 152.9181481 156.3884107 155.5600172 110.9156462  99.2944728
## [2695] 117.8908310 109.1334780 203.3114014 246.5838914 186.9551640 205.8679492
## [2701] 197.5951990 228.9701217 189.9334170 175.2461886 202.4530194 181.0138347
## [2707] 186.4779434 197.3314042 188.9596329 118.0832734 121.7987545 121.7351418
## [2713] 114.5460698 116.9454935  91.6228376  43.4443466  36.2790188  38.9894017
## [2719] 191.3815542 169.9312301 167.1666711 171.5322301 144.5178580 143.0980800
## [2725] 141.7710300 157.9405064 150.8472556 160.6105207 144.7045941 145.8222290
## [2731] 155.9816319 159.4268925 158.5851585 113.9490056 102.3858110 120.7608117
## [2737] 111.7040886 205.1380814 248.6214662 189.7228153 208.5613198 200.2145986
## [2743] 231.5478398 192.3237588 177.5209742 204.6866226 183.2495499 188.7785680
## [2749] 199.4843479 191.0355482   3.9744973   4.1863435   8.1784328   8.1339333
## [2755]  28.8340349  76.0205955  83.9282237  81.0766633 121.7175180 106.6474128
## [2761] 100.8024218 106.1770231 113.6684510  98.0704524  76.7446773 156.9817393
## [2767] 152.1149087 168.0668470 155.5358544 158.0342905 157.3167580 162.0594701
## [2773] 162.5905923  51.8116281  56.4595562 147.5914542 156.2279119  89.7320457
## [2779] 130.9659462  82.3267944  97.4279262  87.2999220 116.9411060  75.3417750
## [2785]  59.6641375  86.6474934  65.2284303  71.0338576  81.4334496  73.2680087
## [2791]   0.6488994  11.4640590  10.7420876  31.9157316  79.8736624  87.7883967
## [2797]  84.9394045 122.1455750 107.6121838 101.6934554 107.0391227 115.9382246
## [2803] 100.0453448  78.2124059 159.7052441 154.9335932 170.9260386 158.5592152
## [2809] 161.0714385 160.0973043 164.8388853 165.4009826  54.3729609  59.6027916
## [2815] 150.9939486 159.8576995  85.7616664 127.1203859  80.3744342  94.9470501
## [2821]  84.6497776 113.9654475  72.0682903  56.1607170  83.0191343  61.6264244
## [2827]  67.5579110  77.6871865  69.4248080  11.9149118  11.2803058  31.6766306
## [2833]  79.8858271  87.8046503  84.9575876 122.7888391 108.2610682 102.3423149
## [2839] 107.6878991 116.5444616 100.6689541  78.8544926 160.2726031 155.4901514
## [2845] 171.4779850 159.0892060 161.5994781 160.6583604 165.4001440 165.9586832
## [2851]  54.9516305  60.1101375 151.4567905 160.2618695  85.6288965 127.1239874
## [2857]  80.8511312  95.3445427  85.0188906 114.2664679  72.3007370  56.3259834
## [2863]  83.1337826  61.7544877  67.7301425  77.7499024  69.4334306   2.4719552
## [2869]  29.0001632  71.7675068  79.5851488  76.7257204 115.9028032 100.1066776
## [2875]  94.3728769  99.7747629 105.7726835  90.4167391  69.6494561 148.8480721
## [2881] 143.9567412 159.9004586 147.3577292 149.8567011 149.1671914 153.9099558
## [2887] 154.4337858  43.7835779  48.2900736 139.5422668 148.4303974  95.7854602
## [2893] 135.7265003  81.1929150  97.5015426  87.8762898 118.3141080  77.8448385
## [2899]  63.0972633  90.4108333  68.9993636  74.2746493  85.7601175  78.1584182
## [2905]  31.3475878  74.1111743  81.9141155  79.0551792 114.4547715  98.9494004
## [2911]  93.1635063  98.5550609 105.5454954  89.9439593  68.7728910 149.0226118
## [2917] 144.2183917 160.2010830 147.8173974 150.3301830 149.3938706 154.1359879
## [2923] 154.6884742  43.7563572  48.8902478 140.4160830 149.5977528  93.8963470
## [2929] 133.5342782  78.8061213  95.0475031  85.4078861 115.8435243  75.4195835
## [2935]  60.7581942  88.0918408  66.6939708  71.9084261  83.5180359  76.0152055
## [2941]  52.0139609  59.8510210  57.1236819 140.7334095 123.0731995 117.7958015
## [2947] 123.1935653 120.9015202 108.1770199  91.2596664 159.0445511 153.3082471
## [2953] 168.5571566 154.4615039 156.7578505 158.8015649 163.4718238 163.6778094
## [2959]  60.6543608  59.0274403 141.9217060 146.8455258 113.5882382 157.1688704
## [2965] 110.1367706 125.9959028 116.0301643 145.7733184 103.9772879  87.8913883
## [2971] 114.4123873  93.1495973  99.3102281 108.6266786  99.7833000   7.9344140
## [2977]   5.1260784 153.5829884 132.6298405 129.0880717 133.8654989 113.7816218
## [2983] 108.3132262 102.4816876 138.4051359 131.6270743 144.4825487 128.7621791
## [2989] 130.5315399 137.1713848 141.3528262 140.9799076  72.6080383  62.1492822
## [2995] 109.5290731 108.1650147 164.8490108 206.9863780 146.4166787 165.1400580
## [3001] 156.7725095 188.1282144 149.2598980 134.8641602 162.1704545 140.7469432
## [3007] 146.0124684 157.3340592 149.2883867   2.8596097 158.1119611 136.9492058
## [3013] 133.6635319 138.3106423 116.0434999 111.7377466 107.4313676 138.0573743
## [3019] 131.1674827 143.4410872 127.5798129 129.2265353 136.6573055 140.7045624
## [3025] 140.2290792  78.3583014  67.3383364 107.2256233 104.4409346 172.7806329
## [3031] 214.8933833 153.4493902 172.3532526 164.1347623 195.5590722 156.9552623
## [3037] 142.6722986 169.9959051 148.5799497 153.7945579 165.2078394 157.1957929
## [3043] 156.1136598 135.0116880 131.6453939 136.3341704 114.7664578 110.0760382
## [3049] 105.2906794 137.6964668 130.8440250 143.3331720 127.5172549 129.2096727
## [3055] 136.3556766 140.4528778 140.0143429  75.9706596  65.1037696 107.5695974
## [3061] 105.3304701 169.9669025 212.0409484 150.7351650 169.5974181 161.3459162
## [3067] 192.7567417 154.1068923 139.8133734 167.1364420 145.7203606 150.9371857
## [3073] 162.3496522 154.3436354  21.5624321  24.4993730  19.8522311  58.9645094
## [3079]  50.4545136  51.6043037  95.5537745  96.6217511 108.8566056 108.0647933
## [3085] 110.3197155  98.2100872 101.2646088 102.9642757  83.3479673  91.7594391
## [3091] 122.8449912 142.9832588 154.5876256 163.9887952  73.1837091  86.4697408
## [3097]  90.7231405 109.1361488 108.4414349 113.7168484 125.3080237 117.8971362
## [3103] 114.5154888 129.3169515 131.7513446   6.2094104   2.8842012  40.7250369
## [3109]  29.3531269  32.0357332  83.2842046  82.9860694  96.9185301  93.4806267
## [3115]  95.9242454  85.5536911  89.2375066  90.7606418  63.8689518  71.2455554
## [3121] 105.2588944 124.7601576 151.3335774 166.8660043  73.7910085  90.7290676
## [3127]  92.3708527 115.7293447 106.6664992 108.6326208 124.5119538 113.6502888
## [3133] 111.5606811 127.2095368 127.9578180   5.4168553  43.0916359  29.4085993
## [3139]  27.3210295  87.4084603  86.7101282 101.0511323  96.8216045  99.3164620
## [3145]  89.5540444  93.3892700  94.8552358  59.2137088  67.2817788 107.2842112
## [3151] 126.3745385 145.3909339 161.6652650  68.5554320  86.0166660  87.1836070
## [3157] 111.3574209 100.9450864 102.5920486 118.8668809 107.6675041 105.6998406
## [3163] 121.4082306 121.9936217  43.5607215  31.7624576  32.5396208  86.1196033
## [3169]  85.8557672  99.7506946  96.3636633  98.8062569  88.4017688  92.0685995
## [3175]  93.5981076  64.4446499  72.2395101 108.0831368 127.5403283 149.2787273
## [3181] 164.3288942  71.2945820  88.0491473  89.8447872 112.9676149 104.4241733
## [3187] 106.7122837 122.2109465 111.6509585 109.4321633 125.0240411 125.9322955
## [3193]  18.3196278  43.1317612  47.8400807  45.5223984  61.0726696  54.4502757
## [3199]  57.0260021  49.3430593  53.7246335  54.8837889  62.1439277  61.9379983
## [3205]  64.5434365  84.2401203 177.8149264 200.1439109 108.0845584 127.0456968
## [3211] 126.5389550 153.0281683 136.7243961 134.4359179 154.9342624 140.3105987
## [3217] 139.9816455 155.9924732 154.5554596  24.8967250  66.1586689  63.6824245
## [3223]  79.3536738  72.0399027  74.6551438  67.6298847  72.0359793  73.1770332
## [3229]  47.7945192  50.5612468  79.0761277  97.5302681 159.5361068 182.0689987
## [3235]  90.4528975 109.7949914 108.7735004 135.9862207 118.4648054 116.1447558
## [3241] 136.6715944 122.0019666 121.6666576 137.6771443 136.2572642  90.8889600
## [3247]  88.0723157 103.9313988  95.6637142  98.3044936  92.2394532  96.7174510
## [3253]  97.7957106  31.9054324  40.3698718  99.3298794 115.9734462 134.6858642
## [3259] 158.4405651  68.5824706  88.7079671  86.3031631 115.1400877  94.2820146
## [3265]  91.3183562 112.4456304  97.2302880  97.1244121 113.1198017 111.4463922
## [3271]   7.0965557  13.6438464  17.2966292  18.2758363   3.1742796   5.9920983
## [3277]   7.4856612 105.3840979 101.4456015  42.7649150  62.2798516 225.5468542
## [3283] 247.5869605 154.9841895 173.2679588 173.5725148 198.7642247 184.4945145
## [3289] 182.2029631 202.7051258 188.1148214 187.8204520 203.8314332 202.3342098
## [3295]  16.1446052  12.3159562  14.0884381   5.5960864  10.1671998  10.4824415
## [3301] 100.7589458  96.2138839  36.3852571  56.3944663 222.4651251 245.6663066
## [3307] 153.4639502 172.1300543 171.9749014 197.8729141 182.1347473 179.2224131
## [3313] 200.3375087 185.2219292 185.1893770 201.1890800 199.3629739  15.9841902
## [3319]  14.8181335  11.7316273   7.6838083   6.2281314 116.8236054 111.9997914
## [3325]  40.9954700  57.8642865 238.4595619 261.0594668 168.5475170 186.8917332
## [3331] 187.1221760 212.4058350 197.7970287 195.1761128 216.0069319 201.1427007
## [3337] 200.9944593 217.0018850 215.3158977   2.6452145  14.2282984  15.7630441
## [3343]  14.4511728 105.0388630  99.1300257  26.1466300  45.0474496 229.1100406
## [3349] 253.9691728 162.4299926 181.4944778 180.8037099 207.4647863 189.9443972
## [3355] 186.1184533 208.0987798 192.2395963 192.6021235 208.5514956 206.2271829
## [3361]  15.1192765  15.8694984  14.3436084 107.6059234 101.6123872  26.4177549
## [3367]  44.5772088 231.7498157 256.6011289 165.0309924 184.0716239 183.4130237
## [3373] 210.0259043 192.5856676 188.7620502 210.7410125 194.8840368 195.2470658
## [3379] 211.1966378 208.8702017   4.7427646   5.5567233 105.8494995 101.5430904
## [3385]  39.9341244  59.2624744 226.8150143 249.3409098 156.8744073 175.2975704
## [3391] 175.4383042 200.8816398 186.0669489 183.5109346 204.2770236 189.4623708
## [3397] 189.2807330 205.2891852 203.6491561   1.8760094 110.5863631 106.2763864
## [3403]  41.9092822  60.4428039 231.3413029 253.5577495 160.9725909 179.2587526
## [3409] 179.5588730 204.7462521 190.4173271 188.0165201 208.6281670 193.9477094
## [3415] 193.7025615 209.7129238 208.1517770 111.2007763 106.6925220  40.5680592
## [3421]  58.8685339 232.3701302 254.8374143 162.3195263 180.6746510 180.8940632
## [3427] 206.2056044 191.6046787 189.0674320 209.8150911 195.0190447 194.8322929
## [3433] 210.8410771 209.2057261  12.7336985 100.4882652 112.6645654 127.2412571
## [3439] 159.2713246  80.1144493 100.3923342  94.5067973 125.8972170  94.9278146
## [3445]  86.2846351 111.8186561  92.7263921  95.0750638 110.1007793 105.6049965
## [3451]  91.8975658 102.5904775 137.2151374 170.7754434  92.8453911 113.1067828
## [3457] 107.0993915 138.5474332 106.7845982  97.2854384 123.3423416 103.7423137
## [3463] 106.5146574 121.2150240 116.1810245  20.8928832 227.5450643 256.5620454
## [3469] 167.8867876 187.8577354 185.5964580 214.2461580 191.8009652 185.6646452
## [3475] 209.6134719 192.0108216 193.3814062 209.0130335 205.4426635 239.7209433
## [3481] 271.0615463 184.4102037 204.6587141 201.6628835 231.0938375 206.2813211
## [3487] 198.8644910 223.7684698 205.2873733 207.2387036 222.5625049 218.2695476
## [3493]  46.9277282  82.1166193  76.3117289  67.2861890  72.5431351  46.4186691
## [3499]  43.4148737  32.2811945  37.8209870  40.0970298  25.8820862  23.4460898
## [3505]  93.1104206  77.5262637  74.4972760  58.3570599  64.8063043  73.9961482
## [3511]  47.4545851  67.6232473  64.2609097  50.2290161  57.6979915  20.5328970
## [3517]  18.6432823  46.8239466  35.6979538  44.8966475  52.1256065  47.3992788
## [3523]  42.5866948  56.4560726  60.1293506  11.4039178  26.4351236  33.3527913
## [3529]  48.6384035  44.0961463  48.4032719  41.5471260  50.8169021  57.6510584
## [3535]  31.6698159  22.5244635  37.2564192  35.6569904  37.2595416  30.6425326
## [3541]  41.4442324  47.3349586  43.2323561  60.6006955  42.8632086  57.5446975
## [3547]  50.1098182  51.2554528  60.8988035  17.3829543  18.2108414  15.3319192
## [3553]   8.1977724  20.8757132  25.0175150  27.3834325   6.4568780  11.4214231
## [3559]  23.9555295  20.1406660  21.4392145  16.8729240   8.4172975  18.4838567
## [3565]   7.4749251  17.5101441  14.3751247  16.0110985  17.5430182  10.3114926
aquifer_pair$from
