library(tidyverse)
library(openintro)The below histograms show then count of flights in certain departure windows. The second graph has a small bin width than the other two allowing you to see a more accurate representation of the number of flights by departure window. The third has too large of a bin width to get useful analysis from.
data(nycflights)
names(nycflights)## [1] "year" "month" "day" "dep_time" "dep_delay" "arr_time"
## [7] "arr_delay" "carrier" "tailnum" "flight" "origin" "dest"
## [13] "air_time" "distance" "hour" "minute"
?nycflights
glimpse(nycflights)## Rows: 32,735
## Columns: 16
## $ year <int> 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, …
## $ month <int> 6, 5, 12, 5, 7, 1, 12, 8, 9, 4, 6, 11, 4, 3, 10, 1, 2, 8, 10…
## $ day <int> 30, 7, 8, 14, 21, 1, 9, 13, 26, 30, 17, 22, 26, 25, 21, 23, …
## $ dep_time <int> 940, 1657, 859, 1841, 1102, 1817, 1259, 1920, 725, 1323, 940…
## $ dep_delay <dbl> 15, -3, -1, -4, -3, -3, 14, 85, -10, 62, 5, 5, -2, 115, -4, …
## $ arr_time <int> 1216, 2104, 1238, 2122, 1230, 2008, 1617, 2032, 1027, 1549, …
## $ arr_delay <dbl> -4, 10, 11, -34, -8, 3, 22, 71, -8, 60, -4, -2, 22, 91, -6, …
## $ carrier <chr> "VX", "DL", "DL", "DL", "9E", "AA", "WN", "B6", "AA", "EV", …
## $ tailnum <chr> "N626VA", "N3760C", "N712TW", "N914DL", "N823AY", "N3AXAA", …
## $ flight <int> 407, 329, 422, 2391, 3652, 353, 1428, 1407, 2279, 4162, 20, …
## $ origin <chr> "JFK", "JFK", "JFK", "JFK", "LGA", "LGA", "EWR", "JFK", "LGA…
## $ dest <chr> "LAX", "SJU", "LAX", "TPA", "ORF", "ORD", "HOU", "IAD", "MIA…
## $ air_time <dbl> 313, 216, 376, 135, 50, 138, 240, 48, 148, 110, 50, 161, 87,…
## $ distance <dbl> 2475, 1598, 2475, 1005, 296, 733, 1411, 228, 1096, 820, 264,…
## $ hour <dbl> 9, 16, 8, 18, 11, 18, 12, 19, 7, 13, 9, 13, 8, 20, 12, 20, 6…
## $ minute <dbl> 40, 57, 59, 41, 2, 17, 59, 20, 25, 23, 40, 20, 9, 54, 17, 24…
ggplot(data = nycflights, aes(x = dep_delay)) +
geom_histogram()## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
ggplot(data = nycflights, aes(x = dep_delay)) +
geom_histogram(binwidth = 15)ggplot(data = nycflights, aes(x = dep_delay)) +
geom_histogram(binwidth = 150)There are 68 observations in the subset sfo_feb_flights
sfo_feb_flights <- nycflights %>%
filter(dest == "SFO", month == 2)
count(sfo_feb_flights)## # A tibble: 1 × 1
## n
## <int>
## 1 68
…
ggplot(data = sfo_feb_flights, aes(x = arr_delay)) +
geom_histogram(binwidth = 10)mean(sfo_feb_flights$arr_delay)## [1] -4.5
median(sfo_feb_flights$arr_delay)## [1] -11
sd(sfo_feb_flights$arr_delay)## [1] 36.28062
IQR(sfo_feb_flights$arr_delay)## [1] 23.25
var(sfo_feb_flights$arr_delay)## [1] 1316.284
VX has the most variable arrival delays.
sfo_feb_flights %>%
group_by(carrier) %>%
summarise(median_ad = median(arr_delay), iqr_ad = IQR(arr_delay), n_flights = n())## # A tibble: 5 × 4
## carrier median_ad iqr_ad n_flights
## <chr> <dbl> <dbl> <int>
## 1 AA 5 17.5 10
## 2 B6 -10.5 12.2 6
## 3 DL -15 22 19
## 4 UA -10 22 21
## 5 VX -22.5 21.2 12
When deciding on which month to travel based on departure I would use the mean over the median.
nycflights %>%
group_by(month) %>%
summarise(mean_dd = mean(dep_delay), median_dd = median(dep_delay)) %>%
arrange(desc(mean_dd))## # A tibble: 12 × 3
## month mean_dd median_dd
## <int> <dbl> <dbl>
## 1 7 20.8 0
## 2 6 20.4 0
## 3 12 17.4 1
## 4 4 14.6 -2
## 5 3 13.5 -1
## 6 5 13.3 -1
## 7 8 12.6 -1
## 8 2 10.7 -2
## 9 1 10.2 -2
## 10 9 6.87 -3
## 11 11 6.10 -2
## 12 10 5.88 -3
Based on the below findings I would pick LGA as my airport to fly out of. The rate of on time flights is about .73 or 73% of flights from LGA are “on time”
nycflights <- nycflights %>%
mutate(dep_type = ifelse(dep_delay < 5, "on time", "delayed"))
nycflights %>%
group_by(origin) %>%
summarise(ot_dep_rate = sum(dep_type == "on time") / n()) %>%
arrange(desc(ot_dep_rate))## # A tibble: 3 × 2
## origin ot_dep_rate
## <chr> <dbl>
## 1 LGA 0.728
## 2 JFK 0.694
## 3 EWR 0.637
ggplot(data = nycflights, aes(x = origin, fill = dep_type)) +
geom_bar()nycflights <- nycflights %>%
mutate(avg_speed = (distance/(air_time/60)))ggplot(data = nycflights, aes(x = distance, y = avg_speed)) +
geom_point()At about 80 minutes you have reached the point where you can no longer expect to arrive on time as seen below on the plot.
maj_carrier_flights <- nycflights %>%
filter(carrier %in% c("AA", "DL", "UA"))
ggplot(data = maj_carrier_flights, aes(x = dep_delay, y = arr_delay)) +
geom_point(aes(color = factor(carrier)))