library(rio)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(car)
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
## recode
endo=import("ENDO1.sav")
data = select(endo, P2_2, P1_24_E, P1_2, P1_4, P1_5, P1_11_B, P1_11_F, P1_11_G, P1_11_H, P1_11_L, P1_18)
table(data$P2_2)
##
## 0 1
## 1551 16489
data$retorno=as.factor(data$P2_2)
levels(data$retorno) = c("no", "si")
table(data$retorno)
##
## no si
## 1551 16489
variables:
Durante el año 2020, ¿sufrió o sufre enfermedades respiratorias?(P1_11_B)
Durante el año 2020, ¿sufrió o sufre ansiedad? (P1_11_F)
Durante el año 2020, ¿sufrió o sufre depresión (P1_11_G)
table(data$P1_11_B)
##
## 0 1
## 15181 3749
table(data$P1_11_F)
##
## 0 1
## 13705 5225
table(data$P1_11_G)
##
## 0 1
## 15870 3060
modelo1 = glm(retorno ~ P1_11_B+P1_11_F+P1_11_G, family = binomial(link="logit") ,data = data)
summary(modelo1)
##
## Call:
## glm(formula = retorno ~ P1_11_B + P1_11_F + P1_11_G, family = binomial(link = "logit"),
## data = data)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.2967 0.3853 0.3853 0.4515 0.5474
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.56328 0.03574 71.722 < 2e-16 ***
## P1_11_B -0.28345 0.06287 -4.508 6.53e-06 ***
## P1_11_F -0.40975 0.06039 -6.785 1.16e-11 ***
## P1_11_G -0.04755 0.07310 -0.651 0.515
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 10576 on 18039 degrees of freedom
## Residual deviance: 10490 on 18036 degrees of freedom
## (10176 observations deleted due to missingness)
## AIC: 10498
##
## Number of Fisher Scoring iterations: 5
exp(coef(modelo1))
## (Intercept) P1_11_B P1_11_F P1_11_G
## 12.9782539 0.7531831 0.6638178 0.9535612
1-(exp(-0.2834))
## [1] 0.2467816
1-(exp(-0.4097))
## [1] 0.3361506
1-(exp(-0.0475))
## [1] 0.04638953
log.odds1 = predict(modelo2, data.frame(P1_4 = 0, P1_11_H = 1, P1_11_G = 1)) log.odds1 ```