##    [1]  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
##   [25]  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
##   [49]  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
##   [73]  1  1  1  1  1  1  1  1  1  1  1  1  2  2  2  2  2  2  2  2  2  2  2  2
##   [97]  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2
##  [121]  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2
##  [145]  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  3
##  [169]  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3
##  [193]  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3
##  [217]  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3
##  [241]  3  3  3  3  3  3  3  3  3  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4
##  [265]  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4
##  [289]  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4
##  [313]  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  5  5  5  5  5  5
##  [337]  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5
##  [361]  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5
##  [385]  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5
##  [409]  5  5  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6
##  [433]  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6
##  [457]  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6
##  [481]  6  6  6  6  6  6  6  6  6  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7
##  [505]  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7
##  [529]  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7
##  [553]  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  8  8  8  8  8  8  8  8  8
##  [577]  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8
##  [601]  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8
##  [625]  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  9  9  9  9
##  [649]  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9
##  [673]  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9
##  [697]  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9  9
##  [721] 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
##  [745] 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
##  [769] 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
##  [793] 10 10 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
##  [817] 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
##  [841] 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
##  [865] 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
##  [889] 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
##  [913] 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
##  [937] 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
##  [961] 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
##  [985] 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
## [1009] 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
## [1033] 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
## [1057] 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
## [1081] 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
## [1105] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
## [1129] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
## [1153] 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
## [1177] 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
## [1201] 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
## [1225] 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17
## [1249] 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17
## [1273] 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 18 18 18 18
## [1297] 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
## [1321] 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
## [1345] 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 19 19 19 19 19 19 19 19 19
## [1369] 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19
## [1393] 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19
## [1417] 19 19 19 19 19 19 19 19 19 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
## [1441] 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
## [1465] 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
## [1489] 20 20 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21
## [1513] 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21
## [1537] 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 22 22 22 22 22 22
## [1561] 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22
## [1585] 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22
## [1609] 22 22 22 22 22 22 22 22 22 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23
## [1633] 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23
## [1657] 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 24
## [1681] 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
## [1705] 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
## [1729] 24 24 24 24 24 24 24 24 24 24 24 24 25 25 25 25 25 25 25 25 25 25 25 25
## [1753] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
## [1777] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
## [1801] 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26
## [1825] 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26
## [1849] 26 26 26 26 26 26 26 26 26 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27
## [1873] 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27
## [1897] 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 28 28 28
## [1921] 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28
## [1945] 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28
## [1969] 28 28 28 28 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29
## [1993] 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29
## [2017] 29 29 29 29 29 29 29 29 29 29 29 29 29 29 30 30 30 30 30 30 30 30 30 30
## [2041] 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
## [2065] 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 31 31 31
## [2089] 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31
## [2113] 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31
## [2137] 31 31 31 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
## [2161] 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
## [2185] 32 32 32 32 32 32 32 32 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
## [2209] 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
## [2233] 33 33 33 33 33 33 33 33 33 33 33 33 34 34 34 34 34 34 34 34 34 34 34 34
## [2257] 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34
## [2281] 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 35 35 35 35 35 35 35 35 35
## [2305] 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35
## [2329] 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 36 36 36 36 36 36 36
## [2353] 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36
## [2377] 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 37 37 37 37 37 37
## [2401] 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37
## [2425] 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 38 38 38 38 38 38
## [2449] 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
## [2473] 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 39 39 39 39 39 39 39
## [2497] 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39
## [2521] 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 40 40 40 40 40 40 40 40 40
## [2545] 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
## [2569] 40 40 40 40 40 40 40 40 40 40 40 40 41 41 41 41 41 41 41 41 41 41 41 41
## [2593] 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
## [2617] 41 41 41 41 41 41 41 41 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42
## [2641] 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42
## [2665] 42 42 42 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43
## [2689] 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 44 44 44
## [2713] 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44
## [2737] 44 44 44 44 44 44 44 44 44 44 44 44 44 44 45 45 45 45 45 45 45 45 45 45
## [2761] 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45
## [2785] 45 45 45 45 45 45 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46
## [2809] 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 47 47 47
## [2833] 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47
## [2857] 47 47 47 47 47 47 47 47 47 47 47 48 48 48 48 48 48 48 48 48 48 48 48 48
## [2881] 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48
## [2905] 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49
## [2929] 49 49 49 49 49 49 49 49 49 49 49 49 50 50 50 50 50 50 50 50 50 50 50 50
## [2953] 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 51
## [2977] 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51
## [3001] 51 51 51 51 51 51 51 51 51 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52
## [3025] 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 53 53 53 53 53 53
## [3049] 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53
## [3073] 53 53 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54
## [3097] 54 54 54 54 54 54 54 54 54 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55
## [3121] 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 56 56 56 56 56 56 56 56 56
## [3145] 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 57 57 57 57
## [3169] 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57
## [3193] 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
## [3217] 58 58 58 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59
## [3241] 59 59 59 59 59 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60
## [3265] 60 60 60 60 60 60 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61
## [3289] 61 61 61 61 61 61 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62
## [3313] 62 62 62 62 62 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63
## [3337] 63 63 63 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64
## [3361] 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 66 66 66 66
## [3385] 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 67 67 67 67 67 67 67 67 67
## [3409] 67 67 67 67 67 67 67 67 67 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68
## [3433] 68 68 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 70 70 70 70 70 70
## [3457] 70 70 70 70 70 70 70 70 70 71 71 71 71 71 71 71 71 71 71 71 71 71 71 72
## [3481] 72 72 72 72 72 72 72 72 72 72 72 72 73 73 73 73 73 73 73 73 73 73 73 73
## [3505] 74 74 74 74 74 74 74 74 74 74 74 75 75 75 75 75 75 75 75 75 75 76 76 76
## [3529] 76 76 76 76 76 76 77 77 77 77 77 77 77 77 78 78 78 78 78 78 78 79 79 79
## [3553] 79 79 79 80 80 80 80 80 81 81 81 81 82 82 82 83 83 84
aquifer_pair$lags
