### Cargar la libreria
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
### Primera tabla
library(readxl)
join_1 <- read_excel("~/Metodos/doc_join/join_1.xlsx") %>%
print()
## # A tibble: 9 × 3
## CODIGO PRODUCTO Ventas
## <chr> <chr> <dbl>
## 1 C_001 Banana 1000
## 2 C_002 Papaya 1200
## 3 C_003 Camote 1500
## 4 C_004 Maiz 1400
## 5 C_005 Cacao 1800
## 6 C_006 Atun 1600
## 7 C_007 Coco 1500
## 8 C_008 Frijol 1475
## 9 C_009 Sandia 1389
### Segunda tabla
library(readxl)
JOIN_2 <- read_excel("~/Metodos/doc_join/JOIN_2.xlsx") %>%
print()
## # A tibble: 9 × 3
## CODIGO PRODUCTO CANTIDAD
## <chr> <chr> <dbl>
## 1 C_001 Banana 15
## 2 C_002 Papaya 18
## 3 C_003 Camote 20
## 4 C_004 Maiz 18
## 5 C_005 Cacao 12
## 6 C_006 Atun 46
## 7 C_007 Coco 11
## 8 C_008 Frijol 13
## 9 C_009 Sandia 10
### Combinar las tablas con full_join con los datafrems a utilizar por la variable en comun
Combine<- full_join(join_1, JOIN_2, by= "CODIGO") %>%
### selecciona las variables que se van a mostrar en la tabla
select(CODIGO, PRODUCTO.x, Ventas, CANTIDAD) %>%
print()
## # A tibble: 9 × 4
## CODIGO PRODUCTO.x Ventas CANTIDAD
## <chr> <chr> <dbl> <dbl>
## 1 C_001 Banana 1000 15
## 2 C_002 Papaya 1200 18
## 3 C_003 Camote 1500 20
## 4 C_004 Maiz 1400 18
## 5 C_005 Cacao 1800 12
## 6 C_006 Atun 1600 46
## 7 C_007 Coco 1500 11
## 8 C_008 Frijol 1475 13
## 9 C_009 Sandia 1389 10