knitr::opts_chunk$set(echo = TRUE, message=FALSE, warning = FALSE)

Problem 2

2. Carefully explain the differences between the KNN classifier and KNN regression methods. KNN Classifier uses dependent variables that are qualitative and KNN regression method uses quanitative. Regression models tend to be more flexible than a classifier model.

Problem 9

9. This question involves the use of multiple linear regression on the Auto data set.

(a) Produce a scatterplot matrix which includes all of the variables in the data set.

library(ISLR)
attach(Auto)
pairs(Auto)

(b) Compute the matrix of correlations between the variables using the function cor(). You will need to exclude the name variable, cor() which is qualitative.

auto_num =subset(Auto, select=-name)
cor(Auto[-9])
##                     mpg  cylinders displacement horsepower     weight
## mpg           1.0000000 -0.7776175   -0.8051269 -0.7784268 -0.8322442
## cylinders    -0.7776175  1.0000000    0.9508233  0.8429834  0.8975273
## displacement -0.8051269  0.9508233    1.0000000  0.8972570  0.9329944
## horsepower   -0.7784268  0.8429834    0.8972570  1.0000000  0.8645377
## weight       -0.8322442  0.8975273    0.9329944  0.8645377  1.0000000
## acceleration  0.4233285 -0.5046834   -0.5438005 -0.6891955 -0.4168392
## year          0.5805410 -0.3456474   -0.3698552 -0.4163615 -0.3091199
## origin        0.5652088 -0.5689316   -0.6145351 -0.4551715 -0.5850054
##              acceleration       year     origin
## mpg             0.4233285  0.5805410  0.5652088
## cylinders      -0.5046834 -0.3456474 -0.5689316
## displacement   -0.5438005 -0.3698552 -0.6145351
## horsepower     -0.6891955 -0.4163615 -0.4551715
## weight         -0.4168392 -0.3091199 -0.5850054
## acceleration    1.0000000  0.2903161  0.2127458
## year            0.2903161  1.0000000  0.1815277
## origin          0.2127458  0.1815277  1.0000000

(c) Use the lm() function to perform a multiple linear regression with mpg as the response and all other variables except name as the predictors. Use the summary() function to print the results. Comment on the output. For instance:

m1=lm(mpg ~ ., data=auto_num)
summary(m1)
## 
## Call:
## lm(formula = mpg ~ ., data = auto_num)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.5903 -2.1565 -0.1169  1.8690 13.0604 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -17.218435   4.644294  -3.707  0.00024 ***
## cylinders     -0.493376   0.323282  -1.526  0.12780    
## displacement   0.019896   0.007515   2.647  0.00844 ** 
## horsepower    -0.016951   0.013787  -1.230  0.21963    
## weight        -0.006474   0.000652  -9.929  < 2e-16 ***
## acceleration   0.080576   0.098845   0.815  0.41548    
## year           0.750773   0.050973  14.729  < 2e-16 ***
## origin         1.426141   0.278136   5.127 4.67e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.328 on 384 degrees of freedom
## Multiple R-squared:  0.8215, Adjusted R-squared:  0.8182 
## F-statistic: 252.4 on 7 and 384 DF,  p-value: < 2.2e-16

i. Is there a relationship between the predictors and the response? * Yes the R-squared shows a corrolation of 82.15% between dependant variables. ii. Which predictors appear to have a statistically significant relationship to the response? Origin, year, weight, and displacement all have a significant relationship based on their p-value. iii. What does the coefficient for the year variable suggest? The coefficient year shows a increase in mpg. (d) Use the plot() function to produce diagnostic plots of the linear regression fit. Comment on any problems you see with the fit. Do the residual plots suggest any unusually large outliers? Does the leverage plot identify any observations with unusually high leverage?

plot(m1)

(e) Use the and : symbols to fit linear regression models with interaction effects. Do any interactions appear to be statistically significant?

m2=lm(mpg~origin+year+displacement*weight, data=auto_num)
summary(m2)
## 
## Call:
## lm(formula = mpg ~ origin + year + displacement * weight, data = auto_num)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -10.6119  -1.7290  -0.0115   1.5609  12.5584 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         -8.007e+00  3.798e+00  -2.108   0.0357 *  
## origin               3.567e-01  2.574e-01   1.386   0.1666    
## year                 8.194e-01  4.518e-02  18.136  < 2e-16 ***
## displacement        -7.148e-02  9.176e-03  -7.790 6.27e-14 ***
## weight              -1.054e-02  6.530e-04 -16.146  < 2e-16 ***
## displacement:weight  2.104e-05  2.214e-06   9.506  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.016 on 386 degrees of freedom
## Multiple R-squared:  0.8526, Adjusted R-squared:  0.8507 
## F-statistic: 446.5 on 5 and 386 DF,  p-value: < 2.2e-16

(f) Try a few different transformations of the variables, such as log(X), √, X, X2. Comment on your findings.

m3=lm(mpg~I(origin^2)+log(year)+displacement*weight, data=auto_num)
summary(m3)
## 
## Call:
## lm(formula = mpg ~ I(origin^2) + log(year) + displacement * weight, 
##     data = auto_num)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -10.6529  -1.7786  -0.0351   1.6398  12.6164 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         -2.121e+02  1.491e+01 -14.221  < 2e-16 ***
## I(origin^2)          7.084e-02  6.399e-02   1.107    0.269    
## log(year)            6.167e+01  3.454e+00  17.855  < 2e-16 ***
## displacement        -7.268e-02  9.104e-03  -7.983 1.65e-14 ***
## weight              -1.063e-02  6.598e-04 -16.104  < 2e-16 ***
## displacement:weight  2.130e-05  2.218e-06   9.605  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.036 on 386 degrees of freedom
## Multiple R-squared:  0.8506, Adjusted R-squared:  0.8487 
## F-statistic: 439.7 on 5 and 386 DF,  p-value: < 2.2e-16