##    [1] 3  3  3  4  3  4  4  4  4  4  4  4  4  3  4  5  5  5  2  2  2  3  3  4 
##   [25] 1  4  4  4  4  4  2  3  3  4  2  5  6  5  5  2  5  5  5  5  5  5  4  4 
##   [49] 5  4  4  4  4  3  3  3  1  2  3  2  2  3  2  2  2  2  2  3  3  2  3  7 
##   [73] 8  5  6  6  7  6  6  7  6  6  7  7  1  1  5  6  5  5  5  5  5  5  5  4 
##   [97] 1  4  5  5  5  4  4  4  3  3  6  4  2  3  3  3  3  4  4  4  3  5  3  4 
##  [121] 3  3  4  6  6  6  3  3  3  3  2  4  4  5  5  3  2  2  2  3  2  1  5  5 
##  [145] 5  5  5  5  5  5  2  2  5  6  5  5  2  3  3  4  3  3  4  3  3  4  4  1 
##  [169] 4  5  4  4  4  4  4  4  4  4  2  4  4  5  4  3  3  3  3  2  5  4  2  2 
##  [193] 3  2  2  3  4  4  4  5  3  3  3  3  4  5  5  5  3  3  3  2  2  3  4  4 
##  [217] 4  3  3  2  3  3  2  1  4  4  5  4  4  4  5  5  1  1  4  5  5  6  3  4 
##  [241] 4  5  4  4  4  4  4  4  4  5  5  5  5  5  5  5  5  5  5  2  4  4  5  5 
##  [265] 4  4  4  3  3  5  4  2  2  2  2  2  4  4  4  4  5  3  3  3  3  5  5  5 
##  [289] 5  2  2  2  2  2  3  4  4  4  3  3  3  3  3  3  2  5  5  5  5  5  5  5 
##  [313] 5  1  2  5  6  4  6  3  3  3  4  3  3  4  3  3  4  4  1  1  1  2  1  2 
##  [337] 1  1  7  5  3  2  3  2  2  2  3  2  3  1  4  4  4  4  4  4  2  6  6  7 
##  [361] 4  5  5  5  5  5  2  2  2  5  5  5  5  5  4  2  2  2  6  6  6  6  4  5 
##  [385] 5  5  4  5  4  4  5  5  5  4  3  3  3  8  10 7  8  7  9  7  7  8  7  7 
##  [409] 8  7  2  2  2  2  2  2  1  7  6  3  3  3  3  2  2  2  3  3  2  4  4  5 
##  [433] 5  5  5  2  6  6  7  3  6  6  6  6  5  3  3  3  5  6  6  5  5  5  3  3 
##  [457] 3  6  6  6  6  4  5  5  4  4  4  4  4  4  4  4  4  4  3  2  9  10 7  8 
##  [481] 8  9  8  7  8  8  8  8  8  1  1  1  1  1  1  7  5  2  2  2  2  3  2  3 
##  [505] 2  2  1  4  4  4  4  4  4  2  6  6  7  4  5  5  5  5  5  2  2  2  4  5 
##  [529] 5  4  4  4  2  2  2  6  5  5  6  4  4  5  5  5  5  4  4  5  5  5  4  3 
##  [553] 4  3  8  9  7  7  7  8  7  6  7  7  7  7  7  1  1  1  1  1  7  6  2  1 
##  [577] 2  1  3  3  3  2  3  1  5  4  4  4  4  4  2  7  7  7  5  5  5  5  5  6 
##  [601] 1  1  1  4  5  5  4  4  3  2  1  1  7  6  6  6  5  5  5  6  5  6  5  5 
##  [625] 5  6  6  4  3  4  4  8  9  7  8  7  8  7  7  8  7  7  7  7  1  1  1  1 
##  [649] 8  6  2  1  1  1  3  3  4  2  3  1  5  4  4  4  4  4  3  7  7  7  5  5 
##  [673] 5  5  5  6  1  1  1  4  5  5  4  4  4  2  1  1  7  6  6  6  5  5  5  6 
##  [697] 6  6  5  5  6  6  6  4  4  4  4  8  9  7  8  7  9  7  7  8  7  7  7  7 
##  [721] 1  1  1  7  6  2  2  2  2  3  2  3  3  3  1  4  4  4  4  4  4  2  6  7 
##  [745] 7  4  5  5  5  5  6  2  2  2  5  5  5  5  5  4  2  2  2  7  6  6  6  5 
##  [769] 5  5  5  5  5  5  5  5  5  5  4  4  4  3  8  10 7  8  7  9  7  7  8  7 
##  [793] 7  8  7  1  1  7  6  2  1  1  1  3  3  3  2  3  1  5  4  4  4  4  4  2 
##  [817] 7  7  7  5  5  5  5  5  6  1  1  1  4  5  5  4  4  3  2  1  1  7  6  6 
##  [841] 6  5  5  5  6  5  6  5  5  6  6  6  4  4  4  4  8  9  7  8  7  8  7  7 
##  [865] 8  7  7  7  7  1  7  6  2  2  2  2  3  3  3  2  3  1  5  4  4  4  4  4 
##  [889] 2  7  7  7  5  5  5  5  5  6  1  1  1  4  5  5  4  4  4  2  1  1  7  6 
##  [913] 6  6  5  5  5  5  5  6  5  5  5  6  5  4  4  4  4  8  9  7  8  7  8  7 
##  [937] 7  8  7  7  7  7  7  6  2  2  2  2  3  2  3  3  3  1  4  4  4  4  4  4 
##  [961] 2  6  7  7  4  5  5  5  5  5  2  2  2  5  5  5  5  5  4  2  2  2  7  6 
##  [985] 6  6  5  5  5  5  5  5  4  4  5  5  5  4  4  4  3  8  10 7  8  7  9  7 
## [1009] 7  8  7  7  8  7  3  7  8  8  8  5  5  5  6  6  8  4  6  6  6  6  6  6 
## [1033] 1  1  2  5  7  7  7  7  3  8  8  8  6  6  6  6  6  7  7  7  7  2  2  2 
## [1057] 2  3  3  3  4  4  4  4  4  4  4  4  5  5  5  6  8  8  5  5  5  6  6  6 
## [1081] 6  6  6  7  7  5  6  6  6  4  4  4  4  4  6  4  3  3  4  4  4  4  3  3 
## [1105] 2  5  4  4  4  4  4  6  6  6  4  4  4  3  3  4  5  5  5  2  1  1  1  2 
## [1129] 2  1  4  4  5  4  5  4  4  4  2  3  5  5  5  6  3  3  3  4  4  4  4  4 
## [1153] 4  4  4  1  2  1  4  3  4  2  2  3  5  3  3  3  3  3  2  7  7  6  5  3 
## [1177] 4  3  3  6  2  2  2  3  3  3  3  3  2  1  1  1  6  5  5  5  5  5  4  6 
## [1201] 6  6  5  6  6  6  6  3  3  5  5  6  8  6  6  6  7  6  5  6  6  6  6  6 
## [1225] 1  1  4  3  4  2  3  2  5  3  3  3  3  3  3  7  7  7  6  4  4  4  4  6 
## [1249] 2  2  2  4  4  4  4  4  3  1  1  1  7  6  6  6  5  5  5  6  6  6  6  6 
## [1273] 6  6  6  4  3  5  5  7  9  6  7  7  8  7  6  7  6  6  7  6  1  4  4  4 
## [1297] 3  3  2  6  4  4  4  4  4  3  7  7  7  6  4  4  4  4  7  1  1  1  4  4 
## [1321] 4  4  4  3  2  1  1  7  6  6  6  6  5  5  6  6  7  6  6  6  7  6  4  4 
## [1345] 5  5  7  9  7  8  7  8  7  6  7  6  7  7  7  4  4  4  2  3  2  6  4  4 
## [1369] 4  4  4  3  7  7  7  6  4  4  4  4  7  1  1  1  4  4  4  4  4  3  1  1 
## [1393] 1  7  6  6  6  6  5  5  6  6  7  6  6  6  6  6  4  4  5  5  7  9  7  7 
## [1417] 7  8  7  6  7  6  7  7  7  1  1  3  3  3  2  4  4  4  4  4  2  4  5  5 
## [1441] 2  5  5  5  5  3  4  4  4  5  5  5  4  4  4  3  3  3  5  4  4  4  3  3 
## [1465] 3  3  3  3  2  3  3  3  3  3  3  2  2  8  9  6  7  6  8  7  6  7  6  7 
## [1489] 7  7  1  2  2  3  3  4  4  4  4  4  1  5  5  5  3  5  5  5  5  4  3  3 
## [1513] 3  5  5  5  4  4  4  3  3  3  5  4  4  4  3  3  4  3  3  4  3  3  3  3 
## [1537] 3  3  3  2  2  8  9  6  7  7  8  7  6  7  7  7  7  7  3  3  3  2  4  4 
## [1561] 4  4  4  2  4  4  5  2  5  5  5  5  3  4  4  4  5  5  5  4  4  4  3  3 
## [1585] 3  5  4  4  4  2  3  3  3  3  3  2  2  3  3  3  3  3  2  2  8  9  6  6 
## [1609] 6  7  6  6  7  6  6  7  7  1  3  4  2  2  2  2  2  2  5  5  5  5  3  3 
## [1633] 3  3  5  3  3  3  3  3  3  3  3  2  2  2  2  5  4  4  4  4  4  3  5  5 
## [1657] 5  5  5  5  5  5  2  2  4  4  6  8  5  6  5  7  5  5  6  5  5  6  5  3 
## [1681] 4  2  2  2  2  2  2  5  5  5  4  3  4  3  3  5  3  3  3  3  3  3  3  3 
## [1705] 2  2  2  2  5  4  4  4  3  3  3  5  4  5  4  4  5  5  5  2  1  4  4  6 
## [1729] 7  5  6  5  6  5  5  6  5  5  6  5  5  4  5  5  5  5  3  7  7  7  5  6 
## [1753] 6  5  5  6  1  1  1  5  5  5  5  5  4  2  2  2  7  6  6  7  5  5  6  6 
## [1777] 5  6  5  5  5  6  6  5  4  4  4  9  10 8  8  8  9  8  7  8  8  8  8  8 
## [1801] 5  5  5  5  5  3  3  3  4  2  6  6  6  6  2  5  5  6  5  6  6  5  5  6 
## [1825] 5  5  5  4  3  3  3  2  2  3  1  1  2  1  1  1  2  2  4  3  2  2  8  9 
## [1849] 6  6  6  7  7  7  7  7  7  7  7  1  1  1  1  3  5  5  5  5  2  2  2  2 
## [1873] 5  4  4  4  1  2  2  1  1  2  3  3  3  5  4  4  4  4  3  3  5  5  6  5 
## [1897] 5  5  6  6  2  2  5  5  5  6  4  4  4  5  4  3  4  4  4  4  4  1  1  1 
## [1921] 3  5  5  5  6  2  2  1  1  6  4  4  5  1  1  1  1  1  1  3  3  3  5  4 
## [1945] 4  4  4  4  3  6  6  6  6  6  6  6  6  2  2  5  6  4  6  4  4  4  5  4 
## [1969] 3  4  3  3  4  4  1  1  4  6  6  5  6  1  2  1  1  6  4  4  4  1  1  1 
## [1993] 1  1  1  3  3  3  5  5  4  5  5  4  3  6  6  7  6  6  6  6  6  2  2  6 
## [2017] 6  4  6  4  4  4  5  4  3  4  3  4  4  4  1  3  6  6  5  6  1  2  1  1 
## [2041] 6  4  4  4  1  1  1  1  1  1  3  3  3  5  4  4  4  4  4  3  6  6  6  6 
## [2065] 6  6  6  6  2  2  6  6  4  6  4  4  4  5  4  3  4  3  4  4  4  3  6  6 
## [2089] 5  6  1  2  1  1  6  4  4  4  1  1  1  1  1  1  3  3  3  5  4  4  4  4 
## [2113] 4  3  6  6  6  6  6  6  6  6  2  2  6  6  4  6  4  4  4  5  4  3  4  3 
## [2137] 4  4  4  5  5  5  4  4  5  4  4  4  3  3  3  4  4  4  4  4  3  2  2  2 
## [2161] 5  4  4  4  3  3  3  4  4  4  4  4  4  4  4  3  2  3  3  7  8  6  6  6 
## [2185] 7  6  6  7  6  6  7  6  1  2  4  6  7  6  6  2  7  7  8  6  6  6  6  6 
## [2209] 6  6  6  6  2  2  2  2  2  2  3  3  3  3  4  4  3  3  3  4  4  4  5  7 
## [2233] 8  4  5  5  6  6  6  6  6  6  7  7  1  4  6  6  6  6  2  8  8  8  6  6 
## [2257] 6  5  5  6  6  7  6  2  2  2  2  2  2  3  3  3  4  4  4  3  3  4  4  4 
## [2281] 5  5  7  8  4  5  5  6  5  6  6  6  6  6  6  5  6  6  6  6  3  8  8  8 
## [2305] 5  5  5  5  5  6  6  7  7  1  2  2  1  3  3  3  4  4  5  5  5  4  4  4 
## [2329] 4  4  5  6  6  7  3  4  4  5  5  5  5  5  5  5  6  7  7  7  7  3  6  6 
## [2353] 6  6  7  7  6  6  6  5  5  5  5  4  4  4  3  4  4  2  1  1  1  1  1  1 
## [2377] 1  5  4  1  2  9  10 7  8  8  9  8  8  9  8  8  9  8  1  1  1  7  5  5 
## [2401] 5  1  1  1  1  1  2  4  4  4  6  5  5  5  5  5  4  7  7  7  7  7  7  7 
## [2425] 7  3  3  7  7  3  5  4  4  4  5  3  3  4  3  3  3  3  1  1  7  5  5  5 
## [2449] 1  1  1  2  2  2  4  4  4  6  5  5  5  6  5  4  7  7  8  7  7  7  7  7 
## [2473] 3  3  7  7  3  5  4  4  4  5  3  3  4  3  3  3  3  1  6  5  5  5  1  1 
## [2497] 1  1  1  2  4  4  4  5  5  5  5  5  4  4  7  7  7  7  7  7  7  7  3  3 
## [2521] 6  7  4  5  4  4  4  5  3  3  4  3  3  3  3  7  5  5  5  1  1  1  1  1 
## [2545] 2  3  4  4  5  5  5  5  5  5  4  7  7  7  7  7  7  7  7  3  3  6  7  4 
## [2569] 5  4  4  4  5  3  3  4  3  3  3  3  7  7  7  6  6  6  6  6  6  6  6  6 
## [2593] 3  3  3  3  2  2  3  1  2  2  2  2  2  2  2  4  4  3  4  8  9  6  6  6 
## [2617] 7  7  7  7  7  7  7  7  1  1  5  5  5  5  5  4  2  2  2  7  7  7  7  6 
## [2641] 6  6  6  6  6  6  6  6  6  6  5  4  5  5  8  10 7  8  8  9  7  7  8  7 
## [2665] 7  8  7  1  5  5  5  5  5  4  2  2  2  7  7  7  7  6  6  6  6  6  6  6 
## [2689] 6  6  6  6  5  4  5  5  8  10 7  8  8  9  8  7  8  7  7  8  7  5  5  5 
## [2713] 5  5  4  2  2  2  8  7  7  7  6  6  6  6  6  6  6  6  6  6  6  5  4  5 
## [2737] 5  8  10 7  8  8  9  8  7  8  7  7  8  8  1  1  1  1  2  3  4  3  5  4 
## [2761] 4  4  5  4  3  6  6  7  6  6  6  6  6  2  3  6  6  4  5  4  4  4  5  3 
## [2785] 3  4  3  3  4  3  1  1  1  2  3  4  4  5  4  4  4  5  4  3  6  6  7  6 
## [2809] 6  6  7  7  3  3  6  6  4  5  3  4  4  5  3  3  4  3  3  3  3  1  1  2 
## [2833] 3  4  4  5  4  4  4  5  4  3  6  6  7  6  6  6  7  7  3  3  6  6  4  5 
## [2857] 3  4  4  5  3  3  4  3  3  3  3  1  2  3  3  3  5  4  4  4  4  4  3  6 
## [2881] 6  6  6  6  6  6  6  2  2  6  6  4  6  3  4  4  5  3  3  4  3  3  4  3 
## [2905] 2  3  4  3  5  4  4  4  4  4  3  6  6  6  6  6  6  6  6  2  2  6  6  4 
## [2929] 5  3  4  4  5  3  3  4  3  3  4  3  2  3  3  6  5  5  5  5  4  4  6  6 
## [2953] 7  6  6  6  7  7  3  3  6  6  5  6  5  5  5  6  4  4  5  4  4  5  4  1 
## [2977] 1  6  5  5  5  5  4  4  6  5  6  5  5  6  6  6  3  3  5  4  7  8  6  7 
## [3001] 6  7  6  5  6  6  6  6  6  1  6  6  5  6  5  5  4  6  5  6  5  5  6  6 
## [3025] 6  3  3  4  4  7  8  6  7  7  8  6  6  7  6  6  7  6  6  5  5  6  5  5 
## [3049] 4  6  5  6  5  5  6  6  6  3  3  4  4  7  8  6  7  6  8  6  6  7  6  6 
## [3073] 6  6  1  1  1  3  2  2  4  4  5  4  5  4  4  4  4  4  5  6  6  7  3  4 
## [3097] 4  5  5  5  5  5  5  5  5  1  1  2  2  2  4  4  4  4  4  4  4  4  3  3 
## [3121] 4  5  6  7  3  4  4  5  4  5  5  5  5  5  5  1  2  2  2  4  4  4  4  4 
## [3145] 4  4  4  3  3  4  5  6  6  3  4  4  5  4  4  5  4  4  5  5  2  2  2  4 
## [3169] 4  4  4  4  4  4  4  3  3  4  5  6  7  3  4  4  5  4  4  5  5  5  5  5 
## [3193] 1  2  2  2  3  3  3  2  2  3  3  3  3  4  7  8  4  5  5  6  6  5  6  6 
## [3217] 6  6  6  1  3  3  3  3  3  3  3  3  2  2  3  4  6  7  4  5  5  6  5  5 
## [3241] 6  5  5  6  6  4  4  4  4  4  4  4  4  2  2  4  5  5  6  3  4  4  5  4 
## [3265] 4  5  4  4  5  5  1  1  1  1  1  1  1  4  4  2  3  9  10 6  7  7  8  7 
## [3289] 7  8  7  7  8  8  1  1  1  1  1  1  4  4  2  3  9  10 6  7  7  8  7  7 
## [3313] 8  7  7  8  8  1  1  1  1  1  5  5  2  3  9  10 7  7  7  8  8  8  8  8 
## [3337] 8  9  8  1  1  1  1  4  4  1  2  9  10 6  7  7  8  8  7  8  8  8  8  8 
## [3361] 1  1  1  4  4  1  2  9  10 7  7  7  8  8  7  8  8  8  8  8  1  1  4  4 
## [3385] 2  3  9  10 6  7  7  8  7  7  8  7  7  8  8  1  5  4  2  3  9  10 6  7 
## [3409] 7  8  8  7  8  8  8  8  8  5  4  2  3  9  10 6  7  7  8  8  7  8  8  8 
## [3433] 8  8  1  4  5  5  6  3  4  4  5  4  4  5  4  4  5  4  4  4  6  7  4  5 
## [3457] 4  6  4  4  5  4  4  5  5  1  9  10 7  7  7  8  8  7  8  8  8  8  8  9 
## [3481] 10 7  8  8  9  8  8  9  8  8  9  9  2  4  3  3  3  2  2  2  2  2  1  1 
## [3505] 4  3  3  3  3  3  2  3  3  2  3  1  1  2  2  2  2  2  2  3  3  1  1  2 
## [3529] 2  2  2  2  2  3  2  1  2  2  2  2  2  2  2  3  2  3  2  2  3  1  1  1 
## [3553] 1  1  1  2  1  1  1  1  1  1  1  1  1  1  1  1  1  1 
## Levels: 1 2 3 4 5 6 7 8 9 10
aquifer_pair$to
