library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(tidyverse)
## āā Attaching packages
## āāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā
## tidyverse 1.3.2 āā
## ā ggplot2 3.3.5 ā purrr 0.3.4
## ā tibble 3.1.8 ā stringr 1.4.0
## ā tidyr 1.2.0 ā forcats 0.5.1
## ā readr 2.1.2
## āā Conflicts āāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā tidyverse_conflicts() āā
## ā dplyr::filter() masks stats::filter()
## ā dplyr::lag() masks stats::lag()
library(janitor)
##
## Attaching package: 'janitor'
##
## The following objects are masked from 'package:stats':
##
## chisq.test, fisher.test
library(ggplot2)
getwd()
#file.choose()
Titanic <- read_csv("/Users/danieltrevino/Documents/Quinto Semestre TEC/Bootcamp de ProgramacioĢn/titanic.csv")
## Rows: 1310 Columns: 14
## āā Column specification āāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā
## Delimiter: ","
## chr (7): name, sex, ticket, cabin, embarked, boat, home.dest
## dbl (7): pclass, survived, age, sibsp, parch, fare, body
##
## ā¹ Use `spec()` to retrieve the full column specification for this data.
## ā¹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
resumen <- summary(Titanic)
resumen
## pclass survived name sex
## Min. :1.000 Min. :0.000 Length:1310 Length:1310
## 1st Qu.:2.000 1st Qu.:0.000 Class :character Class :character
## Median :3.000 Median :0.000 Mode :character Mode :character
## Mean :2.295 Mean :0.382
## 3rd Qu.:3.000 3rd Qu.:1.000
## Max. :3.000 Max. :1.000
## NA's :1 NA's :1
## age sibsp parch ticket
## Min. : 0.1667 Min. :0.0000 Min. :0.000 Length:1310
## 1st Qu.:21.0000 1st Qu.:0.0000 1st Qu.:0.000 Class :character
## Median :28.0000 Median :0.0000 Median :0.000 Mode :character
## Mean :29.8811 Mean :0.4989 Mean :0.385
## 3rd Qu.:39.0000 3rd Qu.:1.0000 3rd Qu.:0.000
## Max. :80.0000 Max. :8.0000 Max. :9.000
## NA's :264 NA's :1 NA's :1
## fare cabin embarked boat
## Min. : 0.000 Length:1310 Length:1310 Length:1310
## 1st Qu.: 7.896 Class :character Class :character Class :character
## Median : 14.454 Mode :character Mode :character Mode :character
## Mean : 33.295
## 3rd Qu.: 31.275
## Max. :512.329
## NA's :2
## body home.dest
## Min. : 1.0 Length:1310
## 1st Qu.: 72.0 Class :character
## Median :155.0 Mode :character
## Mean :160.8
## 3rd Qu.:256.0
## Max. :328.0
## NA's :1189
Filtro <- Titanic[,c ("pclass", "age", "sex", "survived")]
Filtro$survived <- as.factor(ifelse(Filtro$survived == 0, "Murio", "Sobrevivio"))
Filtro$pclass <-as.factor(Filtro$pclass)
Filtro$sex <-as.factor(Filtro$sex)
str(Filtro)
## tibble [1,310 Ć 4] (S3: tbl_df/tbl/data.frame)
## $ pclass : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
## $ age : num [1:1310] 29 0.917 2 30 25 ...
## $ sex : Factor w/ 2 levels "female","male": 1 2 1 2 1 2 1 2 1 2 ...
## $ survived: Factor w/ 2 levels "Murio","Sobrevivio": 2 2 1 1 1 2 2 1 2 1 ...
sum(is.na(Filtro))
## [1] 267
Filtro <- na.omit(Filtro)
#install.packages("rpart")
library(rpart)
arbol <- rpart(formula = survived ~., data = Filtro)
arbol
## n= 1046
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 1046 427 Murio (0.59177820 0.40822180)
## 2) sex=male 658 135 Murio (0.79483283 0.20516717)
## 4) age>=9.5 615 110 Murio (0.82113821 0.17886179) *
## 5) age< 9.5 43 18 Sobrevivio (0.41860465 0.58139535)
## 10) pclass=3 29 11 Murio (0.62068966 0.37931034) *
## 11) pclass=1,2 14 0 Sobrevivio (0.00000000 1.00000000) *
## 3) sex=female 388 96 Sobrevivio (0.24742268 0.75257732)
## 6) pclass=3 152 72 Murio (0.52631579 0.47368421)
## 12) age>=1.5 145 66 Murio (0.54482759 0.45517241) *
## 13) age< 1.5 7 1 Sobrevivio (0.14285714 0.85714286) *
## 7) pclass=1,2 236 16 Sobrevivio (0.06779661 0.93220339) *
#install.packages("rpart.plot")
library(rpart.plot)
rpart.plot(arbol)
prp(arbol, extra = 7, prefix = "fracción/n")
En esta actividad, observamos como crear una grafica de arbol a partir de una base de datos. Esta grafica nos permite entender la base de datos de una manera mas visual y facil de entender o explicar. En este caso, observamos la propabilidad que tuvieron los pasajeros del Titanic de acuerdo a su edad, genero y el tipo de clase en el que viajaban.