##10. This question should be answered using the Carseats data set.

library(ISLR2)
attach(Carseats)

(a) Fit a multiple regression model to predict Sales using Price, Urban, and US.

f= lm(Sales~Price+Urban+US)
summary(f)
## 
## Call:
## lm(formula = Sales ~ Price + Urban + US)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9206 -1.6220 -0.0564  1.5786  7.0581 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.043469   0.651012  20.036  < 2e-16 ***
## Price       -0.054459   0.005242 -10.389  < 2e-16 ***
## UrbanYes    -0.021916   0.271650  -0.081    0.936    
## USYes        1.200573   0.259042   4.635 4.86e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.472 on 396 degrees of freedom
## Multiple R-squared:  0.2393, Adjusted R-squared:  0.2335 
## F-statistic: 41.52 on 3 and 396 DF,  p-value: < 2.2e-16

(b) Provide an interpretation of each coefficient in the model. Be careful—some of the variables in the model are qualitative! Price and US are significant. (c) Write out the model in equation form, being careful to handle the qualitative variables properly. Sales= 13.043469-0.054459Price-.021916Uarban +1.200573 US (d) For which of the predictors can you reject the null hypothesis H0 : βj = 0? Price and US (e) On the basis of your response to the previous question, fit a smaller model that only uses the predictors for which there is evidence of association with the outcome.

f2 =lm(Sales~Price+US)
summary(f2)
## 
## Call:
## lm(formula = Sales ~ Price + US)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9269 -1.6286 -0.0574  1.5766  7.0515 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.03079    0.63098  20.652  < 2e-16 ***
## Price       -0.05448    0.00523 -10.416  < 2e-16 ***
## USYes        1.19964    0.25846   4.641 4.71e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.469 on 397 degrees of freedom
## Multiple R-squared:  0.2393, Adjusted R-squared:  0.2354 
## F-statistic: 62.43 on 2 and 397 DF,  p-value: < 2.2e-16

*(f) How well do the models in (a) and (e) fit the data? Each model Explains around 24% of variance in sales. (g) Using the model from (e), obtain 95 % confidence intervals for the coefficient(s).**

confint(f2)
##                   2.5 %      97.5 %
## (Intercept) 11.79032020 14.27126531
## Price       -0.06475984 -0.04419543
## USYes        0.69151957  1.70776632

##12. This problem involves simple linear regression without an intercept. (a) Recall that the coefficient estimate βˆ for the linear regression of Y onto X without an intercept is given by (3.38). Under what circumstance is the coefficient estimate for the regression of X onto Y the same as the coefficient estimate for the regression of Y onto X?

(b) Generate an example in R with n = 100 observations in which the coefficient estimate for the regression of X onto Y is different from the coefficient estimate for the regression of Y onto X.

x=1:100
y=x^2
fx=lm(x~y)
fy=lm(y~x)
summary(fy)
## 
## Call:
## lm(formula = y ~ x)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
##   -833   -677   -208    573   1617 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -1717.000    151.683  -11.32   <2e-16 ***
## x             101.000      2.608   38.73   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 752.7 on 98 degrees of freedom
## Multiple R-squared:  0.9387, Adjusted R-squared:  0.9381 
## F-statistic:  1500 on 1 and 98 DF,  p-value: < 2.2e-16
summary(fx)
## 
## Call:
## lm(formula = x ~ y)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -18.064  -5.121   2.036   6.357   7.845 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 19.054254   1.086528   17.54   <2e-16 ***
## y            0.009294   0.000240   38.73   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.221 on 98 degrees of freedom
## Multiple R-squared:  0.9387, Adjusted R-squared:  0.9381 
## F-statistic:  1500 on 1 and 98 DF,  p-value: < 2.2e-16

(c) Generate an example in R with n = 100 observations in which the coefficient estimate for the regression of X onto Y is the same as the coefficient estimate for the regression of Y onto X

y=x
fxg=lm(x~y)
fyg=lm(y~x)
summary(fyg)
## 
## Call:
## lm(formula = y ~ x)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -2.680e-13 -4.300e-16  2.850e-15  5.302e-15  3.575e-14 
## 
## Coefficients:
##               Estimate Std. Error    t value Pr(>|t|)    
## (Intercept) -5.684e-14  5.598e-15 -1.015e+01   <2e-16 ***
## x            1.000e+00  9.624e-17  1.039e+16   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.778e-14 on 98 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:      1 
## F-statistic: 1.08e+32 on 1 and 98 DF,  p-value: < 2.2e-16
summary(fxg)
## 
## Call:
## lm(formula = x ~ y)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -2.680e-13 -4.300e-16  2.850e-15  5.302e-15  3.575e-14 
## 
## Coefficients:
##               Estimate Std. Error    t value Pr(>|t|)    
## (Intercept) -5.684e-14  5.598e-15 -1.015e+01   <2e-16 ***
## y            1.000e+00  9.624e-17  1.039e+16   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.778e-14 on 98 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:      1 
## F-statistic: 1.08e+32 on 1 and 98 DF,  p-value: < 2.2e-16