##    [1]  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
##   [25] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
##   [49] 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
##   [73] 74 75 76 77 78 79 80 81 82 83 84 85  3  4  5  6  7  8  9 10 11 12 13 14
##   [97] 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
##  [121] 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
##  [145] 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85  4
##  [169]  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
##  [193] 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
##  [217] 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
##  [241] 77 78 79 80 81 82 83 84 85  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19
##  [265] 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
##  [289] 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
##  [313] 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85  6  7  8  9 10 11
##  [337] 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
##  [361] 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
##  [385] 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
##  [409] 84 85  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
##  [433] 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
##  [457] 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
##  [481] 77 78 79 80 81 82 83 84 85  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22
##  [505] 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
##  [529] 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
##  [553] 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85  9 10 11 12 13 14 15 16 17
##  [577] 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
##  [601] 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
##  [625] 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 10 11 12 13
##  [649] 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
##  [673] 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
##  [697] 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
##  [721] 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
##  [745] 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
##  [769] 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
##  [793] 83 84 85 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
##  [817] 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
##  [841] 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
##  [865] 81 82 83 84 85 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
##  [889] 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
##  [913] 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
##  [937] 80 81 82 83 84 85 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
##  [961] 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
##  [985] 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
## [1009] 80 81 82 83 84 85 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
## [1033] 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
## [1057] 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
## [1081] 81 82 83 84 85 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
## [1105] 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
## [1129] 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
## [1153] 83 84 85 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
## [1177] 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
## [1201] 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
## [1225] 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
## [1249] 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
## [1273] 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 19 20 21 22
## [1297] 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
## [1321] 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
## [1345] 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 20 21 22 23 24 25 26 27 28
## [1369] 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
## [1393] 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
## [1417] 77 78 79 80 81 82 83 84 85 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
## [1441] 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
## [1465] 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
## [1489] 84 85 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
## [1513] 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
## [1537] 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 23 24 25 26 27 28
## [1561] 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
## [1585] 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
## [1609] 77 78 79 80 81 82 83 84 85 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
## [1633] 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
## [1657] 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 25
## [1681] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
## [1705] 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
## [1729] 74 75 76 77 78 79 80 81 82 83 84 85 26 27 28 29 30 31 32 33 34 35 36 37
## [1753] 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
## [1777] 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
## [1801] 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
## [1825] 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
## [1849] 75 76 77 78 79 80 81 82 83 84 85 28 29 30 31 32 33 34 35 36 37 38 39 40
## [1873] 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
## [1897] 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 29 30 31
## [1921] 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
## [1945] 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
## [1969] 80 81 82 83 84 85 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
## [1993] 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
## [2017] 72 73 74 75 76 77 78 79 80 81 82 83 84 85 31 32 33 34 35 36 37 38 39 40
## [2041] 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
## [2065] 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 32 33 34
## [2089] 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
## [2113] 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
## [2137] 83 84 85 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
## [2161] 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
## [2185] 78 79 80 81 82 83 84 85 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
## [2209] 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
## [2233] 74 75 76 77 78 79 80 81 82 83 84 85 35 36 37 38 39 40 41 42 43 44 45 46
## [2257] 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
## [2281] 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 36 37 38 39 40 41 42 43 44
## [2305] 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
## [2329] 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 37 38 39 40 41 42 43
## [2353] 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
## [2377] 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 38 39 40 41 42 43
## [2401] 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
## [2425] 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 39 40 41 42 43 44
## [2449] 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
## [2473] 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 40 41 42 43 44 45 46
## [2497] 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
## [2521] 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 41 42 43 44 45 46 47 48 49
## [2545] 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
## [2569] 74 75 76 77 78 79 80 81 82 83 84 85 42 43 44 45 46 47 48 49 50 51 52 53
## [2593] 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
## [2617] 78 79 80 81 82 83 84 85 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
## [2641] 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
## [2665] 83 84 85 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
## [2689] 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 45 46 47
## [2713] 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
## [2737] 72 73 74 75 76 77 78 79 80 81 82 83 84 85 46 47 48 49 50 51 52 53 54 55
## [2761] 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
## [2785] 80 81 82 83 84 85 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
## [2809] 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 48 49 50
## [2833] 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
## [2857] 75 76 77 78 79 80 81 82 83 84 85 49 50 51 52 53 54 55 56 57 58 59 60 61
## [2881] 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
## [2905] 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
## [2929] 74 75 76 77 78 79 80 81 82 83 84 85 51 52 53 54 55 56 57 58 59 60 61 62
## [2953] 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 52
## [2977] 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
## [3001] 77 78 79 80 81 82 83 84 85 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
## [3025] 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 54 55 56 57 58 59
## [3049] 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
## [3073] 84 85 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
## [3097] 77 78 79 80 81 82 83 84 85 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
## [3121] 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 57 58 59 60 61 62 63 64 65
## [3145] 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 58 59 60 61
## [3169] 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
## [3193] 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
## [3217] 83 84 85 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
## [3241] 81 82 83 84 85 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
## [3265] 80 81 82 83 84 85 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
## [3289] 80 81 82 83 84 85 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
## [3313] 81 82 83 84 85 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
## [3337] 83 84 85 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
## [3361] 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 67 68 69 70
## [3385] 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 68 69 70 71 72 73 74 75 76
## [3409] 77 78 79 80 81 82 83 84 85 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
## [3433] 84 85 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 71 72 73 74 75 76
## [3457] 77 78 79 80 81 82 83 84 85 72 73 74 75 76 77 78 79 80 81 82 83 84 85 73
## [3481] 74 75 76 77 78 79 80 81 82 83 84 85 74 75 76 77 78 79 80 81 82 83 84 85
## [3505] 75 76 77 78 79 80 81 82 83 84 85 76 77 78 79 80 81 82 83 84 85 77 78 79
## [3529] 80 81 82 83 84 85 78 79 80 81 82 83 84 85 79 80 81 82 83 84 85 80 81 82
## [3553] 83 84 85 81 82 83 84 85 82 83 84 85 83 84 85 84 85 85
aquifer.v<-est.variogram(aquifer_points,aquifer_pair,'resi')
g4=ggplot(aquifer, aes(resi, Este)) + 
  geom_point() + 
  geom_line() +
  xlab("Este") + 
  ylab("residuales2")

