### Installar gapminder dataset :install.packages(gapminder)
## Cargar paquetes
library(dplyr) ### para manupular dataframes
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(gapminder) ## para acceder al dataframe gapmider
library(ggplot2)
## explorar el dataframe gapminder
gapminder
## # A tibble: 1,704 × 6
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Afghanistan Asia 1952 28.8 8425333 779.
## 2 Afghanistan Asia 1957 30.3 9240934 821.
## 3 Afghanistan Asia 1962 32.0 10267083 853.
## 4 Afghanistan Asia 1967 34.0 11537966 836.
## 5 Afghanistan Asia 1972 36.1 13079460 740.
## 6 Afghanistan Asia 1977 38.4 14880372 786.
## 7 Afghanistan Asia 1982 39.9 12881816 978.
## 8 Afghanistan Asia 1987 40.8 13867957 852.
## 9 Afghanistan Asia 1992 41.7 16317921 649.
## 10 Afghanistan Asia 1997 41.8 22227415 635.
## # … with 1,694 more rows
glimpse(gapminder)
## Rows: 1,704
## Columns: 6
## $ country <fct> "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", …
## $ continent <fct> Asia, Asia, Asia, Asia, Asia, Asia, Asia, Asia, Asia, Asia, …
## $ year <int> 1952, 1957, 1962, 1967, 1972, 1977, 1982, 1987, 1992, 1997, …
## $ lifeExp <dbl> 28.801, 30.332, 31.997, 34.020, 36.088, 38.438, 39.854, 40.8…
## $ pop <int> 8425333, 9240934, 10267083, 11537966, 13079460, 14880372, 12…
## $ gdpPercap <dbl> 779.4453, 820.8530, 853.1007, 836.1971, 739.9811, 786.1134, …
###Tabla dinamica por continente
#tabla
gapminderContinente<- gapminder%>%
group_by(continent)%>%
summarise(media_lifeExp=mean(lifeExp), media_pop=mean(pop),
media_gdpPercap=mean(gdpPercap))%>%
print()
## # A tibble: 5 × 4
## continent media_lifeExp media_pop media_gdpPercap
## <fct> <dbl> <dbl> <dbl>
## 1 Africa 48.9 9916003. 2194.
## 2 Americas 64.7 24504795. 7136.
## 3 Asia 60.1 77038722. 7902.
## 4 Europe 71.9 17169765. 14469.
## 5 Oceania 74.3 8874672. 18622.
#barplot
gapminderContinente%>%
ggplot(aes(x=continent, y=media_gdpPercap))+
geom_col()

##Tabla con estadistica descriptiva para 1997
##tabla
gapminder_gdp_stat_1997<-gapminder%>%
filter(year==1997)%>%
group_by(continent)%>%
summarise(mediaGdpPercap=mean(gdpPercap), sdGDPPercap=sd(gdpPercap),
medianaGdpPercap=median(gdpPercap), IQRGdpPercap=IQR(gdpPercap),
VarCoefGdpPercap=sdGDPPercap*100/mediaGdpPercap)%>%
print()
## # A tibble: 5 × 6
## continent mediaGdpPercap sdGDPPercap medianaGdpPercap IQRGdpPercap VarCoefGd…¹
## <fct> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Africa 2379. 2821. 1180. 2064. 119.
## 2 Americas 8889. 7874. 7114. 5083. 88.6
## 3 Asia 9834. 11094. 3645. 17800. 113.
## 4 Europe 19077. 10065. 19596. 17243. 52.8
## 5 Oceania 24024. 4206. 24024. 2974. 17.5
## # … with abbreviated variable name ¹VarCoefGdpPercap
##boxplot
gapminder%>%
filter(year==1997)%>%
group_by(continent)%>%
ggplot(aes(x=continent, y=gdpPercap))+
geom_boxplot()+
scale_y_log10()