g5=ggplot(aquifer, aes(resi, Norte)) + 
  geom_point() + 
  geom_line() +
  xlab("Norte") + 
  ylab("residuales2")

plot_grid(g4,g5)

aquifer_points=point(aquifer, x="Este", y="Norte")
fit.trend(aquifer_points,at="Profundidad", np=2, plot.it=TRUE)

## $beta
##       x^0 y^0       x^1 y^0       x^2 y^0       x^0 y^1       x^1 y^1 
##  2.481430e+03 -8.373708e+00  1.416675e-03 -2.043419e+00  2.680056e-02 
##       x^0 y^2 
## -2.464371e-02 
## 
## $R
##        x^0 y^0   x^1 y^0    x^2 y^0    x^0 y^1    x^1 y^1   x^0 y^2
## [1,] -9.219544 -155.6739 -41051.636 -731.67314 -16082.944 -85540.31
## [2,]  0.000000  595.1832   3500.219   57.75539  38829.771  12491.66
## [3,]  0.000000    0.0000  39397.313 -117.36878   1909.315 -23722.80
## [4,]  0.000000    0.0000      0.000  485.98967  14332.040  91118.22
## [5,]  0.000000    0.0000      0.000    0.00000  25401.055   3240.90
## [6,]  0.000000    0.0000      0.000    0.00000      0.000  19989.20
## 
## $np
## [1] 2
## 
## $x
##  [1]   42.78275  -27.39691   -1.16289  -18.61823   96.46549  108.56243
##  [7]   88.36356   90.04213   93.17269   97.61099   90.62946   92.55262
## [13]   99.48996  -24.06744  -26.06285   56.27842   73.03881   80.26679
## [19]   80.23009   68.83845   76.39921   64.46148   43.39657   39.07769
## [25]  112.80450   54.25899    6.13202   -3.80469   -2.23054   -2.36177
## [31]   -2.18890   63.22428  -10.77860  -18.98889  -38.57884   83.14496
## [37]  -21.80248  -23.56457  -20.11299  -16.62654   29.90748  100.91568
## [43]  101.29544  103.26625  -14.31073  -18.13447  -18.12151   -9.88796
## [49]  -12.16336   11.65754   61.69122   69.57896   66.72205  -36.65446
## [55]  -19.55102  -21.29791  -22.36166   21.14719    7.68461   -8.33227
## [61]   56.70724   59.00052   68.96893   70.90225   73.00243   59.66237
## [67]   61.87249   63.70810    5.62706   18.24739   85.68824  105.07646
## [73] -101.64278 -145.23654  -73.99313  -94.48182  -88.84983 -120.25898
## [79]  -86.02454  -72.79097 -100.17372  -78.83539  -83.69063  -95.61661
## [85]  -87.55480
## 
## $y
##  [1] 127.62282  90.78732  84.89600  76.45199  64.58058  82.92325  56.45348
##  [8]  39.25820  33.05852  56.27887  35.08169  41.75238  59.15785 184.76636
## [15] 114.07479  26.84826  18.88140  12.61593  14.61795 107.77423  95.99380
## [22] 110.39641  53.61499  61.99805  45.54766 147.81987  48.32772  40.40450
## [29]  29.91113  33.82002  33.68207  79.49924 175.11346 171.91695 158.52742
## [36] 159.11559  15.02551   9.41441  22.09269  17.25621 175.12875  22.97808
## [43]  22.96385  20.34239  31.26545  30.18118  29.53241  38.14483  39.11081
## [50]  18.73347  32.94906  33.80841  33.93264 150.91457 137.78404 131.82542
## [57] 137.13680 139.26199 126.83751 107.77691 171.26443 164.54863 177.24820
## [64] 161.38136 162.98959 170.10544 174.30177 173.91454  79.08730  77.39191
## [71] 139.81702 132.03181  10.65106  28.02333  87.97270  86.62606  76.70991
## [78]  80.76485  54.36334  43.09215  42.89881  40.82141  46.50482  35.82183
## [85]  29.39267
## 
## $z
##  [1] 1464 2553 2158 2455 1756 1702 1805 1797 1714 1466 1729 1638 1736 1476 2200
## [16] 1999 1680 1806 1682 1306 1722 1437 1828 2118 1725 1606 2648 2560 2544 2386
## [31] 2400 1757 1402 1364 1735 1376 2729 2766 2736 2432 1024 1611 1548 1591 2540
## [46] 2352 2528 2575 2468 2646 1739 1674 1868 1865 1777 1579 1771 1408 1527 2003
## [61] 1386 1089 1384 1030 1092 1161 1415 1231 2300 2238 1038 1332 3510 3490 2594
## [76] 2650 2533 3571 2811 2728 3136 2553 2798 2691 2946
## 
## $residuals
##  [1] -145.932017  296.391955   20.569629  155.586776  136.944207  210.578982
##  [7]  112.643763   81.535500   12.407325 -165.733666   11.643984  -55.843867
## [13]  123.038140  130.250727  132.838620   16.473072 -186.973641   -9.864104
## [19] -133.020821 -298.072286   98.737035 -175.328351 -174.667016  118.113364
## [25]  176.632628  200.333264  366.232978  173.604750  128.842139  -15.778284
## [31]   -1.005758  -17.176812   -5.743382 -109.803640   35.578021  175.509274
## [37]  109.375693  113.827801  154.658230 -138.758151 -234.947039  -41.999962
## [43] -102.169175  -45.349545   38.415648 -182.959426   -9.456222  134.544149
## [49]   14.873572  303.070200 -191.631118 -197.446346  -23.989926   92.632496
## [55]  -47.092725 -308.538280  -72.511843 -213.402614 -260.643390  -17.741523
## [61]  187.380986 -159.999448  282.152142 -199.908135 -116.838018  -37.190026
## [67]  262.093246   81.109636  169.467368  176.796541 -289.932780   42.387375
## [73]  216.381585  -51.786437   30.159248  -53.946573 -219.188525  648.160187
## [79]  -92.004756 -152.583829   49.711612 -386.649271 -141.519561 -407.429504
## [85] -129.126052
## 
## attr(,"class")
## [1] "trend.surface"
g6=ggplot(aquifer.v, aes(resi, Norte)) + 
  geom_point() + 
  geom_line() +
  xlab("Norte") + 
  ylab("residuales2")

g6=ggplot(aquifer.v, aes(bins, classic)) + 
  geom_point() + 
  geom_line() +
  xlab("Rezago espacial, h") + 
  ylab("Estimador clásico del variograma")

g7=ggplot(aquifer.v, aes(bins, robust)) + 
  geom_point() + 
  geom_line() +
  xlab("Rezago espacial, h") + 
  ylab("Estimador robusto 1 del variograma")

g8=ggplot(aquifer.v, aes(bins, med)) + 
  geom_point() + 
  geom_line() +
  xlab("Rezago espacial, h") + 
  ylab("Estimador robusto 2 del variograma")

plot_grid(g6,g7,g8,nrow=1,ncol=3)

#par(mfrow=c(1,3))
plot(aquifer.v)

plot(aquifer.v$robust)

plot(aquifer.v$med)

#points(aquifer.v$robust,col="red")
#points(aquifer.v$med,"blue")
aquifer.vmodExp<-fit.exponential(aquifer.v,c0=0,ce=40000,ae=20,plot.it=TRUE,iterations=30)
## Initial parameter estimates:  0 40000 20

## Iteration: 1 
## Gradient vector:  -4432.441 977.0988 -8.943538 
## New parameter estimates:  1e-06 40977.1 11.05646 
## 
## rse.dif =  3232643827 (rse = 3232643827 )  ;  parm.dist =  977.1397

## Iteration: 2 
## Gradient vector:  -26700.7 22493.46 -2.800242 
## New parameter estimates:  1e-06 63470.56 8.256219 
## 
## rse.dif =  -17644208 (rse = 3.215e+09 )  ;  parm.dist =  22493.46

## Iteration: 3 
## Gradient vector:  -11057.27 -15597.73 2.315183 
## New parameter estimates:  1e-06 47872.83 10.5714 
## 
## rse.dif =  -3772568 (rse = 3211227051 )  ;  parm.dist =  15597.73

## Iteration: 4 
## Gradient vector:  -27525.12 16431.58 -1.824505 
## New parameter estimates:  1e-06 64304.41 8.746897 
## 
## rse.dif =  3032851 (rse = 3214259902 )  ;  parm.dist =  16431.58

## Iteration: 5 
## Gradient vector:  -20442.22 -7053.019 1.144197 
## New parameter estimates:  1e-06 57251.39 9.891094 
## 
## rse.dif =  -2468665 (rse = 3211791237 )  ;  parm.dist =  7053.019

## Iteration: 6 
## Gradient vector:  -27557.41 7097.539 -0.7122805 
## New parameter estimates:  1e-06 64348.93 9.178813 
## 
## rse.dif =  1486180 (rse = 3213277417 )  ;  parm.dist =  7097.539

## Iteration: 7 
## Gradient vector:  -24787.06 -2758.919 0.3605893 
## New parameter estimates:  1e-06 61590.01 9.539403 
## 
## rse.dif =  -951749.7 (rse = 3212325667 )  ;  parm.dist =  2758.919

## Iteration: 8 
## Gradient vector:  -26691.4 1898.737 -0.1885371 
## New parameter estimates:  1e-06 63488.75 9.350866 
## 
## rse.dif =  471370.4 (rse = 3212797038 )  ;  parm.dist =  1898.737

## Iteration: 9 
## Gradient vector:  -25850.35 -838.0686 0.09276125 
## New parameter estimates:  1e-06 62650.68 9.443627 
## 
## rse.dif =  -249219.6 (rse = 3212547818 )  ;  parm.dist =  838.0686

## Iteration: 10 
## Gradient vector:  -26302.53 450.7265 -0.04631475 
## New parameter estimates:  1e-06 63101.41 9.397312 
## 
## rse.dif =  121873.4 (rse = 3212669692 )  ;  parm.dist =  450.7265

## Iteration: 11 
## Gradient vector:  -26086.54 -215.2624 0.02285916 
## New parameter estimates:  1e-06 62886.14 9.420171 
## 
## rse.dif =  -61031.79 (rse = 3212608660 )  ;  parm.dist =  215.2624

## Iteration: 12 
## Gradient vector:  -26195.52 108.6221 -0.01133309 
## New parameter estimates:  1e-06 62994.77 9.408838 
## 
## rse.dif =  30077.83 (rse = 3212638738 )  ;  parm.dist =  108.6221

## Iteration: 13 
## Gradient vector:  -26142.08 -53.26613 0.005604603 
## New parameter estimates:  1e-06 62941.5 9.414443 
## 
## rse.dif =  -14922.96 (rse = 3212623815 )  ;  parm.dist =  53.26613

## Iteration: 14 
## Gradient vector:  -26168.65 26.48517 -0.002774911 
## New parameter estimates:  1e-06 62967.99 9.411668 
## 
## rse.dif =  7377.216 (rse = 3212631192 )  ;  parm.dist =  26.48517

## Iteration: 15 
## Gradient vector:  -26155.53 -13.07801 0.001373075 
## New parameter estimates:  1e-06 62954.91 9.413041 
## 
## rse.dif =  -3653.216 (rse = 3212627539 )  ;  parm.dist =  13.07801

## Iteration: 16 
## Gradient vector:  -26162.03 6.479831 -0.0006796194 
## New parameter estimates:  1e-06 62961.39 9.412361 
## 
## rse.dif =  1807.514 (rse = 3212629346 )  ;  parm.dist =  6.479831

## Iteration: 17 
## Gradient vector:  -26158.82 -3.20516 0.0003363367 
## New parameter estimates:  1e-06 62958.18 9.412698 
## 
## rse.dif =  -894.6895 (rse = 3212628451 )  ;  parm.dist =  3.20516

## Iteration: 18 
## Gradient vector:  -26160.41 1.586717 -0.0001664615 
## New parameter estimates:  1e-06 62959.77 9.412531 
## 
## rse.dif =  442.763 (rse = 3212628894 )  ;  parm.dist =  1.586717

## Iteration: 19 
## Gradient vector:  -26159.62 -0.7851797 8.238305e-05 
## New parameter estimates:  1e-06 62958.98 9.412613 
## 
## rse.dif =  -219.1369 (rse = 3212628675 )  ;  parm.dist =  0.7851797

## Iteration: 20 
## Gradient vector:  -26160.01 0.3886224 -4.077272e-05 
## New parameter estimates:  1e-06 62959.37 9.412573 
## 
## rse.dif =  108.4519 (rse = 3212628784 )  ;  parm.dist =  0.3886224

## Iteration: 21 
## Gradient vector:  -26159.82 -0.192328 2.017891e-05 
## New parameter estimates:  1e-06 62959.18 9.412593 
## 
## rse.dif =  -53.67477 (rse = 3212628730 )  ;  parm.dist =  0.192328

## Iteration: 22 
## Gradient vector:  -26159.91 0.09518727 -9.986825e-06 
## New parameter estimates:  1e-06 62959.28 9.412583 
## 
## rse.dif =  26.56425 (rse = 3212628756 )  ;  parm.dist =  0.09518727

## Iteration: 23 
## Gradient vector:  -26159.86 -0.04710907 4.942611e-06 
## New parameter estimates:  1e-06 62959.23 9.412588 
## 
## rse.dif =  -13.14703 (rse = 3212628743 )  ;  parm.dist =  0.04710907

## Iteration: 24 
## Gradient vector:  -26159.89 0.02331501 -2.446166e-06 
## New parameter estimates:  1e-06 62959.25 9.412585 
## 
## rse.dif =  6.506637 (rse = 3212628750 )  ;  parm.dist =  0.02331501

## Iteration: 25 
## Gradient vector:  -26159.88 -0.01153889 1.21064e-06 
## New parameter estimates:  1e-06 62959.24 9.412587 
## 
## rse.dif =  -3.220223 (rse = 3212628747 )  ;  parm.dist =  0.01153889

## Iteration: 26 
## Gradient vector:  -26159.88 0.005710766 -5.991629e-07 
## New parameter estimates:  1e-06 62959.25 9.412586 
## 
## rse.dif =  1.593733 (rse = 3212628748 )  ;  parm.dist =  0.005710766

## Iteration: 27 
## Gradient vector:  -26159.88 -0.002826337 2.965342e-07 
## New parameter estimates:  1e-06 62959.24 9.412586 
## 
## rse.dif =  -0.7887607 (rse = 3212628747 )  ;  parm.dist =  0.002826337

## Iteration: 28 
## Gradient vector:  -26159.88 0.001398792 -1.467587e-07 
## New parameter estimates:  1e-06 62959.24 9.412586 
## 
## rse.dif =  0.390368 (rse = 3212628748 )  ;  parm.dist =  0.001398792

## Iteration: 29 
## Gradient vector:  -26159.88 -0.0006922786 7.263263e-08 
## New parameter estimates:  1e-06 62959.24 9.412586 
## 
## rse.dif =  -0.1931987 (rse = 3212628748 )  ;  parm.dist =  0.0006922786

## Iteration: 30 
## Gradient vector:  -26159.88 0.0003426161 -3.594667e-08 
## New parameter estimates:  1e-06 62959.24 9.412586 
## 
## rse.dif =  0.09561539 (rse = 3212628748 )  ;  parm.dist =  0.0003426161

## Convergence not achieved!
aquifer.vmodGau<-fit.gaussian(aquifer.v,c0=0,cg=50000,ag=50,plot.it=TRUE,iterations=30)
## Initial parameter estimates:  0 50000 50

## Iteration: 1 
## Gradient vector:  19162.34 -33401.14 -11.41191 
## New parameter estimates:  19162.34 16598.86 38.58809 
## 
## rse.dif =  3299750048 (rse = 3299750048 )  ;  parm.dist =  38507.55

## Iteration: 2 
## Gradient vector:  -1294.927 2010.017 -18.77473 
## New parameter estimates:  17867.41 18608.87 19.81336 
## 
## rse.dif =  -66430135 (rse = 3233319913 )  ;  parm.dist =  2391.1

## Iteration: 3 
## Gradient vector:  3201.043 -2835.169 9.216254 
## New parameter estimates:  21068.46 15773.71 29.02961 
## 
## rse.dif =  -24694350 (rse = 3208625564 )  ;  parm.dist =  4276.09

## Iteration: 4 
## Gradient vector:  -4345.272 4292.413 -6.361973 
## New parameter estimates:  16723.18 20066.12 22.66764 
## 
## rse.dif =  4004881 (rse = 3212630445 )  ;  parm.dist =  6107.884

## Iteration: 5 
## Gradient vector:  53.88685 -4.270081 2.074271 
## New parameter estimates:  16777.07 20061.85 24.74191 
## 
## rse.dif =  -3703977 (rse = 3208926468 )  ;  parm.dist =  54.09555

## Iteration: 6 
## Gradient vector:  -391.4471 384.4526 -0.5571294 
## New parameter estimates:  16385.62 20446.3 24.18478 
## 
## rse.dif =  588163 (rse = 3209514631 )  ;  parm.dist =  548.6666

## Iteration: 7 
## Gradient vector:  29.55911 -27.0943 0.07968918 
## New parameter estimates:  16415.18 20419.21 24.26447 
## 
## rse.dif =  -201438.9 (rse = 3209313192 )  ;  parm.dist =  40.09799

## Iteration: 8 
## Gradient vector:  -6.581211 6.259206 -0.01207028 
## New parameter estimates:  16408.6 20425.47 24.2524 
## 
## rse.dif =  26607.8 (rse = 3209339800 )  ;  parm.dist =  9.082408

## Iteration: 9 
## Gradient vector:  0.9423146 -0.8928955 0.001794561 
## New parameter estimates:  16409.54 20424.57 24.25419 
## 
## rse.dif =  -4077.43 (rse = 3209335722 )  ;  parm.dist =  1.298161

## Iteration: 10 
## Gradient vector:  -0.1413215 0.1339887 -0.0002673761 
## New parameter estimates:  16409.4 20424.71 24.25393 
## 
## rse.dif =  605.1536 (rse = 3209336327 )  ;  parm.dist =  0.194743

## Iteration: 11 
## Gradient vector:  0.02102884 -0.01993597 3.982407e-05 
## New parameter estimates:  16409.42 20424.69 24.25397 
## 
## rse.dif =  -90.18701 (rse = 3209336237 )  ;  parm.dist =  0.02897682

## Iteration: 12 
## Gradient vector:  -0.003132718 0.00296995 -5.931842e-06 
## New parameter estimates:  16409.42 20424.69 24.25396 
## 
## rse.dif =  13.43229 (rse = 3209336251 )  ;  parm.dist =  0.004316777

## Iteration: 13 
## Gradient vector:  0.0004666088 -0.0004423641 8.835486e-07 
## New parameter estimates:  16409.42 20424.69 24.25396 
## 
## rse.dif =  -2.000768 (rse = 3209336249 )  ;  parm.dist =  0.0006429701

## Iteration: 14 
## Gradient vector:  -6.950174e-05 6.589049e-05 -1.316048e-07 
## New parameter estimates:  16409.42 20424.69 24.25396 
## 
## rse.dif =  0.2980156 (rse = 3209336249 )  ;  parm.dist =  9.577091e-05

## Iteration: 15 
## Gradient vector:  1.035231e-05 -9.814415e-06 1.960261e-08 
## New parameter estimates:  16409.42 20424.69 24.25396 
## 
## rse.dif =  -0.04438972 (rse = 3209336249 )  ;  parm.dist =  1.426512e-05

## Iteration: 16 
## Gradient vector:  -1.541989e-06 1.461872e-06 -2.919836e-09 
## New parameter estimates:  16409.42 20424.69 24.25396 
## 
## rse.dif =  0.006611824 (rse = 3209336249 )  ;  parm.dist =  2.124808e-06

## Iteration: 17 
## Gradient vector:  2.29702e-07 -2.177649e-07 4.349504e-10 
## New parameter estimates:  16409.42 20424.69 24.25396 
## 
## rse.dif =  -0.0009841919 (rse = 3209336249 )  ;  parm.dist =  3.165203e-07

## Iteration: 18 
## Gradient vector:  -3.42286e-08 3.244849e-08 -6.480716e-11 
## New parameter estimates:  16409.42 20424.69 24.25396 
## 
## rse.dif =  0.0001459122 (rse = 3209336249 )  ;  parm.dist =  4.716456e-08

## Iteration: 19 
## Gradient vector:  5.117361e-09 -4.848551e-09 9.688533e-12 
## New parameter estimates:  16409.42 20424.69 24.25396 
## 
## rse.dif =  -2.241135e-05 (rse = 3209336249 )  ;  parm.dist =  7.051061e-09

## Iteration: 20 
## Gradient vector:  -7.696674e-10 7.270391e-10 -1.463951e-12 
## New parameter estimates:  16409.42 20424.69 24.25396 
## 
## rse.dif =  4.291534e-06 (rse = 3209336249 )  ;  parm.dist =  1.060296e-09

## Iteration: 21 
## Gradient vector:  1.036345e-10 -9.511823e-11 2.010728e-13 
## New parameter estimates:  16409.42 20424.69 24.25396 
## 
## rse.dif =  -1.430511e-06 (rse = 3209336249 )  ;  parm.dist =  1.390071e-10

## Iteration: 22 
## Gradient vector:  -1.632815e-11 1.786392e-11 -3.703972e-14 
## New parameter estimates:  16409.42 20424.69 24.25396 
## 
## rse.dif =  1.430511e-06 (rse = 3209336249 )  ;  parm.dist =  2.329446e-11

## Iteration: 23 
## Gradient vector:  -3.827252e-12 2.836377e-12 3.527592e-15 
## New parameter estimates:  16409.42 20424.69 24.25396 
## 
## rse.dif =  0 (rse = 3209336249 )  ;  parm.dist =  5.14488e-12 
## 
## Convergence achieved by sums of squares.

## Final parameter estimates:  16409.42 20424.69 24.25396
aquifer.vmodWave<-fit.wave(aquifer.v,c0=0,cw=40000,aw=10,plot.it=TRUE,iterations=30,weighted=T)
## Initial parameter estimates:  0 40000 10

## Iteration: 1 
## Gradient vector:  18650.32 -21981.27 -0.7942028 
## New parameter estimates:  18650.32 18018.73 9.205797 
## 
## rse.dif =  3409704989 (rse = 3409704989 )  ;  parm.dist =  28827.26

## Iteration: 2 
## Gradient vector:  812.9227 -1109.399 -1.187299 
## New parameter estimates:  19463.25 16909.33 8.018498 
## 
## rse.dif =  -289093760 (rse = 3120611230 )  ;  parm.dist =  1375.358

## Iteration: 3 
## Gradient vector:  -6990.158 6973.566 0.9858099 
## New parameter estimates:  12473.09 23882.9 9.004308 
## 
## rse.dif =  24044562 (rse = 3144655792 )  ;  parm.dist =  9873.851

## Iteration: 4 
## Gradient vector:  7025.438 -6960.473 -1.260353 
## New parameter estimates:  19498.53 16922.43 7.743955 
## 
## rse.dif =  -56767551 (rse = 3087888241 )  ;  parm.dist =  9889.639

## Iteration: 5 
## Gradient vector:  -9210.154 9213.61 1.066674 
## New parameter estimates:  10288.37 26136.04 8.810629 
## 
## rse.dif =  175986924 (rse = 3263875165 )  ;  parm.dist =  13027.57

## Iteration: 6 
## Gradient vector:  11994.7 -11983.26 -2.255679 
## New parameter estimates:  22283.07 14152.77 6.55495 
## 
## rse.dif =  -196728543 (rse = 3067146622 )  ;  parm.dist =  16954.98

## Iteration: 7 
## Gradient vector:  -14060.45 14195.04 -1.578095 
## New parameter estimates:  8222.625 28347.81 4.976855 
## 
## rse.dif =  147278852 (rse = 3214425474 )  ;  parm.dist =  19979.87

## Iteration: 8 
## Gradient vector:  -15826.64 16212.91 0.3854677 
## New parameter estimates:  1e-06 44560.72 5.362323 
## 
## rse.dif =  -46983778 (rse = 3167441696 )  ;  parm.dist =  18178.84

## Iteration: 9 
## Gradient vector:  13145.08 -21444.98 -0.8756698 
## New parameter estimates:  13145.08 23115.75 4.486653 
## 
## rse.dif =  -757940879 (rse = 2409500817 )  ;  parm.dist =  25153.13

## Iteration: 10 
## Gradient vector:  -9434763 9682459 25.73116 
## New parameter estimates:  1e-06 9705575 30.21781 
## 
## rse.dif =  1636307005 (rse = 4045807822 )  ;  parm.dist =  9682468

## Iteration: 11 
## Gradient vector:  20962.2 -9688482 0.02156687 
## New parameter estimates:  20962.2 17093.21 30.23938 
## 
## rse.dif =  83628062 (rse = 4129435883 )  ;  parm.dist =  9688504

## Iteration: 12 
## Gradient vector:  7173.136 -8587.116 1.22582 
## New parameter estimates:  28135.34 8506.099 31.4652 
## 
## rse.dif =  -628497356 (rse = 3500938527 )  ;  parm.dist =  11188.94

## Iteration: 13 
## Gradient vector:  2974.651 -2890.861 -4.19572 
## New parameter estimates:  31109.99 5615.237 27.26947 
## 
## rse.dif =  -192443200 (rse = 3308495327 )  ;  parm.dist =  4147.969

## Iteration: 14 
## Gradient vector:  -2399.351 1443.698 15.69929 
## New parameter estimates:  28710.64 7058.936 42.96876 
## 
## rse.dif =  147479203 (rse = 3455974530 )  ;  parm.dist =  2800.25

## Iteration: 15 
## Gradient vector:  4786.661 2165.107 -43.14322 
## New parameter estimates:  33497.3 9224.042 1e-06 
## 
## rse.dif =  -686128323 (rse = 2769846206 )  ;  parm.dist =  5253.728
## Iteration: 16
## Warning in lsfit(xmat, y, wt = w, intercept = FALSE): 'X' matrix was collinear

## Gradient vector:  -7188.309 -5.926894e-07 0 
## New parameter estimates:  26308.99 9224.042 1e-06 
## 
## rse.dif =  686457465 (rse = 3456303671 )  ;  parm.dist =  7188.309
## Iteration: 17
## Warning in lsfit(xmat, y, wt = w, intercept = FALSE): 'X' matrix was collinear

## Gradient vector:  -5.339325e-06 -5.926894e-07 0 
## New parameter estimates:  26308.99 9224.042 1e-06 
## 
## rse.dif =  0.4889326 (rse = 3456303672 )  ;  parm.dist =  5.372118e-06
## Iteration: 18
## Warning in lsfit(xmat, y, wt = w, intercept = FALSE): 'X' matrix was collinear

## Gradient vector:  5.926854e-07 -5.926894e-07 0 
## New parameter estimates:  26308.99 9224.042 1e-06 
## 
## rse.dif =  2.384186e-06 (rse = 3456303672 )  ;  parm.dist =  8.381857e-07
## Iteration: 19
## Warning in lsfit(xmat, y, wt = w, intercept = FALSE): 'X' matrix was collinear

## Gradient vector:  5.926902e-07 -5.926894e-07 0 
## New parameter estimates:  26308.99 9224.042 1e-06 
## 
## rse.dif =  -1.907349e-06 (rse = 3456303672 )  ;  parm.dist =  8.381882e-07
## Iteration: 20
## Warning in lsfit(xmat, y, wt = w, intercept = FALSE): 'X' matrix was collinear

## Gradient vector:  5.926902e-07 -5.926894e-07 0 
## New parameter estimates:  26308.99 9224.042 1e-06 
## 
## rse.dif =  0 (rse = 3456303672 )  ;  parm.dist =  8.381882e-07 
## 
## Convergence achieved by sums of squares.

## Final parameter estimates:  26308.99 9224.042 1e-06
curve(65000*(1-(14/x)*sin(x/14)),0,300,ylim=c(0,200000))
points(aquifer.v$bins,aquifer.v$classic,col=3)
text(aquifer.v$bins,aquifer.v$classic,aquifer.v$n,col=2)

curve(200000*(1-exp(-x/170)),0,300)
points(aquifer.v$bins,aquifer.v$classic,col=2)

curve(65000*(1-(14/x)*sin(x/14)),0,300,ylim=c(0,200000))
points(aquifer.v$bins,aquifer.v$classic,col=3)
text(aquifer.v$bins,aquifer.v$classic,aquifer.v$n,col=2)

aquifer.vmodExp<-fit.exponential(aquifer.v,c0=0,ce=200000,ae=170,plot.it=TRUE,iterations=30,weighted=T)
## Initial parameter estimates:  0 2e+05 170

## Iteration: 1 
## Gradient vector:  16365.66 -238859.4 -103.7436 
## New parameter estimates:  16365.66 1e-06 66.25643 
## 
## rse.dif =  3826411368 (rse = 3826411368 )  ;  parm.dist =  200668.5

## Iteration: 2 
## Gradient vector:  7737.246 16547.95 166070861252 
## New parameter estimates:  24102.91 16547.95 166070861318 
## 
## rse.dif =  -767474321 (rse = 3058937047 )  ;  parm.dist =  166070861252
## Iteration: 3
## Warning in lsfit(xmat, y, wt = w, intercept = FALSE): 'X' matrix was collinear

## Gradient vector:  3355.03 1.242479e+13 0 
## New parameter estimates:  27457.94 1.242479e+13 166070861318 
## 
## rse.dif =  -120011141 (rse = 2938925906 )  ;  parm.dist =  1.242479e+13
## Iteration: 4
## Warning in lsfit(xmat, y, wt = w, intercept = FALSE): 'X' matrix was collinear

## Gradient vector:  423.3165 -663474885968 0 
## New parameter estimates:  27881.25 1.176131e+13 166070861318 
## 
## rse.dif =  11801483 (rse = 2950727388 )  ;  parm.dist =  663474885968
## Iteration: 5
## Warning in lsfit(xmat, y, wt = w, intercept = FALSE): 'X' matrix was collinear

## Gradient vector:  3.873181 -6320523090 0 
## New parameter estimates:  27885.12 1.175499e+13 166070861318 
## 
## rse.dif =  128956.4 (rse = 2950856345 )  ;  parm.dist =  6320523090
## Iteration: 6
## Warning in lsfit(xmat, y, wt = w, intercept = FALSE): 'X' matrix was collinear

## Gradient vector:  0.02266712 -36921321 0 
## New parameter estimates:  27885.15 1.175495e+13 166070861318 
## 
## rse.dif =  752.3639 (rse = 2950857097 )  ;  parm.dist =  36921321
## Iteration: 7
## Warning in lsfit(xmat, y, wt = w, intercept = FALSE): 'X' matrix was collinear

## Gradient vector:  0.0001316946 -214507.3 0 
## New parameter estimates:  27885.15 1.175495e+13 166070861318 
## 
## rse.dif =  4.371067 (rse = 2950857102 )  ;  parm.dist =  214507.3
## Iteration: 8
## Warning in lsfit(xmat, y, wt = w, intercept = FALSE): 'X' matrix was collinear

## Gradient vector:  7.651061e-07 -1246.218 0 
## New parameter estimates:  27885.15 1.175495e+13 166070861318 
## 
## rse.dif =  0.02539396 (rse = 2950857102 )  ;  parm.dist =  1246.217
## Iteration: 9
## Warning in lsfit(xmat, y, wt = w, intercept = FALSE): 'X' matrix was collinear

## Gradient vector:  4.444639e-09 -7.24441 0 
## New parameter estimates:  27885.15 1.175495e+13 166070861318 
## 
## rse.dif =  0.0001482964 (rse = 2950857102 )  ;  parm.dist =  7.244141
## Iteration: 10
## Warning in lsfit(xmat, y, wt = w, intercept = FALSE): 'X' matrix was collinear

## Gradient vector:  2.418472e-11 -0.03727549 0 
## New parameter estimates:  27885.15 1.175495e+13 166070861318 
## 
## rse.dif =  9.536743e-07 (rse = 2950857102 )  ;  parm.dist =  0.03710938 
## 
## Convergence achieved by sums of squares.

## Final parameter estimates:  27885.15 1.175495e+13 166070861318
aquifer.vmodwave<-fit.wave(aquifer.v,c0=4000,cw=30000,aw=15,plot.it=TRUE,iterations=0,weighted=T)

## Convergence not achieved!
aquifer.vmodExp_0<-fit.exponential(aquifer.v,c0=0,ce=200000,ae=170,plot.it=TRUE,iterations=0,weighted=T)

## Convergence not achieved!
aquifer.vmodwave_0<-fit.wave(aquifer.v,c0=4000,cw=30000,aw=15,plot.it=TRUE,iterations=0,weighted=T)

## Convergence not achieved!
aquifer.spherical<-fit.spherical(aquifer.v,c0=0,cs=35000,as=70,plot.it=TRUE,iterations=0,weighted=T)

## Convergence not achieved!
ggplot(aquifer.v, aes(bins, classic)) + 
  geom_point() + 
  geom_line() +
  xlab("Rezago espacial, h") + 
  ylab("Estimador clásico del variograma")+
  xlim(0, 300) +
  geom_function(aes(color = "Exponencial"),
    fun =~4000+150000*(1-exp(-.x/100)) 
    ) +
  geom_function(aes(color = "Seno cardinal"),
    fun =~4000+30000*(1-((15/.x)*sin(.x/15)))             
    ) + xlab("Rezago espacial") + ylab("Modelos teóricos de semivariogramas") 
## Warning: Removed 1 row(s) containing missing values (geom_path).

Kriging_aquifer <- point(data.frame(list(x=10,y=80)))
Kriging_aquifer <- krige(Kriging_aquifer, aquifer_points, 'resi', aquifer.vmodExp_0)
## 
## Using all points.
##   Preparing the kriging system matrix...
##   Inverting the matrix...
##   Predicting.
Kriging_aquifer
## 
## Point object: x 
## 
##    Locations: 1
## 
##    Attributes:
##       x
##       y
##       do
##       zhat
##       sigma2hat
Kriging_aquifer$zhat
## [1] 222.4383
Kriging_aquifer$sigma2hat
## [1] 7010.452
Kriging_aquifer <- point(data.frame(list(x=10,y=80)))
Kriging_aquifer <- krige(Kriging_aquifer, aquifer_points, 'resi', aquifer.vmodwave_0)
## 
## Using all points.
##   Preparing the kriging system matrix...
##   Inverting the matrix...
##   Predicting.
Kriging_aquifer
## 
## Point object: x 
## 
##    Locations: 1
## 
##    Attributes:
##       x
##       y
##       do
##       zhat
##       sigma2hat
Kriging_aquifer$zhat
## [1] 196.2781
Kriging_aquifer$sigma2hat
## [1] 5169.927
grid <- list(x=seq(min(aquifer$Este),max(aquifer$Este),by=20),y=seq(min(aquifer$Norte),max(aquifer$Norte),by=10))
grid$xr <- range(grid$x)
grid$xs <- grid$xr[2] - grid$xr[1]
grid$yr <- range(grid$y)
grid$ys <- grid$yr[2] - grid$yr[1]
grid$max <- max(grid$xs, grid$ys)
grid$xy <- data.frame(cbind(c(matrix(grid$x, length(grid$x), length(grid$y))),
c(matrix(grid$y, length(grid$x), length(grid$y), byrow=TRUE))))
colnames(grid$xy) <- c("x", "y")
grid$point <- point(grid$xy)
grid$krige <- krige(grid$point,aquifer_points,'resi',aquifer.vmodwave_0,maxdist=180,extrap=FALSE)
## 
## Using points within 180 units of prediction points.
##   Predicting..........................................................................................................................................................................................................................................
op <- par(no.readonly = TRUE)
par(pty="s")
plot(grid$xy, type="n", xlim=c(grid$xr[1], grid$xr[1]+grid$max),ylim=c(grid$yr[1], grid$yr[1]+grid$max))
image(grid$x,grid$y,matrix(grid$krige$zhat,length(grid$x),length(grid$y)),add=TRUE)
contour(grid$x,grid$y,matrix(grid$krige$zhat,length(grid$x),length(grid$y)),add=TRUE)

x11()
op <- par(no.readonly = TRUE)
par(pty="s")
plot(grid$xy, type="n", xlim=c(grid$xr[1], grid$xr[1]+grid$max),ylim=c(grid$yr[1], grid$yr[1]+grid$max))
image(grid$x,grid$y,matrix(grid$krige$sigma2hat,length(grid$x),length(grid$y)), add=TRUE)
contour(grid$x,grid$y,matrix(grid$krige$sigma2hat,length(grid$x),length(grid$y)),add=TRUE)